gw flow & well hydraulics

Upload: eyueladam

Post on 08-Oct-2015

114 views

Category:

Documents


3 download

DESCRIPTION

GW Flow & Well Hydraulics

TRANSCRIPT

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-1

    3. Groundwater Flow Equations & Well Hydraulics

    GroundwaterFlowEquationsGWfloweqn.=mathematicalexpressionusedtodescribethebehaviorofgroundwater

    flowinporousmedia.Darcyslaw:

    Inonedimension: x XQ h

    q KA x

    = =

    Inthreedimension: 0 0

    0 0

    0 0

    hx x x

    hy y y

    hz z z

    q K

    q q K

    q K

    = = v

    Massbalanceequation:m& =massflowrateenteringorexitingasurface[M/T]

    GWfloweqn=Darcyslaw+MassBalanceeqn.

    InOut=Accumulation[M/T]

    Control VolumeControl Volume

    x y

    z

    x y

    z

    xm& xm& x xm +& x xm +&

    in out

    mm m

    t = & &

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-2

    [ ]( )x wm q x y z= & [ ]( )x x wm q x x y z+ = + & [ ]( )y wm q y x z= & [ ]( )y y wm q y y x z+ = + & [ ]( )z wm q z x y= & [ ]( )z z wm q z z x y+ = + &

    Substituteporosity wVV

    = andvolumeV x y z= intotheaboveexpressionDividethroughby x y z ,wewillhave

    Assumethatdensitydoesntchangemuchwithinthecontrolvolume,wecantakedensityoutofthelefthandside,thenwewillhave

    Takelimit , , 0x y z ,wecantransformthedifferenceintothedifferentialform.

    Recallthedefinitionofderivative:0

    ( ) ( )limx

    df f x x f xdx x

    + = .

    [ ] [ ]in out x x x y y y z z zm m m m m m m m mt + + + = = + + & & & & & & & &

    [ ] [ ]

    [ ] [ ]

    ( )( ) ( )

    ( ) ( )

    ( ) ( )

    w ww x w x

    w y w y

    w z w x

    Vq x y z q x x y z

    t

    q y x z q y y x z

    q z x y q z z x y

    = + + +

    + +

    [ ] [ ]

    [ ] [ ]

    ( )( ) ( )

    ( ) ( )

    ( ) ( )

    ww x w x

    w y w y

    w z w x

    x y z q x y z q x x y zt

    q y x z q y y x z

    q z x y q z z x y

    = + + +

    + +

    [ ] [ ]

    [ ] [ ]

    ( ) ( )( )

    ( ) ( )

    ( ) ( )

    w x w xw

    w y w y

    w z w x

    q x q x x

    t x

    q y q y y

    y

    q z q z z

    z

    + = + +

    + +

    ( ) ( )1 ( ) ( ) ( ) ( )y xw x x z xw

    q y y q yq x x q x q z z q zt t x y z

    + + + + =

    w wm V=

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-3

    Fromdarcyslaw:

    x x

    hq K

    x= y y

    hq K

    y= z z

    hq K

    z=

    Finally,wehavederivedthegeneralgroundwaterflowequation.Forconfinedaquifer: ( )w w sg g S + = orspecificstorage

    S x y z

    h h h hS K K K

    t x x y y z z = + +

    Forunconfinedaquifer: ( )w w Sg g b + = (S=storativity=Sy+bSS)

    x y z

    h h h hS T T T

    t x x y y z z = + +

    Note: T=Kb=transmissivity[L2/T] b=aquiferssaturatedthickness

    1 yw x zw

    qq qt t x y z

    + =

    0 0 0

    ( ) ( )1 ( ) ( ) ( ) ( )lim lim limy xw x x z xx y z

    w

    q y y q yq x x q x q z z q zt t x y z

    + + + + =

    ( )w w x y zh h h hg g K K Kt x x y y z z + = + +

    1 ww

    w

    hg

    t t =

    COMPRESSIBILITY OF WATER 1

    ww

    hg

    t t =

    COMPRESSIBILITY OF AQUIFER

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-4

    ExampleIII1

    Solvegroundwaterflowequationinthefollowing2Dproblembyassumingsteady

    stateandaquiferisisotropicandhomogeneous.

