gustation and olfaction - henderson state universityfac.hsu.edu/ahmada/3 courses/3 physiological/1...

11
1 Chapter 9 Majority of illustra3ons in this presenta3on are from Biological Psychology 4 th edi3on (© Sinuer Publica3ons) 2 Taste and Smell Differences Taste Smell Taste is a proximal sense Smell is a distal sense Number of chemicals producing the sensa3on of taste are few. Number of chemicals producing the sensa3on of smell are large. Parietal cortex (S2) Temporal cortex (Entorhinal cortex) 3 Taste and Smell Similari3es Taste Smell 1. Both are chemical senses, i.e., both senses are sensi3ve to chemicals that are delivered through fluids or air. 2. In marine animals the taste and smell sense are the same. Some rep3les (snakes) use tongues (flicking them) as an accessory smelling organ. 3. Both senses are involved in making us aware of flavor. More on flavor later in the lecture.

Upload: others

Post on 27-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

1

Chapter  9

Majority  of  illustra3ons  in  this  presenta3on  are  from  Biological  Psychology  4th  edi3on  (©  Sinuer  Publica3ons)    

2

Taste  and  Smell  

Differences  

Taste   Smell  

Taste  is  a  proximal  sense   Smell  is  a  distal  sense  

Number  of  chemicals  producing  the  sensa3on  of  

taste  are  few.    

Number  of  chemicals  producing  the  sensa3on  of  

smell  are  large.    

Parietal  cortex                                                  (S2)  

Temporal  cortex                  (Entorhinal  cortex)    

3

Taste  and  Smell  

Similari3es  

Taste   Smell  

1.  Both  are  chemical  senses,  i.e.,  both  senses  are  sensi3ve  to  chemicals  that  are  delivered  through  fluids  or  air.  

2.  In  marine  animals  the  taste  and  smell  sense  are  the  same.  Some  rep3les  (snakes)  use  tongues  (flicking  them)  as  an  accessory  smelling  organ.  

3.  Both  senses  are  involved  in  making  us  aware  of  flavor.  More  on  flavor  later  in  the  lecture.  

2

4

5

Func3ons  of  Taste  

Taste  provides  informa3on  about  foods  and  toxins  

1.  Sweet  tastants  are  usually  high  calorie  foods,  and  the  individual  enjoys  ea3ng  them.  

2.  Salty  tastants  are  food  elements  for  regula3ng  internal  milieu  or  homeostasis.  

3.  BiRer  tastants  mostly  toxic  (poisonous)  need  to  be  recognized  early  so  that  individuals  can  discharge  them  out.  High  threshold  (mM)  for  salt,  sweet,  and  sour  tastants.  Low  threshold  (μM)  for  biRer  tastants.  

6

Ontology  of  Taste  

Ekman  and  colleagues  carried  out  experiments  to  observe  expressions  of  newborn  babies  to  different  

tastes  and  found:  

Taste Expression Water No expression Sour Pucker Sweet Smile Bitter Disgust Salt No expression

3

7

History  

“[Sensa3on  of  taste]  lies  between  sweet  and  the  biRer…  on  the  side  of  the  sweet,  the  succulent…  on  the  side  of  the  biRer,  the  saline…  [and]  between  these  

come  the  pungent,  the  harsh,  the  astringent,  and  the  acid[ic]”.  

Sweet  Succulent   BiRer   Sour   Salty  Pungent   Harsh   Astringent  

Aristotle  outlined  a  one-­‐dimensional  arrangement  of  tastants.  

8

Henning’s  Tetrahedron  

Henning  (1916)  proposed  four  primary  tastes  on  a  hollow  tetrahedron,  to  propose  that  any  par3cular  taste  could  lie  between  two  primaries  on  an  edge,  or  three  primaries  on  the  surface  of  the  solid.  No  taste  could  be  a  combina3on  of  

all  four  primaries,  thus  the  hollow  tetrahedron.  

Salty  

BiRer  

Sweet  

Sour  

9

Henning’s  Tetrahedron  

Henning’s  ideas  proved  not  very  useful  either  in  theore3cal  or  prac3cal  domains.  Addi3on  of  a  new  primary  taste  like  

Umami  changed  our  basic  understanding  of  taste.  

Salty   BiRer  

Sweet  

Sour   Umami  

4

10

Supertasters  &  Taste  Blindness  

1.  About  25%  of  people  (because  of  two  recessive  alleles)  have  no  taste  for  a  compound  propylthiouracil,  (PROP)  thus  taste  blind.  Figy  percent  taste  it  as  mildly  biRer,  and  25%  as  extremely  biRer,  having  two  dominant  alleles.  

