gsm interfaces protocols

Upload: fireincitadel

Post on 17-Oct-2015

48 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/27/2018 Gsm Interfaces Protocols

    1/73

    Dr. D H Pesch, CIT, 2000 1

    GSM Interfaces and ProtocolsGSM Interfaces and Protocols

    Telecommunications

    MSc in Software Development

  • 5/27/2018 Gsm Interfaces Protocols

    2/73

    Dr. D H Pesch, CIT, 2000 2

    IntroductionIntroduction

    Communication between the several logical and

    physical entities of a GSM PLMN is based on

    specified interfaces and associated protocols

    Interfaces of radio access part

    Radio Interface Um-Interface

    BTS-BSC interface Abis-Interface

    BSC-MSC interface A-Interface

    NSS interfaces

    B, C, D, E, F Interfaces

  • 5/27/2018 Gsm Interfaces Protocols

    3/73

    Dr. D H Pesch, CIT, 2000 3

    GSM InterfacesGSM Interfaces

    MS

    BTS

    BSC MSCBTS

    BTS

    BTS

    BTS

    BTS

    BSCUm

    PSTN/ISDN

    AAbis

    MSC

    Gateway

    MSC

    VLR

    VLR

    HLR

    AUC

    EIR

    B

    E

    C

    D

    F

    SMS

    Centre

    OMC

    Radio Subsystem

    Base Station Subsystem

    (BSS)

    Operation Subsystem (OSS)

    Network & Switching Subsystem (NSS)

    SIM

  • 5/27/2018 Gsm Interfaces Protocols

    4/73

    Dr. D H Pesch, CIT, 2000 4

    GSM ProtocolsGSM Protocols

    Radio

    LAP-Dm

    64 kb/s G.703

    LAP-D

    MTP 1

    MTP 2

    MTP 3

    SCCP

    MTP 1

    MTP 2

    MTP 3

    SCCP

    MTP 1

    MTP 2

    MTP 3

    SCCP

    MTP 1

    MTP 2

    MTP 3

    SCCP

    MTP 1

    MTP 2

    MTP 3

    RIL3 - RR

    RIL3 - MM

    RIL3 - CM

    RSM BSSMAP MAP/E, MAP/G

    Distribution Protocol TCAP

    MAP/D MAP/C

    TUP,

    ISUP

    Application

    Presentation

    Session

    Transport

    Network

    Data Link

    Physical

    OSI Layers

    MS BTS BSC

    Relay

    MSC/VLR

    Anchor

    MSC/VLR HLR/AuCGMSC

    SMS Gateway

    PSTN/

    ISDN

    Um Abis A B, E, G C D

  • 5/27/2018 Gsm Interfaces Protocols

    5/73

    Dr. D H Pesch, CIT, 2000 5

    GSM Radio InterfaceGSM Radio Interface

    Combination of FDM and TDM

    Uplink and downlink have each 25MHz of total

    spectrum available

    Spectrum divided into 124 carrier frequencies

    Carrier spacing is 200kHz

    8 time slots per carrier

  • 5/27/2018 Gsm Interfaces Protocols

    6/73

    Dr. D H Pesch, CIT, 2000 6

    MultiplexingMultiplexing

    Frequency Slot 0 Slot 1 Slot 2 Slot 7ch 1ch 2ch 3.

    .

    .

    .

    .

    ch 124

    Time1 Frame = 8 timeslotsFrame duration = 4.615 ms

    timeslot duration = 0.577 ms

  • 5/27/2018 Gsm Interfaces Protocols

    7/73

    Dr. D H Pesch, CIT, 2000 7

    TDMA Frame StructureTDMA Frame Structure

    Each TDMA frame divided into 8 time slots

    TDMA frames are grouped into two types of

    multiframes

    26-frame multiframe for traffic channels

    51-frame multiframe for control channels

    Multiframes are multiplexed into single superframe

    of 6.12sec duration

    2048 multiframes are combined into hyperframe

  • 5/27/2018 Gsm Interfaces Protocols

    8/73

    Dr. D H Pesch, CIT, 2000 8

  • 5/27/2018 Gsm Interfaces Protocols

    9/73

    Dr. D H Pesch, CIT, 2000 9

    Channel TypesChannel Types

    Physical Channels

    defined by carrier frequency/TDMA time slot combination

    Logical Channels

    two types of logical channels

    Traffic Channels (TCH)

    Control Channels (CCH)

  • 5/27/2018 Gsm Interfaces Protocols

    10/73

    Dr. D H Pesch, CIT, 2000 10

    Traffic ChannelsTraffic Channels

    Traffic channels carry user information

    speech

    data, FAX

    Two types of TCH

    full rate channel with 22.8kbps gross bit rate

    half rate channel with 11.4kbps gross bit rate

    TCH are multiplexed into 26-frame multiframe

    structure

  • 5/27/2018 Gsm Interfaces Protocols

    11/73

    Dr. D H Pesch, CIT, 2000 11

    2626--frameframe MultiframeMultiframe

    26-frame multiframe

    T1 T2 T3 T4 T5 T10

    T11

    A T12

    T21

    T22

    T23

    I

    Tn: time frame number n for traffic data.