    Solvethisproblembyhand,wewillhavethesolutionfor ( , )h x y asfollows:

    0

    (2 1)(2 1)

    0 2 (2 1)20

    cos cosh4( , )

    2 (2 1) cosh

    m ym xs s

    m ym s

    cs csh x y y

    m

    ++

    +=

    = + + !!!!!

    ***Theaboveexampleispresentedhereonlyforillustrationandtoshowthatgroundwater

    flowequationisnoteasilysolvedbyhandtoobtainclosedformsolution.***

    Groundwaterflowtoapumpingwell

    Boundaryconditions

    Beforepumping Whilepumping

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-5

    Coneofdepression

    =dewateredzoneinanaquifer(unconfinedaquifer)

    =aconeofdepressedpotentiometricsurface(confinedaquifer)

    Drawdown(s)[L]

    =depressedwaterlevel(orpotentiometricsurface)

    Radiusofinfluence

    =distancefrompumpingwellwheredrawdownisessentiallyzero

    IMPERMEABLE ROCK

    Confined Aquifer

    Ground

    Well

    IMPERMEABLE ROCK

    UnConfined Aquifer

    Ground

    Well

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-6

    Pumpinginanaquiferwithdifferenttransmissivity(T)andstorativity(S)

    HighS LowS

    IMPERMEABLE ROCK

    Confined Aquifer

    GroundWell

    Potentiometric Surface t = 0

    IMPERMEABLE ROCKConfined Aquifer

    GroundWell

    Potentiometric Surface t = 0

    HighT LowT

    IMPERMEABLE ROCK

    Confined Aquifer

    GroundWell

    Potentiometric Surface t = 0

    IMPERMEABLE ROCKConfined Aquifer

    GroundWell

    Potentiometric Surface t = 0

    HighSWewillgetmorewaterforthesameheaddrop.HighTWaterflowsmoreeasily.

    Radialflowtowell

    GWfloweqnincylindricalcoordinatecanbeusedto

    describeradialflowtowell.

    t1t2

    Pumping Well

    2

    2

    1S h h hT t r r r = +

    ( , )h h r t=Topview

    t2>t1

    Radiusofinfluence

    h=hydraulichead[L]

    r=radialdisrance[L]

    t=time[T]

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-7

    Whathappensduringpumping?

    Whenthewellisbeingpumped,adrawdownofheadiscreatedaroundthewell

    formingaconeofdepression.Insomecases,ifaquiferisbeingpumpedlongenough,

    drawdowncanreachequilibrium(i.e.headdoesntchangewithtimeanymore).

    r1r2

    Pumping Well

    Observation Wells

    Time

    Dra

    wdo

    wn

    (m)

    IMPERMEABLE ROCK

    Confined Aquifer

    GroundPumping Well

    Potentiometric Surface

    OW1 OW2

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-8

    Equilibriumflowtowell

    - Occurswhenaquiferispumpedforaverylongtime.

    - Waterlevel(orpotentiometricsurface)doesnotchangewithtime.

    - WecanusedarcyslawtocalculateKORTifweknowQandhydraulicheadsat

    twolocations(i.e.calledpumpingtest)

    1.Confinedaquifer

    2

    2 1 1

    2

    2 1 1

    ln2 ( )

    ln2 ( )

    Q rT

    h h r

    Q rK

    b h h r

    = =

    2.Unconfinedaquifer

    22 22 1 1

    ln( )Q r

    Kh h r

    =

    ExampleIII2

    Awellinconfinedaquiferispumpedatarateof220gallon/min.Measurementof

    drawdownintwoobservationwellsshowsthatafter1270minofpumping,nofurther

    drawdownisoccurring.Well#1islocatedat26ftfrompumpingwellandhasahydraulic

    headof29.34ftabovethetopofaquifer.Well#2islocatedat73ftfromthepumpingwell

    andhasahydraulicheadof32.56ftabovethetopofaquifer.UseThiemequationtofind

    aquifertransmissivityifaquiferthicknessis25m.

