green telecom & it workshop: chandra murthy green_telecom_it

18
System Model First Stage: Duty Cycling Second Stage: Power Allocation Conclusions Duty Cycling and Power Management with a Network of Energy Harvesting Sensors Srinivas Reddy and Chandra R. Murthy {srinivaskrn,cmurthy1}@gmail.com Dept. of ECE, Indian Institute Science, Bangalore, India Apr. 5th, 2012 Power Management Algorithms for a Network of EHS

Upload: belllabs

Post on 08-Jul-2015

339 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Duty Cycling and Power Management witha Network of Energy Harvesting Sensors

Srinivas Reddy and Chandra R. Murthy{srinivaskrn,cmurthy1}@gmail.com

Dept. of ECE, Indian Institute Science, Bangalore, India

Apr. 5th, 2012

Power Management Algorithms for a Network of EHS

Page 2: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Outline

1 System Model

2 First Stage: Duty Cycling

3 Second Stage: Power Allocation

4 Conclusions

Power Management Algorithms for a Network of EHS

Page 3: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

System Model

Single hop EHS network with K nodes transmitting data topowered destinationSingle MCS transmission by each node

Transmission based on channel measurementLeads to truncated channel inversion (TCI)

Duty-cycling across nodes to prevent collisions

GoalFind the optimum power allocation and duty-cycle to maximizethe sum throughput subject to energy neutrality at eachindividual node.

Power Management Algorithms for a Network of EHS

Page 4: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Block Diagram of Each EHS Node

Transceiver

Super Capacitor

Energy Harvester

Battery

Inefficient

Figure: Power flow diagram: Harvest-use-store model

The remaining circuitry (sensor) is assumed to consume afixed power and hence not shown

Power Management Algorithms for a Network of EHS

Page 5: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Timing Diagram

Channel Power Gain

Harvested Power

2Tp3Tc2TcTc0 Tp

(Independent)

Constant Channel (CC) slots

Constant Power (CP) slots

Figure: Constant channel and constant power slots

Power Management Algorithms for a Network of EHS

Page 6: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Role of Supercapacitor

������������

������������

�����������������������������������

�����������������������������������

����������������������������

����������������������������

����������������

����������������

��������

��������

���� �� ��

���� ������

��������������������������������

��������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Time

Power

Tc 2Tc 3Tc0

transmit power

Instantaneous

supplied by battery

Supercapacitor

Supplied/Taken by

Average power is

Figure: Supercapacitor supplies power variations around the meanallotted power within a CP slot

Battery storage efficiency: ηSupercapacitor assumed perfectly efficientBattery sees a constant load

Power Management Algorithms for a Network of EHS

Page 7: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Proposed Solution

First Stage: choose duty cycle Di and gain threshold γm,iat each node as functions of Pa

Requires knowledge of sum power allotted at the nodesAssumes identical channel statisticsGoal: max. channel statistics-averaged sum throughput

Second Stage: choose power allocation vector Pa as afunction of the harvested power vector Ph

Requires knowledge of harvested power at each nodeGoal: max. sum throughput over harvested power statistics

Power Management Algorithms for a Network of EHS

Page 8: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

First Stage Problem Setup

To choose: duty cycle Di and gain threshold γm,i at eachnode as functions of Pa

Average data rate of the i-th node

Ri(Pa) = RonDi[1− Fγ(γm,i)

]Optimization problem

maxDi≥0,γm,i≥0,

∑i Di =1

K∑i=1

Ri(Pa)

Subject to the power constraint

Di

∫ ∞γm,i

P0γ fγ(γ)dγ = Pa,i , i = 1, . . . ,K

Assumes identical channel statistics fγ (γ) from each node to destination

Power Management Algorithms for a Network of EHS

Page 9: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

First Stage Solution

Using Lagrange mult. λ with∑K

i=1 Di = 1, can show

Dopti =

Pa,i∑Ki=1 Pa,i

Channel gain threshold γm,i = γm at all nodes!The optimum γm satisfies∫ ∞

γm

fγ(γ)γ dγ =

∑Ki=1 Pa,iP0

And the optimized sum throughput

RΣ(Pa) ,L∑

i=1

Ropti (Pa) = Ron [1− Fγ(γm)]

Power Management Algorithms for a Network of EHS

Page 10: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Second Stage Problem Setup

Now lets optimize Pa

Optimization problem

maxPa(Ph)≥0

E {RΣ(Pa)}

The expectation is over the joint distribution of Ph

Subject to energy neutrality at node i , 1 ≤ i ≤ K :

∞∫0

(AiPa,i + (1− Ai)

(πh +

Pa,i−πhη

))fPh,i (πh)dπh = E

{Ph,i}

where Ai = 1 if Pa,i < πh and 0 otherwise.In the above, the variable of integration πh is the power harvested at the i-th node