    A: slow associated control channel.

    I: idle frame.

  • 5/27/2018 Gsm Interfaces Protocols

    12/73

    Dr. D H Pesch, CIT, 2000 12

    Control ChannelsControl Channels

    Control channels carry system control and

    synchronisation information

    Three categories are defined

    Broadcast channel

    Common control channel

    Dedicated control channel

    Almost all control channels exist in the 51-frame

    multiframe structure

  • 5/27/2018 Gsm Interfaces Protocols

    13/73

    Dr. D H Pesch, CIT, 2000 13

    5151--frameframe MultiframeMultiframe

    DOWNLINK (51 time frames)

    F S B B B B C C F S C C C C C C F S C C C C C C C C I

    F: frequency correction channel

    S: synchronisation channel

    B: broadcast control channel

    C: common control channel

    I: idle frame

  • 5/27/2018 Gsm Interfaces Protocols

    14/73

    Dr. D H Pesch, CIT, 2000 14

    Broadcast ChannelBroadcast Channel

    Frequency Correction Channel (FCCH)

    Synchronisation Channel (SCH)

    Broadcast Control Channel (BCCH)

  • 5/27/2018 Gsm Interfaces Protocols

    15/73

    Dr. D H Pesch, CIT, 2000 15

    Common Control ChannelCommon Control Channel

    Paging Channel (PCH)

    Random Access Channel (RACH)

    Access Grant Channel (AGCH)

    Cell Broadcast Channel (CBCH)

  • 5/27/2018 Gsm Interfaces Protocols

    16/73

    Dr. D H Pesch, CIT, 2000 16

    Dedicated Control ChannelDedicated Control Channel

    Stand-alone Dedicated Control Channel (SDCCH)

    Slow Associated Control Channel (SACCH)

    Fast Associated Control Channel (FACCH)

  • 5/27/2018 Gsm Interfaces Protocols

    17/73

    Dr. D H Pesch, CIT, 2000 17

    Burst TypesBurst Types

    Normal Burst

    Frequency Correction Burst

    Synchronisation Burst

    Dummy Burst

    Access Burst

  • 5/27/2018 Gsm Interfaces Protocols

    18/73

    Dr. D H Pesch, CIT, 2000 18

    Burst TypesBurst Types

    Start (3) Encrypted data (58) t raining (26) encrypted data (58) stop (3) Guard period (8.25)

    Tail bits 57 bits data + 1 Stealing 57 bits data + 1 Stealing Tail bitsflag flag

    Start(3) fixed bits (142) Stop (3) guard period (8.25)

    start(3) encrypted data (39) Extended training (64) Encrypted data (39) stop (3) guard period (8.25)

    extended start (8) synch. seq. (41) encrypted data (36) Stop (3) extended guard per iod (68.25)

    Normal Burst

    Frequency Correction Burst Burst

    Synchronisation Burst

    Access Burst

  • 5/27/2018 Gsm Interfaces Protocols

    19/73

    Dr. D H Pesch, CIT, 2000 19

    Channel CombinationsChannel Combinations

    CC1: TCH/F + FACCH/F + SACCH/TF

    CC2: TCH/H(0,1) + FACCH/H(0,1) +

    SACCH/TH(0,1)

    CC3: TCH/H(0) + FACCH/H(0) + SACCH/TH(0) +

    TCH/H(1)

    CC4: FCCH + SCH + BCCH + CCCH

    CC5: FCCH + SCH + BCCH + CCCH +

    SDCCH/4(0,1,2,3) + SACCH/C4(0,1,2,3)

    CC6: BCCH + CCCH CC7: SDCCH/8 + SACCH/8

  • 5/27/2018 Gsm Interfaces Protocols

    20/73

    Dr. D H Pesch, CIT, 2000 20

    Channel Combination 2Channel Combination 2

    T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 A0 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 T0 T1 A1

    T0: TCH/H(0) A0: SACCH/TH(0)