    h2 h1

    TheimEquation

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-9

    r1=26ft h1=29.34ft

    r2=73ft h2=32.56ft

    Steadystate(equilibrium)pumpinginanunconfinedaquifer

    (Exampleofmodelsimulation)

    NoPumpingCondition

    3

    3

    min

    ftday

    1ft 1440min220

    7.48gal 1day

    42,400

    galQ =

    =

    3

    2

    2 1 1

    ftday

    ln2 ( )

    42400 73 ftln

    2 (32.56ft 29.34ft)

    Q rT

    h h r

    = = 26 ft

    22164 ft day

    =

    Crosssection

    Plan

    view

    [ ]2ft2164 78ft 27.7ft/dayd

    T Kb K K = = =

    Convert Q from gal/mintoft3/day

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-10

    Withpumpingatthecenteroftheaquifer

    Nonequilibriumpumping(ortransient)

    Drawdown(s)isafunctionoftimeanddistance

    Confinedaquifer

    UseTheissolution Aquiferishomogeneous,

    isotropic,andisofinfinite

    extent

    Wellcompletelypenetrates(andgetwaterfrom)the

    entireaquifer

    Transmissivityisconstant Waterisremovedfromstorageanddischargeinstantaneously.

    Crosssection

    Plan

    view

    2

    2

    1S h h hT t r r r = +

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-11

    TheisSolution

    0 ( )4Q

    s h h W uT= =

    where2

    4r S

    uTt

    = ,and2 3

    ( ) 0.5772 ln2 2! 3 3!

    x

    u

    e u uW u dx u u

    x

    = = + + L

    s drawdown[L]

    h0 initialheadinawellatdistancer[L]

    h headatdistancerattimet[L]

    t timesincepumpingbegins[T]

    r distancefrompumpingwell[L]

    Q pumpingrate[L3/T]

    T transmissivity[L2/T]

    S storativity[]

    b aquiferssaturatedthickness[L]

    W(u) wellfunction[]

    u auxiliaryparameter[]

    ExampleIII3

    Awellislocatedinconfinedaquiferwithahydraulicconductivityof14.9m/dayand

    astorativityof0.0051.Theaquiferis20.1mthickandispumpedatarateof2725m3/day.

    Whatisthedrawdownatadistanceof7.0mfromthewellafter1dayofpumping?

    2m m

    day day14.9 (20.1m) 299.49T Kb = = =

    [ ] [ ][ ]2

    224

    mday

    7m 0.00512.086 10

    4 4 299.49 1dayr S

    uTt

    = = =

    FindthevalueofW(u)fromthetable(appendix1)

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-12

    Fromtable+linearinterpolationW(u)=7.9398.Thereforethedrawdownatdistanceof7.0mafter1dayofpumpingis

    3

    2

    mday

    0 mday

    2725( ) 7.9398 5.75m

    4 4 299.49Q

    s h h W uT

    = = = =

    Unconfinedaquifer

    UseNeumansolution Aquiferishomogeneousandisof

    infiniteextent

    Initiallywaterispumpedfromstorage(Ss)

    Later,waterisbeingdrainedduetogravity(Sy)

    Assumedrawdownisnegligiblecomparedtosaturatedthickness

    RadialK(orKr)canbedifferentfromverticalK(orKv) Neumansolutionisvalidonlywhendrawdownisverysmallcomparedtoaquifers

    thicknessor s b

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-13

    Neumansolution

    0 ( , , )4 A BQ

    s h h W u uT= =

    Where2

    4Ar S

    uTt

    = ,2

    4y

    B

    r Su

    Tt= and

    2

    2v

    h

    r Kb K

    =

    ( , , )A BW u u canbeobtainedfromtable(appendix6A,6B)

    s drawdown[L]

    h0 initialheadinawellatdistancer[L]

    h HEADATDISTANCErATTIMEt[L]

    t timesincepumpingbegins[T]

    r distancefrompumpingwell[L]

    Q pumpingrate[L3/T]

    Kv verticalhydraulicconductivity[L/T]

    Kh horizontalhydraulicconductivity[L/T]

    S storativityatearlytime(inthiscase,S=bSs)[]

    Sy specificyield[]

    b initialaquiferssaturatedthickness[L]

    Atearlypumpingtime,useuA

    Whereatlatertime,useuB.