2.  Women  more  than  men  are  supertasters.  And  supertasters  tend  to  have  more  taste  buds  than  regular  tasters.  

11

Taste  Regions:  Oral  Cavity  

Taste  regions  in  oral  cavity  comprise  of  tongue,  palate,  pharynx,  epiglois,  larynx  and  esophagus.  

http://ww

w.m

ythos.com

Palate

Pharynx

Epiglottis

Larynx

Esophagus

Tongue  

12

Taste  Map  

Sweet    

Sour  

Salty  

BiRer  

1. Many  people  con3nue  to  think  that  different  tastes  are  represented  on  different  areas  of  the  tongue,  thus  there  was  a  dis3nct  taste  map  on  the  tongue.  

2. Now  it  is  believed  that  different  taste  sensa3ons  are  present  in  all  loca3ons  of  the  tongue,  however  some  of  them  are  dominant  in  one  place  than  the  others  (Bartoshuk,  1993;  Collins,  1974;  Yanagisawa,  1994).   Sa

lty  

Sweet  

Sour  

Bi.er  

5

13

Papillae  and  Taste  Buds  

Circumvallate  

Fungiform  Filiform  (Non-­‐gustatory)  

Taste  buds  

Foliate  

1-­‐5  taste  buds  

1000  taste  buds  

1000  taste  buds  

10,000  taste  buds  total  

14

Taste  Bud  

50-­‐100  Taste  cells  in  each  taste  bud.  Recycle  in  7-­‐10  days  from  basal  

cells.  

Taste  buds  

Pour  Saliva  

Taste  cell  

Gustatory  afferent  nerve  

Epithelial  cells  

Basal  cell  

15

Single  Taste  Cell  Hypothesis  

Single  taste  cell  hypothesis  suggested  that  there  was  only  one  type  of  cell  in  the  taste  bud,  thus  a  bud  

responded  to  sweet  or  salty  or  sour.  However  recent  data  suggests  different  taste  cells  in  a  single  bud.  

Cells  sensi3ve  to  single  taste  

Cells  sensi3ve  to  many  tastes  

6

16

Taste  Cell  Physiology  

Salty  and  sour  taste  use  ion  channels  to  to  depolarize  the  taste  cell  causing  release  of  neurotransmiRer  (NT).  

Sweet,  biRer  and  umami  ac3vate  metabotropic  

receptors  for  NT  release.  

17

Gustatory  Nerves  

Facial  Nerve  (VII)  

Glossophryngeal  Nerve  (IX)  

Vagus  Nerve  (X)  

2/3  of  anterior  tongue  innervated  by  tympanic  

nerve  

1/3  of  anterior  tongue  innervated  by  glossophryngeal  nerve  

Pharynx,  Epiglois,    Esophagus  

18

Gustatory  Pathway  

Nerves  VII,  IX  and  X  

Nucleus  of  the  Solitary  Tract  

Ventral  Posterior  Medial  

Thalamus  

Gustatory Cortex (S2)

7

19

20

Olfac3on  and  Smell  

1.  Olfac3on  is  specific  term  reserved  for  the  ac3va3on  of  specific  class  of  chemoreceptors  (olfactory  receptors)  in  the  nasal  cavity.  

2.  Smell  on  the  other  hand  refers  to  a  general  term  describing  a  general  perceptual  experience  resul3ng  from  ac3va3on  of  these  chemoreceptors.  

21

Olfac3on  &  Smell:  Aspects  

1.  Humans  are  less  sensi3ve  to  odors  than  animals.  Rats  are  8-­‐50  3mes  and  dogs  are  300-­‐10,000  3mes  more  sensi3ve  than  humans  (Lang,  Doty,  &  Breihpohl,  1991).  

2.  Recogni3on  to  odor  declines  with  age  due  to  the  reduc3on  of  receptors  cells  or  receptors  on  cilia  of  the  olfactory  epithelium.  

3.  Smell  works  as  gatekeeper  sense  providing  informa3on  about  irrita3ng  and  noxious  smells,  predators,  prey  and  mates.  

8

22

Olfac3on  &  Smell:  Aspects  

4.  Smell  is  in3mately  linked  with  memory.  Mothers  can  recognize  their  infant’s  clothing  by  smell.  And  one  can  recognize  gender  by  smelling  breath.  

