gravitational waves from ns interiors c. peralta, m. bennett, m. giacobello, a. melatos, a. ooi, a....

12
GRAVITATIONAL WAVES FROM NS INTERIORS C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI) 1. Superfluid turbulence 2. Post-glitch relaxation 3. Rigorous model → parametrised template → nuclear physics (viscosity, compressibility)

Post on 20-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

GRAVITATIONAL WAVESFROM NS INTERIORS

C. Peralta, M. Bennett, M. Giacobello, A. Melatos, A. Ooi, A. van Eysden, S. Wyithe (U. Melbourne and AEI)

1. Superfluid turbulence

2. Post-glitch relaxation

3. Rigorous model → parametrised template → nuclear physics (viscosity, compressibility)

CONTINUOUS SOURCE

Long-lived (days → years) periodic signal• Superfluid turbulence as pulsar spins down (Re ≈ 1011)• Post-glitch relaxation (Ekman pumping)• Follows burst signal of glitch itself (msec?)

Not discussed here...• R-modes continuously excited in core (Andersson et al. 99;

Nayyar & Owen 06); cf. ocean r-modes (Heyl 04)

• Amplitude and threshold probe superfluid core and viscous crust-core boundary layer (Lindblom & Mendell 99;

Bildsten & Ushomirsky 00; Levin & Ushomirsky 01)

C-C diff. rotation (glitches)→ nonaxisymmetric superfluid flows

SUPERFLUID CIRCULATION

Differential rotation → meridional circulation• superfluid → HVBK two-fluid model (3D)• Quantised vortices ↔ mutual friction

oscillatinghydro torque

Re=104

EKMANPUMPING

(Peralta et al. 05, 06, 07)

MACRO SF TURBULENCE

HERRINGBONE& SPIRAL

TURBULENCE

TAYLORVORTEX

POST-GLITCH RELAXATION

• Ekman: fluid spun up in radially expanding boundary layer (meridional → Coriolis)

• TEkman = (2E1/2) with E = (2R2)≈ Re

• Buoyancy inhibits meridional flow less/more according to compressibility K

• Brunt-Vaisala frequency: N2=g2(ceqK)

• Incompressible: K → ∞. Unstratified: N → 0

• Nonaxisymmetric perturbation exp(im)

• Wave strain:

GW SPECTRUM

• Lorentzian: measure width & peak frequency

• Extract two of E, N, K if known(X-rays)

• Width ratio independent of E (i.e. viscosity)• Amplitude depends on distance, orientation, , and

compressibilities… but not E• Pol’n ratio: orientation to line of sight (also N, K)

2211 )(

)(

fE

ffh

2221 )2(

)(

fE

ffh

EQUATORIAL OBSERVER

h+(f)

h×(f)

f

f

K

K

K

K

K

N

N

N N

EXTRACTING NUCLEAR PHYSICS

N

i

E K

Total signal including current quadrupole

ii

E

N N

K

K

E

PHYSICS TO WORRY ABOUT

• Microscopic turbulence

• DGI → tangle of quantized vortices

• Affects the mutual friction coupling ↓

• Macroscopic turbulence (Kolmogorov “eddies”)

• Do large or small eddies dominate the GW signal?

WHAT WILL LIGO TEACH US?

SF turbulence

• Is the core superfluid?

• Mutual friction & entrainment parameter

• Viscosity

• Crust-core coupling

Glitches

• Measure ceq and K for nuclear matter

• Do glitches happen faster or slower than one rotation period?

• Probe “seismic” (avalanche) dynamics• Spectrum of non-axisymmetric excitation

NO OTHER GOOD WAY

TO LEARN SUCH THINGS!