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-14

    ExampleIII4

    Awellislocatedinanunconfinedaquiferwithaverticalandhorizontalhydraulic

    conductivitiesof1.26and15.8m/day,respectively.Thevalueofspecificstorageis0.00025

    m1,andspecificyieldis0.12.Theaquifersinitialsaturatedthicknessis20.1mandis

    pumpedatarateof275m3/day.Whatisthedrawdownatadistanceof7.0mfromthewell

    after1and50dayofpumping?

    r=7m Q=275m3/day

    Kv=1.26m/day Kh=15.3m/day

    b=20.1m Sy=0.12

    S=bSs=(0.00025m1)(20.1m)=0.005 T=Khb=(15.8m/day)(20.1m)=317.58m2/day

    [ ][ ]

    2 m2day

    22 mday

    7m 1.260.01

    20.1m 15.3v

    h

    r Kb K

    = = [seetableinappendix6A,6B]

    After1day(earlytime)

    [ ] [ ][ ]2

    224

    mday

    7m 0.0051.93 10

    4 4 317.58 1dayAr S

    uTt

    = = = 1 5185Au = ( ) 3.46W u =

    Drawdown:3

    2

    mday

    mday

    275( ) 3.46 0.238m

    4 4 317.58Q

    s W uT

    = = =

    After50day(latetime)

    [ ] [ ][ ]2

    225

    mday

    7m 0.129.26 10

    4 4 317.58 50dayy

    B

    r Su

    Tt= = = 1 10802Bu = ( ) 8.672W u =

    Drawdown:3

    2

    mday

    mday

    275( ) 8.672 0.598m

    4 4 317.58Q

    s W uT

    = = =

    Check:s=0.238,0.597b=20.1.OK!!

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-15

    Summary:CharacteristicsofAnalyses

    Equilibrium

    (orsteadystate)

    NonEquilibrium

    (ortransient)

    1. ObtainedmostaccurateT,Kvalues

    2. Usefulwhenlongtermpumpinghas

    beenestablished

    3. Equationsusefulindesigninga

    pumptest(estimatemaximum

    drawdown)

    4. Cannotobtaininformationon

    storage

    5. Thiemsolution

    1. Candeterminestorativity(in

    pumpingtest)

    2. Getresultsatearlytime

    3. Analysisismorecomplicated

    4. Theissolutionconfined5. Neumansolutionunconfined6. Neumansolutionisapplicableonly

    forsb

    Principleofsuperposition

    Iftherearemorethanonepumpingwells,drawdownatobservationwellcanbedeterminedusingprincipleofsuperposition(drawdowncanbeaddedorsubtracted)

    Normally,thismethodisvalidonlyforconfinedaquifer.However,insomecases,itmaybeapplicableinunconfinedaquiferifdrawdownisnegligiblecomparedto

    saturatedthickness(sb).

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-16

    ExampleIII5

    Twowellsinaconfinedaquifer(b=20m,S=

    0.0075,K=1.75m/day)arepumping

    simultaneouslyattheratesof200and400m3/day,

    respectively.Calculatedrawdownatanobservation

    wellatt=4day.

    Usingprincipleofsuperposition: 1 2total pw pws s s= + 1. calculatedrawdownatOWfromPW1

    T=Kb=(1.75m/day)(20m)=35m2/day[ ] [ ]

    [ ]222

    mday

    97m 0.00750.126

    4 4 35 4dayr S

    uTt

    = = = ( ) 1.667W u =

    3

    2

    mday

    1 mday

    200( ) 1.667 0.758m

    4 4 35pwQ

    s W uT

    = = =

    2. calculatedrawdownatOWfromPW2

    [ ] [ ][ ]2

    22

    mday

    175m 0.00750.410

    4 4 35 4dayr S

    uTt

    = = = ( ) 0.688W u =

    3

    2

    mday

    2 mday

    400( ) 0.688 0.626m

    4 4 35pwQ

    s W uT

    = = =

    ExampleIII6

    FromExampleIII5,if,insteadof

    pumpingwater fromPW2,waterisinjectedat

    therateof+400m3/daywhilePW1isstill

    pumpingattherateof200m3/day.Calculate

    drawdowninobservationwellattimet=4day.