5.  There  are  5,000  odors  or  so.  About  20%  are  pleasant.  Since  many  different  smells,  model  for  olfac3on  is  difficult  to  form.  Though  people  have  tried  to  develop  such  a  model  (see  below).  

6.  Need  vola3le  chemicals  for  olfac3on.  

23

Flavor  

1.  Flavor  (retronasal)  is  the  result  of  sensory  interac3on  of  smell  and  taste,  along  with  other  sensory  cues  such  as  texture,  temperature,  appearance  etc  of  the  s3mulus.    

2.  Sight  and  smell  have  a  strong  effect  on  flavor  when  tas3ng  s3muli.  

3.  To  test  the  significance  of  flavor  eat  something  (like  starburst)  with  eyes  closed  and  nose  plugged,  and  then  eyes  open  and  nose  unplugged.  

4.  Taste  is  boRom-­‐up  while  flavor  is  top-­‐down  processing.  

24

History  

Like  taste  Aristotle  came  up  with  the  idea  of  separa3ng  smells.  He  divided  all  odors  into  four  basic  kinds.  Essen3ally  the  way  he  described  taste  on  a  single  

dimension.  

Pungent  Succulent   Acidic   Astringent  

9

25

Henning’s  Pyramid  

Just  like  his  tetrahedron,  Henning  (1916)  proposed  six  basic  odors,  where  a  single  odor  could  be  a  combina3on  of  one,  

two,  three  or  four  primary  smells.  

Putrid  (Hydrogen  Sulfide)  

Fruity  (Lemon)  

Flowery  (Violet)  

Burnt  

Spicy  (Nutmeg)  

Resinous  (Balsam)  

26

Amoore’s  Model  

Amoore  (1970)  proposed  seven  odor  receptors  (later  30)  based  on  his  study  of  anosmia  (smell  blindness).  He  proposed  seven  

different  kinds  of  molecules  bound  to  seven  receptors.  However,  Schiffman  (1974)  found  no  correla3on  between  molecular  shape  

and  similarity  of  odor.  

Smell   Example   Molecule  

Camphoraceous   Mothballs   Football  shaped  

Musky   Cinnamon   Necklace  shaped  

Mint   Peppermint   Wedged  shaped  

Flowery   Violets   Tadpole  shaped  

Ethereal   Ether   Long-­‐chain  Alkanes  

Putrid   Peanut   Large  Nega3ve  Charge  

Pungent   Coffee   Large  Posi3ve  Charge  

27

Nasal  Cavity  &  Olfactory  Epithelium    

Copyright © 2005 Pearson Education, Inc.,

10

28

Olfactory  Receptors    Basal  Cell  

Sustentacular  Cell  

Olfactory  Receptor  

Cell  

Cilia  

Axon  Olfactory  epithelium  consist  of:  

1.  Olfactory  receptor  cells  (Cilia,  dendrites,  and  axons).  

2.  Sustentacular  cells.  3.  Basal  cell.  

Dendrite  

29

Olfactory  Receptor  Facts  

1.  Finite  life  span  of  receptor  cells,  thus  con3nuously  replaced.  

2.  Develop  from  basal  cells.  

3.  The  number  of  olfactory  receptors  in  humans  equal  25  million,  with  about  350  different  types  of    receptors.  To  smell  5000  odors,  receptors  must  be  working  in  combina3on.  

4.  Unmyelinated  axons  form  the  olfactory  nerve  (cranial  nerve  I).  

30

Molecular  Mechanisms  

1.  Odorant  must  be  vola3le  and  soluble  in  mucus  (filter  and  capture  site).  

2.  Odors  bind  to  metabotropic  receptors  to  transduce  signals  and  communicate  them  to  the  brain.  

Cilia  

Odorant  

Ca3on  (+)  

11

31

Olfactory  Pathways  

1.  Mitral  cells  from  the  olfactory  bulb  project  to  Anterior  Olfactory  Nucleus  (AON)  and  olfactory  tubercle.    

2.  From  here  projec3ons  go  separately  to  amygdaloid  complex,  piriform  and  entorhinal  cortex,  and  to  orbitofrontal  cortex.  

3.  From  olfactory  tubercle  to  thalamus  (odor  discrimina3on)  and  from  amygdala  to  hypothalamus  (odor  emo3on).  

Olfactory Receptor Neurons

Olfactory Bulb Frontal Cortex

Thalamus (Odor Discrimination)

Hypothalamus (Odor Emotions)

Hippocampus

Piriform Cortex

Olfactory Tubercle

Amygdala

Entorhinal Cortex

Olfactory Nerve

Olfactory Tract