    T1: TCH/H(1) A1: SACCH/TH(1) 26-frame multiframe

  • 5/27/2018 Gsm Interfaces Protocols

    21/73

    Dr. D H Pesch, CIT, 2000 21

    Channel Combination 5Channel Combination 5

    F: FCCH D0: SDCCH/4(0) A0: SACCH/C4(0) R: RACH

    F: FCCH D1: SDCCH/4(1) A1: SACCH/C4(1)

    F: FCCH D2: SDCCH/4(2) A2: SACCH/C4(2)

    F: FCCH D3: SDCCH/4(3) A3: SACCH/C4(3) 2 x 51-frame multiframe

    F S B B B B C C C C F S C C C C C C C C F S D0 D0 D0 D0

    D1 D1 D1 D1 F S D2 D2 D2 D2 D3 D3 D3 D3 F S A0 A0 A0 A0 A1 A1 A1 A1 -

    F S B B B B C C C C F S C C C C C C C C F S D0 D0 D0 D0

    D1 D1 D1 D1 F S D2 D2 D2 D2 D3 D3 D3 D3 F S A2 A2 A2 A2 A3 A3 A3 A3 -

    D3 D3 D3 D3 R R A2 A2 A2 A2 A3 A3 A3 A3 R R R R R R R R R R R R

    R R R R R R R R R R R D0 D0 D0 D0 D1 D1 D1 D1 R R D2 D2 D2 D2

    Uplink

    Downlink

    D3 D3 D3 D3 R R A0 A0 A0 A0 A1 A1 A1 A1 R R R R R R R R R R R R

    R R R R R R R R R R R D0 D0 D0 D0 D1 D1 D1 D1 R R D2 D2 D2 D2

  • 5/27/2018 Gsm Interfaces Protocols

    22/73

    Dr. D H Pesch, CIT, 2000 22

    CC based on Cell LoadCC based on Cell Load

    Low capacity cell with one TRX

    - TN 0: FCCH + SCH + BCCH + CCCH + SDCCH/4(0,1,2,3) + SACCH/C4(0,1,2,3)- TN1 to TN7: TCH/F + FACCH/F + SACCH/TF

    Medium capacity cell with four TRX

    - Once (on TN 0): FCCH + SCH + BCCH + CCCH- Twice (on TN2 and TN4): SDCCH/8 +SACCH/8- 29 times: TCH/F + FACCH/F + SACCH/TF

    High capacity cell with 12 TRXs

    - Once on TN0: FCCH + SCH + BCCH + CCCH- Once on TN2: BCCH + CCCH

    - Once on TN4: BCCH + CCCH- Once on TN6: BCCH + CCCH

    - 5 times: SDCCH/8 + SACCH/8- 87 times: TCH/F + FACCH/F + SACCH/TF

    1. Notice that a BCCH always appears in TN 0 together with the logical channelsSCH and FCCH.

    2. Additional combinations CC6 are added when traffic is expected to be heavy.

  • 5/27/2018 Gsm Interfaces Protocols

    23/73

    Dr. D H Pesch, CIT, 2000 23

    Channel CodingChannel Coding

    Block Code

    Fire Code adds 40 bits redundancy, used on control

    channels

    Generator polynomial P(X) = (X23 + 1)(X17 + X3 + 1)

    Convolutional Code

    coder rates of 1/2, 1/3, 1/6, and 244/456

    Interleaving

  • 5/27/2018 Gsm Interfaces Protocols

    24/73

    Dr. D H Pesch, CIT, 2000 24

    InterleavingInterleaving

    0

    8

    M

    440

    448

    1

    9

    M

    441

    449

    2

    10

    M

    442

    450

    3

    11

    M

    443

    451

    4

    12

    M

    444

    452

    5

    13

    M

    445

    453

    6

    14

    M

    446

    454

    7

    15

    M

    447

    455

    0 8 440 448

    1 9 441 449

    2 10 442 450

    3 11 443 451

    4 12 444 452

    5 13 445 453

    6 14 446 454

    7 15 447 455

    Burst N (even bit)

    Burst N+1 (even bit)

    Burst N+2 (even bit)

    Burst N+3 (even bit)

    Burst N+4 (odd bit)

    Burst N+5 (odd bit)

    Burst N+6 (odd bit)

    Burst N+7 (odd bit)

  • 5/27/2018 Gsm Interfaces Protocols

    25/73

    Dr. D H Pesch, CIT, 2000 25

    InterleavingInterleaving

  • 5/27/2018 Gsm Interfaces Protocols

    26/73

    Dr. D H Pesch, CIT, 2000 26

    Coding on Logical ChannelsCoding on Logical Channels

    Channel Type Bit/Block

    Data+Parity+Tail

    Convolutional

    Coding Rate

    Bit/

    Block

    Interleaving

    depth

    TCH/FS 456 8

    Class I 182 + 3 + 4 1/2 (378)