    |

    PW1Q1 = -200 m3/day

    PW2Q2 = -400 m3/day

    Observation Well

    r 2= 17

    5 m

    r1 = 97 m

    1 2

    0.758 0.626

    1.38m

    total PW PWs s s= += +=

    |

    PW1Q1 = -200 m3/day

    INJW2Q2 = +400 m3/day

    Observation Well

    r 2= 17

    5 m

    r1 = 97 m

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-17

    Frompreviousexample,

    1pws =drawdownduetopumpingfromPW1(waterleveldecreases)

    =+0.758m

    2injws =drawupduetoinjectionofwaterinPW2(waterlevelincreases)

    =0.626m

    Fromprincipleofsuperposition,drawdownatobservationwellafterday4is

    1 2 0.758 0.626 0.13mtotal PW INJWs s s= + = = .Thus,waterleveldecreasesonly0.13minthiscase.

    MethodofImages

    Whenanaquiferisconnectedtoriverorimpermeablebarrier,pumpingwellwillbe

    affectedbytheseboundaries.Onecanusemethodofimagetocalculatecorrect

    drawdownattheobservationwell.

    Ifboundaryisriver(watersupply)animagewellwillbeaninjectionwell.Ifboundaryisimpermeablerockanimagewellwillbeapumpingwell.

    Onceanimagewelliscreated,onecanuseprincipleofsuperpositiontodetermine

    accuratedrawdownfromthepumping/injectingwells.

    EXAMPLEIII7

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-18

    Ifboundaryisriver,imagewellofapumpingwellisaninjectionwell.Ontheother

    hand,ifthewellisaninjectionwell,imagewillbeaninjectionwell.Ifboundaryisan

    impermeablerock,imageofthepumpingwellisapumpingwellwhereimageofaninjection

    wellisaninjectionwell.

    RiverBoundary ImpermeableBoundary

    Well Image Well Image

    pumping injection pumping Pumping

    injection Injection injection injection

    ExampleIII7

    AnaquiferisbeginpumpedfromPW1(pumpingwell#1).Ifthisaquiferisconnected

    toanimpermeable(noflow)boundary,suggestthemethodhowtocalculatedrawdownin

    anobservationwell(OW).

    PW1

    |OW

    r1

    IMPE

    RM

    EAB

    LE B

    OU

    ND

    AR

    Y

    Sincetheboundaryisimpermeable,animagewellshouldbeapumpingwelland

    drawdownatOWcanbecalculatedfromPW1andPW1imgasshownbelow.

    PW1

    |OW

    r1

    IMP

    ER

    ME

    ABL

    E B

    OU

    ND

    AR

    Yd d

    PW1-IMG

    r2

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-19

    Principleofsuperposition:

    [ ]

    1 1

    1 1

    1 1

    ( ) ( )4 4

    ( ) ( )4

    total PW PW IMG

    PW PW IMG

    PW PW IMG

    s s s

    Q QW u W u

    T TQ

    W u W uT

    = += +

    = +

    where21

    1 4PWr S

    uTt

    = and22

    1 4PW IMGr S

    uTt

    =

    Seawaterintrusion

    Inacoastalaquifer,freshwaterusuallyoverliesontopofsalinegroundwaterduetodensitydifference

    Salinegroundwatercanmovelandwardiftoomuchpumpingoccurs.

    confinedaquifer

    unconfinedaquifer

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-20

    Boundarybetweenfreshandsalinegroundwaterisnotsharp!Thereisazoneofdiffusionwheretheconcentration(ofsalt)gradientexists.

