gyro technology

22

Upload: vanthodc

Post on 01-Jun-2018

253 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 1/22

Page 2: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 2/22

Early Survey Technology

PHOTO MECHANICAL DEVICES – 1930’s

A camera unit takes a picture of acompass card. The plumb bob positionchanges depending on the inclination

and direction.

Adaptations led to the ability to takemultiple camera shots.

The multishot survey was born.

Page 3: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 3/22

1930’S

Surface Oriented to “known” foresight

Free Gyro

Drift Error: 0.5° - 2.5° degrees/ 15 minutes

Accuracy Limitation

1° - ? degrees Azimuth

Operator Dependent

Error: 1° - ? degree

Page 4: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 4/22

North Seeking Rate Gyro

MWD

LWD

GWD

Modern Day

Page 5: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 5/22

Survey

Systems

Magnetic Gyroscopic

FilmPlum Bob

Electronic

OR / SS MS

Free Gyro Rate Gyro

Film SRGNorth

SeekingInertial

OR / SS

MS / STMWD

InclinationOnly

OR = Orientation SS = Single-Shot MS = Multi -Shot ST = Steering Tool SRG = Surface Readout Gyro

MWD = Measurement Whi le Drill ing

Available Survey Technology

Page 6: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 6/22

Accuracy Vs. Speed

Camera TypeGyros

Surface ReadingGyros

North SeekingGyros

DropGyros

InertialNavigation

   S  p  e  e   d  o   f   O  p  e  r  a   t   i  o  n

 

 Accuracy

MWD

AdvancedMWD

Continuous

Gyros

Page 7: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 7/22

Accuracy Vs. Survivability

LaserGyros

Spinning MassGyros

MEMSGyros

   S  u  r  v   i  v  a   b   i   l   i   t

  y

 

 Accuracy

Fiber OpticGyros

Page 8: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 8/22

MEMS Gyro’s

Page 9: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 9/22

Page 10: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 10/22

Page 11: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 11/22

  Earths Magnetic Field

•  Datum moving (diurnally & general drift)•  Solar effects•  Local anomalies (SPE 56699)•  Magnetic drilling environment

(Drill pipe, casing, mud - SPE71400)

Earths Rotational Field

•  North referencing gyros•  Detects earths rotational ‘rate’

•  Does not vary•  Perfect reference

Earths Gravity Field

•  Latitude correction equation (RGF30)

Survey Sensor Datum’s

Page 12: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 12/22

It can be observed that thishorizontal component of the Earths spin vector is always pointing togeographic North,i.e. it is a perfect True North reference. 

Earths rotational rate = (360°/24hr)+(360°/365.25dys/24hr)=15.041 degs/hr. This isconstant for any position on the globe and can be defined as consisting of ahorizontal and vertical component. However, these individual components are notconstant and are dependant on the Latitude.

 The horizontal component (Eh) = 15.041 x Cosine Lat. (Houston 29.83°N, Eh = 13.05)

It is the accurate measurement of the horizontalearth rate vector that is the basis for all North

Seeking gyroscopes. In gyro compass mode thetool is held stationary at each required surveydepth and the survey data is calculatedindependently at each point. This method iscommonly referred to, as Gyro Compassing.

North Seeking Theory

Page 13: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 13/22

9700 9750 9800 9850 9900 9950 10000 10050 10100 10150 10200

-8850

-8845

-8840

-8835

-8830

-8825

-8820

-8815

-8810

19.3 ft

BB-509

 RGS-ALC LWD

      T      V      D

Measured Depth

Depth Error 

Page 14: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 14/22

9500 9600 9700 9800 9900 10000 10100 10200 10300 10400 10500 10600 10700 10800 10900 11000

87.6

87.8

88.0

88.2

88.4

88.6

88.8

89.0

89.2

89.4

89.6

89.8

90.0

 RGS-CT 1FT INTERVALS MWD

IS-123 LATERAL AA

        I      n      c        l        i      n      a       t        i      o      n

Measured Depth

Continuous Gyro

Page 15: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 15/22

S

MD (ft)