    Class II 78 + 0 + 0 - (78)

    TCH/F9.6 4 * 60 + 0 + 4 244/456 456 19

    TCH/F4.8 60 + 0 + 16 1/3 228 19

    TCH/H4.8 4 * 60 + 0 + 4 244/456 456 19

    TCH/F2.4 72 + 0 + 4 1/6 456 8

    TCH/H2.4 72 + 0 + 4 1/3 228 19

    FACCHs 184 + 40 + 4 1/2 456 8

    SDCCHs, SACCHs 184 + 40 + 4 1/2 456 4

    BCCH, AGCH, PCH 184 + 40 + 4 1/2 456 4

    RACH 8 + 6 + 4 1/2 36 1

    SCH 25 + 10 + 4 1/2 78 1

  • 5/27/2018 Gsm Interfaces Protocols

    27/73

    Dr. D H Pesch, CIT, 2000 27

    ModulationModulation

    GMSK

    BT = 0.3

  • 5/27/2018 Gsm Interfaces Protocols

    28/73

    Dr. D H Pesch, CIT, 2000 28

    Timing AdvanceTiming Advance

    TS 0 TS 1 TS 2 TS 3 TS 4 TS 5

    TS 5 TS 6 TS 7

    TA

    TS 1 TS 2

    3 TSs

    The actual point in time of the transmission is shifted by the

    Timing Advance.

    Receivi

    Sending

  • 5/27/2018 Gsm Interfaces Protocols

    29/73

    Dr. D H Pesch, CIT, 2000 29

    Signalling Application ProtocolsSignalling Application Protocols

    Radio Interface Layer (RIL) Protocols

    Radio Resource (RR) Management

    Mobility Management (MM)

    Call Management (CM)

    BSS and NSS Protocols

    Common Channel Signalling System #7 (CCS7)

    TCAP

    GSM MAP

  • 5/27/2018 Gsm Interfaces Protocols

    30/73

    Dr. D H Pesch, CIT, 2000 30

    AAbisbis--InterfaceInterface

    Interface between BTS and BSC

    Non-standardised interface, manufacturers follow

    certain guidelines

    Based on transmission of data on a PCM 30 interface

    (2.048Mb/s transmission rate partitioned into 32

    channels of 64 kb/s each)

    Voice compression can pack between 4 and 8 voice

    channels into single PCM 30 channel.