    GhybenBerzbergPrinciple

    Inanunconfinedaquifer,therelationshipbetweenwatertableanddepthtosaline

    groundwaterisdescribedbythefollowingexpression:

    ( , ) ( , )freshsaline fresh

    z x y h x y

    =

    where

    ( , )z x y depthofsaltwaterinterfacebelowsealevel(L)

    ( , )h x y elevationofwatertableabovesealevel(L)

    fresh densityoffreshgroundwater(M/L3) saline densityofsalinegroundwater(M/L3)

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-21

    ExampleIII8

    Ifdensityoffreshwaterandsalinegroundwaterare1000and1025kg/m3,respectively,

    whatistheratioof ( , ) ( , )z x y h x y ?

    1000( , ) ( , )

    1025 1000( , )

    40( , )

    z x y h x y

    z x yh x y

    = =

    Thus,depthtowhichfreshgroundwaterextendsbelowsealevelisapproximately40times

    theheightofwatertableabovesealevel.

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-22

    Exercise

    1. Awellthatpumpsataconstantrateof78,000ft3/dayhasachievedequilibriumsothatthereisnochangeinthedrawdownwithtime.Thewelltapsaconfinedaquiferthatis18ftthick.Anobservationwell125ftawayhasaheadof277ftabovesealevel;anotherobservationwell385ftawayhasaheadof291ft.ComputethevalueofaquifertransmissivityusingThiemequation.

    [Ans:997.5ft2/day]2. Awellthatpumpsataconstantrateof78,000ft3/dayhasachievedequilibriumsothat

    thereisnochangeinthedrawdownwithtime.Thewelltapsanunconfinedaquiferthatconsistsofsandoverlyingimpermeablebedrockatanelevationof260ftabovesealevel.Anobservationwell125ftawayhasaheadof277ftabovesealevel;anotherobservationwell385ftawayhasaheadof291ft.ComputethevalueofhydraulicconductivityusingThiemequation.

    [Ans:41.6ft/day]3. Acommunityisinstallinganewwellinaregionallyconfinedaquiferwithatransmissivity

    of1589ft2/dayandastorativityof0.0005.Theplannedpumpingrateis325gal/min.Thereareseveralnearbywellstappingthesameaquifer,andtheprojectmanagerneedstoknowifthenewwellwillcausesignificantinterferencewiththesewells.Computethetheoreticaldrawdowncausedbythenewwellafter30daysofcontinuouspumpingatthefollowingdiances:50,150,250,500,1000,3000,6000,and10,000ft.

    [Ans:35.56,28.70,25.58,21.14,16.85,6.87,5.87,and3.18ft]4. Awellthatisscreenedinaconfinedaquiferistobepumpedatarateof165,000ft3/day

    for30days.Iftheaquifertansmissivityis5320ft2/day,andthestorativityis0.0007,whatisthedrawdownatdistancesof50,150,250,500,1000,3000,5000,and10,000ft?

    5. Awellisbeingpumpedfromanunconfinedaquiferthathasinitialsaturatedthicknessof

    30m.Thisaquiferhassimilarverticalandhorizontalconductivities(i.e.,Kv=Kh=10m/day)withSs=0.0001m1andSy=0.2.Calculatedrawdownatobservationwell,locatedat5.477mawayfromthepumpingwell,attimet=1day(earlytime)andt=50day(latetime).UseQ=100m3/day.

    6. Awell(PW1)ispumpingwaterfrom

    confinedaquifer,thatisclosetoanimpermeablerock,atarateof100m3/day.Calculatedrawdownatobservationwell(OW)attimet=5d.GivenS=0.0005,T=500m2/day.

    PW1

    |OW

    r1 = 100 m

    IMPE

    RM

    EABL

    E BO

    UN

    DA

    RY150 m

    Q1 = -100 m3/day

    60

  • GEOL473 Hydrogeology

    Dr. Schradh Saenton Topic 3: Groundwater Flow and Well Hydraulics

    3-23

    7. Awell(PW1)ispumpingwaterfromconfinedaquifer,thatisclosetoafullypenetratedriver,atarateof150m3/day.Calculatedrawdownatobservationwell(OW)attimet=10d.GivenS=0.0005,T=500m2/day.

    PW1

    |OW

    r1 = 75 m

    RIV

    ER

    120 mQ1 = -150 m3/day

    75