Power Management Algorithms for a Network of EHS

Page 11: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Simplification of Second Stage

Recall: RΣ(Pa) depends only on∑K

i=1 Pa,i (through γm)Now, when

∑Ph,i >

∑Pa,i , some nodes can deposit

energy into batteryWhen

∑Ph,i <

∑Pa,i , some nodes must draw energy

from batteryEnergy efficient design: sum power energy neutrality ∗∗∞∫

0

(A Pa,Σ + (1− A)

(πh +

Pa,Σ−πhη

))fPh,Σ(πh)dπh = E

{Ph,Σ

}where A = 1 if Pa,Σ < πh and 0 otherwise.Note: πh =

∑Ki=1 Ph,i is the sum power harvested and fPh,Σ

(·) is its PDF

Tries to minimize wasteful cycling of energy through battery

Power Management Algorithms for a Network of EHS

Page 12: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Second Stage Solution

New optimization problem

maxPa,Σ(Ph,Σ)

RΣ(Pa) , Ron [1− Fγ(γm)]

subject to ∗∗Same as the “outer stage optimization” in our past work![RM TWC ’11, Accepted]

Working with a fictitious EHS which harvests the sumpower, and under a sum-power energy neutrality constraint

Optimal solution:

Popta,Σ =

P1 if Ph,Σ ≥ P1;P2 if Ph,Σ ≤ P2;Ph,Σ if P2 < Ph,Σ < P1.

Power Management Algorithms for a Network of EHS

Page 13: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Second Stage Solution (Cont’d)

For optimality, P1 and P2 should satisfy

dRΣ

dPa,Σ

∣∣∣∣Pa,Σ=P1

= ηdRΣ

dPa,Σ

∣∣∣∣Pa,Σ=P2

For energy neutrality, P1 and P2 should satisfy∫ P2

0[P2 − πh]fPh,Σ(πh)dπh = η

∫ ∞P1

[πh − P1]fPh,Σ(πh)dπh

Power Management Algorithms for a Network of EHS

Page 14: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Power Allocation for Each Node (1/2)

Given Popta,Σ, to find Pa,i that satisfy EN at each node

Recall sum power allocation rule:

Popta,Σ =

P1 if Ph,Σ ≥ P1;P2 if Ph,Σ ≤ P2;Ph,Σ if P2 < Ph,Σ < P1.

Many ways of allotting Pa,i s.t.∑

Pa,i = Pa,Σ

Individual energy neutrality conditions∞∫

0

(AiPa,i + (1− Ai)

(πh +

Pa,i−πhη

))fPh,i (πh)dπh = E

{Ph,i}

where Ai = 1 if Pa,i < πh and 0 otherwise.

Power Management Algorithms for a Network of EHS

Page 15: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Power Allocation for Each Node (2/2)Proposed allotment scheme:

Pa,i =

[Ph,i −

Ph,Σ−P1K − Pe,i

]+if Ph,Σ ≥ P1;

Ph,i +P2−Ph,ΣηK if Ph,Σ ≤ P2;

Ph,i if P2 < Ph,Σ < P1.

Let P(j)e,i denote the Pe,i in CP slot j

Update equation for Pe,i is as follows:

P(j+1)e,i =

[−Ph,i +

Ph,Σ−P1K + P(j)

e,i

]+if Ph,Σ ≥ P1;

P(j)e,i if Ph,Σ ≤ P2;

P(j)e,i if P2 < Ph,Σ < P1.

Note: in the above, Ph,i , Ph,Σ are the harvested powers in the j-th CP slot.

Power Management Algorithms for a Network of EHS

Page 16: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Simulation Result

Figure: Normalized throughput Vs. E {Ph}, for η = 0.8, K = 10.Harvested power uniformly distributed between [0,2E {Ph}]

Power Management Algorithms for a Network of EHS

Page 17: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

Conclusions

Solved duty cycling and power allocation problems in anEHS network with K nodesTwo-stage approach:

Inner stage: duty cycle = fraction of allotted powerOuter stage: total allotted power = clipped version of totalharvested power (suboptimal solution)

Solution of simple form⇒ easy implementationFuture work: accounting for channel estimation errors,battery energy leakage, data arrival process,retransmissions, etc

Power Management Algorithms for a Network of EHS

Page 18: Green Telecom & IT Workshop: Chandra murthy green_telecom_it

System ModelFirst Stage: Duty Cycling

Second Stage: Power AllocationConclusions

The End

Thank you very much!Questions?

Chandra [email protected]

(This work was supported in part by a research grant from theAerospace Network Research Consortium.)

Power Management Algorithms for a Network of EHS