  • 5/27/2018 Gsm Interfaces Protocols

    31/73

    Dr. D H Pesch, CIT, 2000 31

    BSS ConfigurationsBSS Configurations

    Networking between BTSs and BSCs

    Multiplexing of user data

    Typical network configurations

    Star Configuration

    Ring Configuration

    Serial Configuration

  • 5/27/2018 Gsm Interfaces Protocols

    32/73

    Dr. D H Pesch, CIT, 2000 32

    Star ConfigurationStar Configuration

  • 5/27/2018 Gsm Interfaces Protocols

    33/73

    Dr. D H Pesch, CIT, 2000 33

    Serial ConfigurationSerial Configuration

  • 5/27/2018 Gsm Interfaces Protocols

    34/73

    Dr. D H Pesch, CIT, 2000 34

    Ring ConfigurationRing Configuration

  • 5/27/2018 Gsm Interfaces Protocols

    35/73

    Dr. D H Pesch, CIT, 2000 35

    MultiplexingMultiplexing -- Star ConfigurationStar Configuration

    FAS/NFAS

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    Not used

    Not used

    Partial O&M data

    Not used

    O&M signalling

    TRX 8 signalling

    TRX 2 signalling

    TRX 6 signalling

    TRX 5 signalling

    TRX 4 signalling

    TRX 3 signalling

    TRX 7 signalling

    TRX 1 signalling

    Not used

    Not used

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    3031

    TRX 1

    TRX 5

    TRX 2

    TRX 6

    TRX 3

    TRX 7

    TRX 4

    TRX 8

  • 5/27/2018 Gsm Interfaces Protocols

    36/73

    Dr. D H Pesch, CIT, 2000 36

    MultiplexingMultiplexing -- Serial ConfigurationSerial Configuration

    FAS/NFAS

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    Air 0 Air 1 Air 2 Air 3

    Air 4 Air 5 Air 6 Air 7

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    Not used

    Partial O&M data

    BTS4/TRX1 signalling

    BTS3/TRX2 signalling

    BTS3/TRX1 signalling

    BTS2/O&M signalling

    BTS2/TRX1 signalling

    BTS1/TRX2 signalling

    BTS4 O&M signalling

    BTS3 O&M signalling

    BTS2/TRX2 signalling

    BTS1/O&M signalling

    BTS1/TRX1 signalling

    Transmission Control Information

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    3031

    BTS1/TRX1

    BTS3/TRX1

    BTS1/TRX2

    BTS3/TRX2

    BTS2/TRX1

    BTS4/TRX1

    BTS2/TRX2

    BTS4/TRX2

    BTS4/TRX2 signalling

  • 5/27/2018 Gsm Interfaces Protocols

    37/73

    Dr. D H Pesch, CIT, 2000 37

    Control Signalling on theControl Signalling on the AAbisbis--InterfaceInterface

    Layer 1 uses 64kb/s D-channel on E1 line

    (G.701/702) protocol

    Layer 2 uses the ISDN LAPD protocol

    Layer 3 divided into four parts

    TRX Management (TRXM)

    Common Channel Management (CCM)

    Radio Link Management (RLM)

    Dedicated Channel Management (DCM)

  • 5/27/2018 Gsm Interfaces Protocols

    38/73

    Dr. D H Pesch, CIT, 2000 38

    AAbisbis--Interface Protocol StackInterface Protocol Stack

    D-Channel

    LAPD

    TRXM

    User data (CC, RR, MM)

    Layer 1

    Higher Layers

    CCM RLM DCM

    Layer 2

    Layer 3

  • 5/27/2018 Gsm Interfaces Protocols

    39/73

    Dr. D H Pesch, CIT, 2000 39

    Layer 2Layer 2 -- LAPDLAPD

    GSM adopted basically ISDN layer 2 LAPD as

    defined in ITU recommendations Q.920 and Q.921

    Uses three frame types based on more general HDLC

    Information frame group containing the I-frame

    Supervisory frame group containing the RR, RNR, REJ

    frames

    Unnumbered frame group containing the SABME, DM,

    UI, DISC, UA, FRMR, and XID frames

    Two protocol options based on window length of 8

    and 128 GSM uses mainly the 128 window length option

  • 5/27/2018 Gsm Interfaces Protocols

    40/73

    Dr. D H Pesch, CIT, 2000 40

    LAPD Frame FormatLAPD Frame Format

  • 5/27/2018 Gsm Interfaces Protocols

    41/73

    Dr. D H Pesch, CIT, 2000 41

    Layer 2 AddressingLayer 2 Addressing

    LAPD uses three SAPI (0, 62, and 63) to layer 3

    SAPI 0 - radio signalling (radio signalling link, RSL)

    connection setup, release

    SMS and supplementary services messages

    SAPI 62 - O&M messages (O&M link, OML)

    SAPI 63 - Layer 2 management

    SAPI 62 and 63 messages have priority so that during

    congestion the network can still be managed

  • 5/27/2018 Gsm Interfaces Protocols

    42/73

    Dr. D H Pesch, CIT, 2000 42

    Layer 3 SignallingLayer 3 Signalling

    Layer 3 consists of four parts

    TRXM, CCM, DCM, RLM

    message transmission and format depends on SAPI

    SAPI = 0 for radio link signalling, carries user data from

    CC, MM, RR, and also SMS and SS

    SAPI = 62, 63 for OMC and layer 2 management.

  • 5/27/2018 Gsm Interfaces Protocols

    43/73

    Dr. D H Pesch, CIT, 2000 43

    Layer 3 RSL Message FormatLayer 3 RSL Message Format

  • 5/27/2018 Gsm Interfaces Protocols

    44/73

    Dr. D H Pesch, CIT, 2000 44

    Example Messages for RLMExample Messages for RLM

    ID (Hex) Name Direction Description

    01 DATA REQuest BSCBTS Transport container for transparent transfer of

    BSSAP data from NSS to MS

    02 DATA INDication BTSBSC Transport container for transparent transfer of BSSAP

    data from MS to NSS

    04 ESTablish REQuest BSCBTS Request for BTS to establish layer 2 connection on

    radio interface.

    05 ESTablish CONFirm BTSBSC Answer to EST_REQ. Message sent to BSC after

    BTS receives an LAPDmUA frame from MS

    06 ESTablish INDication BTSBSC Response from BTS on receiving an LAPDmSABM

    frame from MS

    07 RELease REQuest BSCBTS Request to BTS to release current layer 2 connection.

    BTS sends an LAPDmDISC frame to MS.