   I   N   C   L

   (   d  e  g  r  e  e  s

   )

Plan Curve Rate = 5.0 deg/100ftPDM Rate = 10.0ROT Rate = 0.0Slide Offset = 0ft

DD Type “A”Example

10,400 10,450 10,500 10,550 10,65010,600 10,700 10,750 10,800 10,850 10,90080

85

90

95

100

Page 16: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 16/22

Gyroscope Sensors 

L ≈ ωmr²

Floated 

Dynamically Tuned 

Page 17: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 17/22

Common Gyro Surveying Modes 

Mode North-Seeking Continuous

PropertiesMeasured

Earth Rotation VectorGravity Vector

Cross-Axis Tool Rotation

ApplicationsgyroMWD/GWDDrop SurveysContinuous Init

High Speed Surveying(Wireline, Drop)Continuous gyroTF

Considerations  Tool must be very stillto collec t a survey

Faster running speeds arebetter, as drift errors are time-dependent.

Page 18: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 18/22

Gyro Instrument QA Since the quality of a gyro instrument is a critical factor in

collecting a successful survey, the instrument calibration processmust be tightly correlated to the Instrument Performance model.

Sensor Manufacture

Sensor Installation

Factory Calibration

Field Calibration

Page 19: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 19/22

In-Run Quality Control 

Gyrocompass• Inclination QC is generally the same as with

MWD systems• Comparison against theoretical ERH is the

primary QC measure• Additional measures include gyro output

stability and gyro bias stability.Continuous Surveying•

Zero-velocity drift checks are used tocompensate for bias, mass unbalance, andEarth Rate effects

• QC measures ensure that drift variation

matches predicted values

Page 20: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 20/22

Basic Gyrocompass Processing

Raw

•Raw Gyro Rates (GX1, GX2, GY1, GY2)

•Raw Accelerations (AX1, AX2, AY1, AY2)

•Tens to hundreds of readings in each position

Mid

•Gyro Bias (QC Term) (G-Bias X and G-Bias Y)

•Gyro and Accel Phases (tan-1(G Y/GX))

•Gyro and Accel Stability/Noise

Done

•Inclination (normal)

•Azimuth (Gphase – Aphase)

•ERh (G Amplitude)

Data is collected by sampling cross axis rotation rate and

acceleration, at positions 180 degrees apart.

Page 21: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 21/22

 Running Considerations 

1. CASING SURVEYS WITH PROPER RUNNING GEAR PROVIDE THE BEST DIRECTIONAL MEASUREMENT 

2. USE OF A CCLOR GAMMA-RAY  FOR WIRELINE CORRELATION ENSURES MEASURED DEPTH ACCURACY  

3. PRE-AND-POST JOB FIELD CALIBRATIONS MONITOR MASS UNBALANCE PERFORMANCE 

4. DROP SURVEYS SAVE TIME BY  ENABLING SURVEYS WHILE TRIPPING 

Page 22: Gyro Technology

8/9/2019 Gyro Technology

http://slidepdf.com/reader/full/gyro-technology 22/22

 10 Questions 

1. HOW ARE  YOUR GYROS CALIBRATED, AND HOW OFTEN?

2. HOW DO  YOU KNOW THEY  NEED CALIBRATION?

3. WHAT ARE  YOUR QA/QC MEASURES 

4. DOES  YOUR GYRO MEASURE EARTH RATE, AND WHAT SHOULD IT BE?

5. HOW DO  YOU KNOW  YOUR TOOL WAS WORKING PROPERLY  ON LOCATION?

6. WHAT IS THE EXPERIENCE LEVEL OF  YOUR SURVEYORS?

7. WHAT IS THE ACCURACY  OF  YOUR SURVEY  TOOL?

8. DO  YOU HAVE AN ISCWSA ERROR MODEL FOR  YOUR SURVEY  TOOL?

9. HOW DO  YOU VALIDATE  YOUR ERROR MODEL?

10.WHERE DO  YOUR SENSORS COME FROM?