    0A UNIT DATA REQuest BSCBTS Transport frame to send messages sent in LAPDmUI

    frames over radio interface

    0B UNIT DATA

    INDicationBTSBSC Transport frame for messages received in LAPDmUI

    frames over radio interface

  • 5/27/2018 Gsm Interfaces Protocols

    45/73

    Dr. D H Pesch, CIT, 2000 45

    Example Messages for CCM and TRXMExample Messages for CCM and TRXM

    ID (Hex) Name Direction Description

    11 BCCH INFOrmation BSCBTS Transport frame for SYS_INFO messages for

    transmission in BCCH on time slot 0

    12 CCCH LOAD

    INDicationBTSBSC Informs BSC about traffic load on CCCH of radio

    interface. Frequency of transmission may be adjusted

    by OMC.

    13 CHANnel ReQuireD BTSBSC Message sent by BTS on receipt of CHAN_REQ by

    MS.

    15 PAGing CoMmanD BSCBTS Response of the BSC on receipt of a PAGING

    command from MSC. Contains IMSI and/or TMSIand the paging group of called MS

    16 IMMediate ASSign

    CoMmanDBSCBTS Contains all information for assignment of a SDCCH

    on radio interface. Transmitted in response to

    receiving a correct CHAN_RQD.

    19 RF RESource

    INDicationBTSBSC BTS uses this message to periodically inform BSC

    about quality and quantity of available resources on

    radio interface. Allows BSC to refrain from assigning

    channels with poor quality.

    1C ERROR REPORT BTSBSC Used when error is detected by TRX and no otherresponse message exists.

  • 5/27/2018 Gsm Interfaces Protocols

    46/73

    Dr. D H Pesch, CIT, 2000 46

    Example Messages for DCMExample Messages for DCM

    ID (Hex) Name Direction Description

    21 CHANnel ACTivation BSCBTS Message to reserve and activate channels on the radio

    interface. Contains accurate description of requestedchannel (half/full rate, DTX on/off, channel type,

    etc.)

    22 CHANnel ACTivationACKnowledge

    BTSBSC BTS acknowledges with this message reception ofCHAN_ACT message and activation of requested

    channel.

    24 CONNection FAILure BTSBSC Message is sent in case of layer 1 problems on the

    radio interface

    25 DEACTivate SACCH BSCBTS Requests BTS to stop transmission over the SACCH.

    The DEACT_SACCH is part of the release procedure

    26 ENCRyptionCoMmanD

    BSCBTS Activation of ciphering on the radio interface.Message contains the algorithm A5/X to be used.

    27 HANDover DETect BTSBSC HND_DET is used during handover (not for intra-

    BTS and intra-BSC handover). After target cell has

    received the HND_ACC message it calculates thedistance to MS (TA) and sends result in HND_DET

    message to BSC. It also informs MSC about

    successful handover as soon as possible to allow for

    faster switching of the call.

    28 MEASurement RESult BTSBSC Contains the mutual measurement result of the MS

    and BTS.

    2E RF CHANnel RELease BSCBTS RF_CHAN_REL message is sent to B TS after release

    of layer 2 connection to request release of layer 1

    connection.

    2F MS POWERCONTROL

    BSCBTS Message used by BSC to adjust the MS transmitterpower according to current radio conditions

    30 BS POWER

    CONTROLBSCBTS Message used by BSC to adjust the BTS transmitter

    power according to current radio conditions

  • 5/27/2018 Gsm Interfaces Protocols

    47/73

    Dr. D H Pesch, CIT, 2000 47

    Layer 3 O&M SignallingLayer 3 O&M Signalling

    Messages depend on individual equipment

    manufacturer

    Management messages as well as software updates

    and file transfer are included in signalling

    Message transfer distinguishes between O&M

    messages and HMI/MMI messages

  • 5/27/2018 Gsm Interfaces Protocols

    48/73

    Dr. D H Pesch, CIT, 2000 48

    Layer 3 OML Message FormatLayer 3 OML Message Format

  • 5/27/2018 Gsm Interfaces Protocols

    49/73

    Dr. D H Pesch, CIT, 2000 49

    The GSM AThe GSM A--InterfaceInterface

    Interface between BSS and MSC

    Standardised interface allows mixing of equipment

    from different manufacturers

    A-Interface at physical level consists of two parts

    First part between BSS and TRAU, transmission payload

    is still compressed

    Second part between TRAU and MSC

    A-Interface at higher layers depens on SS7 MTP and

    SCCP to carry BSSAP

  • 5/27/2018 Gsm Interfaces Protocols

    50/73

    Dr. D H Pesch, CIT, 2000 50

    Multiplexing on AMultiplexing on A--InterfaceInterface

  • 5/27/2018 Gsm Interfaces Protocols

    51/73

    Dr. D H Pesch, CIT, 2000 51

    AA--Interface Protocol StackInterface Protocol Stack

    MTP1-3

    SCCP

    BSSMAP

    DTAP

    Layer 1 -3

    User data BSSAP

  • 5/27/2018 Gsm Interfaces Protocols

    52/73

    Dr. D H Pesch, CIT, 2000 52

    AA--Interface Message RelationshipsInterface Message Relationships

    M

    O

    B

    I

    L

    E

    S

    T

    A

    T

    I

    ON

    B

    S

    S

    M

    S

    C

    Radio

    Resource

    Management

    (RR) BSSMAP

    Call Control (CC)

    Mobility Mgt. (MM)

    DTAP

  • 5/27/2018 Gsm Interfaces Protocols

    53/73

    Dr. D H Pesch, CIT, 2000 53

    Format of BSSAP MessagesFormat of BSSAP Messages

  • 5/27/2018 Gsm Interfaces Protocols

    54/73

    Dr. D H Pesch, CIT, 2000 54

    Example BSSMAP MessagesExample BSSMAP MessagesID (Hex) Name Direction Description

    01 ASSignment REQuest MSCBSC Sent from MSC to setup channel on radio interface

    and A-interface. BSC selects TCH out of list of

    available channels and assigns channel by means ofASS_CMD.

    10 HaNDover REQuest MSCBSC If the BSC needs to be changed during handover, this

    message is sent by the MSC to the new BSC.

    11 HaNDover ReQuireD BSCMSC BSC uses message to request handover from MSC

    (only intra-MSC and inter-MSC).

    1B HaNDover DETect BSCMSC BSC reacts with this message when it receives a

    HND_DET message from the BTS on the Abis-interface.

    20 CleaR CoMmanD MSCBSC This message is always used to release the radio

    resources to a specific MS.

    30 RESET BSCMSC In case of fatal errors with serious data incon-

    sistencies between MSC and BSC reset is performed.

    RESET message is used to synchronise BSC and

    MSC again. The message is also used when the A-interface is originally initialised

    32 OVERLOAD BSCMSC Send to MSC in order to indicate overlaod situationin BTS or whole BSS. Possible to specify type of

    overload. MSC sends message to indicate processor

    overload in the switch.

    34 RESet CIRCuit BSCMSC RES_CIRC is used like RESET. However,

    RES_CIRC only resets individual time slots on the

    A-interface rather than whole trunks.

    40 BLOCK BSCMSC Individual traffic channels need sometimes to beblocked for traffic.

    50 RESource REQuest MSCBSC MSC requests BSC with this message to provide

    updated information on the available radio resources

    of a BTS.

    52 PAGING MSCBSC In case of a mobile terminating call the MSC sends a

    PAGING message to all BSC of a location area.

    53 CIPHER MODE

    CoMmanDMSCBSC This message is sent in order to start ciphering on the

    radio interface.

  • 5/27/2018 Gsm Interfaces Protocols

    55/73

    Dr. D H Pesch, CIT, 2000 55

    GSM Mobile Application PartGSM Mobile Application Part

    GSM uses the Mobile Application Part (MAP), a special

    application layer signalling protocol at all interfaces in the NSS

    MAP uses the SS7 protocol stack for message transmission

    between entities in the NSS

    MAP sits on top of SS7 TCAP and uses services of TCAPs

    structured dialogue for message transmission

    In typical applications MAP is often integrated with TCAP

    Dialogue between MAP applications starts with BEGIN and

    ends with END message

  • 5/27/2018 Gsm Interfaces Protocols

    56/73

    Dr. D H Pesch, CIT, 2000 56

    GSM MAP

    MAP and TCAP within SS7MAP and TCAP within SS7

    TCAP

    SCCP

    HLR VLR MSC EIR

    Layer 4 - 6

    Layer 7

    Layer 3

    Application Users

  • 5/27/2018 Gsm Interfaces Protocols

    57/73

    Dr. D H Pesch, CIT, 2000 57

    TCAPTCAP

    GSM TCAP uses exclusively the connectionless

    service of SCCP (protocol classes 0 and 1)

    Sending TCAP directly addresses the destination via

    the SCCP usually using the destinations global title

    (GT) address

    In GSM the global title is typically an entities ISDN

    number

  • 5/27/2018 Gsm Interfaces Protocols

    58/73

    Dr. D H Pesch, CIT, 2000 58

    Generic communication via TCAPGeneric communication via TCAP

  • 5/27/2018 Gsm Interfaces Protocols

    59/73

    Dr. D H Pesch, CIT, 2000 59

    MAP and its relationship withMAP and its relationship with TCAPsTCAPs

    sublayerssublayers

  • 5/27/2018 Gsm Interfaces Protocols

    60/73

    Dr. D H Pesch, CIT, 2000 60

    Coding of Data in TCAPCoding of Data in TCAP

    TCAP can encode length indicators from one byte toseveral thousand bytes

    Several parameter types are supported and encoding

    uses ASN.1 and associated encoding rules

    GSM uses the standard TCAP data encoding

    structure of three component elements (TLV

    convention)

    Identifier (Type) T

    Length of Value L

    Contents (Value) V

  • 5/27/2018 Gsm Interfaces Protocols

    61/73

    Dr. D H Pesch, CIT, 2000 61

    Example Coding of an IMSI in TCAPExample Coding of an IMSI in TCAP

  • 5/27/2018 Gsm Interfaces Protocols

    62/73

    Dr. D H Pesch, CIT, 2000 62

    TCAP messages used in GSMTCAP messages used in GSM

    Of the five defined TCAP messages, GSM uses only four

    BEGin Opens dialog for one user (MAP) to another user; comprises

    originating transaction ID.

    END

    Specifically ends a dialog process, which was started by BEG;

    may contain an optional component part with MAP data

    CONtinue

    Used between BEG and END to transport data; comprises of both

    originating and destination transaction ID; first CON after BEG

    confirms that protocol and context are ok.

    ABorT

    Both TCAP and MAP may use ABT to abort process if error or

    processing difficulty; reason may be provided; distinction is madebetween user and provider (U-ABORT and P-ABORT)

  • 5/27/2018 Gsm Interfaces Protocols

    63/73

    Dr. D H Pesch, CIT, 2000 63

    Structure of TCAP messagesStructure of TCAP messages

  • 5/27/2018 Gsm Interfaces Protocols

    64/73

    Dr. D H Pesch, CIT, 2000 64

    Structure of TCAP messagesStructure of TCAP messages

  • 5/27/2018 Gsm Interfaces Protocols

    65/73

    Dr. D H Pesch, CIT, 2000 65

    Structured Dialog in MSCStructured Dialog in MSC--toto--MSCMSC

    TransactionTransaction

  • 5/27/2018 Gsm Interfaces Protocols

    66/73

    Dr. D H Pesch, CIT, 2000 66

    Component PortionComponent Portion

    The component portion is optional, but if present,

    contains user data

    INVOKE Component

    RETURN RESULT Component

    RETURN ERROR Component

    REJECT Component

  • 5/27/2018 Gsm Interfaces Protocols

    67/73

    Dr. D H Pesch, CIT, 2000 67

    Example use ofExample use of return resultreturn resultComponentComponent

  • 5/27/2018 Gsm Interfaces Protocols

    68/73

    Dr. D H Pesch, CIT, 2000 68

    Decoding of an END MessageDecoding of an END Message

  • 5/27/2018 Gsm Interfaces Protocols

    69/73

    Dr. D H Pesch, CIT, 2000 69

    Decoded END MessageDecoded END Message

  • 5/27/2018 Gsm Interfaces Protocols

    70/73

    Dr. D H Pesch, CIT, 2000 70

    MAP ServicesMAP Services

    MAP used to control communication between

    signalling application users such as HLR, VLR, and

    MSC

    MAP offers the following services

    MAP-DELIMITER service

    MAP-OPEN service

    MAP-CLOSE service

    MAP-U-ABORT service

    MAP-P-ABORT service

    MAP-NOTICE service

  • 5/27/2018 Gsm Interfaces Protocols

    71/73

    Dr. D H Pesch, CIT, 2000 71

    Special MAP ServicesSpecial MAP Services

    Special MAP services (local operation codes in GSM

    terminology) define the actual type of data exchange

    between MAP users

    Examples

    updateLocation

    cancelLocation

    registerSS

    eraseSS

    sendRoutingInfo

    prepareHandover

  • 5/27/2018 Gsm Interfaces Protocols

    72/73

    Dr. D H Pesch, CIT, 2000 72

    Direction of MAP ServicesDirection of MAP Services

  • 5/27/2018 Gsm Interfaces Protocols

    73/73

    Dr. D H Pesch, CIT, 2000 73

    Interaction between MAP and TCAPInteraction between MAP and TCAP