heterocycles essentials3-2009

Upload: aravindan-natarajan

Post on 30-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Heterocycles Essentials3-2009

    1/2

  • 8/14/2019 Heterocycles Essentials3-2009

    2/2

    Heterocyclic ChemistryBaran, Hafensteiner, Richter Essentials of Heterocyclic Chemistry-IIIUseful Methods of Forming Aryl CN and CO Bonds:

    ArMgCl + Ar'NO2

    FeCl2

    NaBH4ArNHAr' J. Am. Chem. Soc. 2002, 124, 9390

    "Cu Source"

    BaseArB(OH)2 + RYH ArYR Tetrahedron Lett. 1998, 39, 2933

    Tetrahedron Lett. 1998, 39, 2937Tetrahedron Lett. 1998, 39, 2941

    Org. Lett. 2000, 2, 2019

    Tetrahedron Lett. 2001, 42, 3415Tetrahedron Lett. 2003, 44, 1691Tetrahedron Lett. 2003, 44, 3359

    Y = NH, O, SApplicable to a wide variety of nucleophilic partners, including phenols, amines, anilines, amides,imides, ureas, carbamates, sulfonamides, thiols, and thiophenols. Can use a variety ofheterocycles, including imidazoles, pyrazoles, triazoles, tetrazoles, benzimidazoles, andindazoles. Even styryl boronic acids are tolerated in the reaction. -Amino esters can be arylatedin good yields and purines have been shown to react selectively at N-9. Catalytic reactions canbe performed and a wide variety of copper sources, ligands, and bases can be used.

    Electron-donating and electron-withdrawing functional groups are tolerated on both coupling partners.

    "Cu source"

    Pyr, DCEArB(OH)2 + PhthNOH ArONPhth Org. Lett. 2001, 3, 139

    A wide variety of boronic acids are tolerated and hydrazinolysis reveals the O-arylhydroxylamine. Requires two equivalents of the boronic acid.

    "Cu Source"

    BaseArX + RYHZ ArYRZ

    J. Am. Chem. Soc. 1997, 119, 10539J. Am. Chem. Soc. 1998, 120, 12459

    Tetrahedron Lett. 1999, 40, 2657J. Org. Chem. 1999, 64, 670

    Tetrahedron Lett. 2000, 41, 1283Tetrahedron Lett. 2001, 42, 4791

    J. Am. Chem. Soc. 2001, 123, 7727

    Synlett. 2002, 231Synlett. 2002, 427Org. Lett. 2002, 4, 581Org. Lett. 2002, 4, 973

    Org. Lett. 2002, 4, 3517Org. Lett. 2002, 4, 3703

    J. Am. Chem. Soc. 2002, 124, 7421J. Am. Chem. Soc. 2002, 124, 11684

    Org. Lett. 2003, 5, 793Org. Lett. 2003, 5, 133

    Y = N, O, SZ = C, H

    Applicable to a wide variety of nucleophilic partners, including anilines, phenols, thiophenols,aliphatic alcohols, thiols, amines, amino alcohols, amino acids, amino esters, guanidines,amides, diamines, hydrazones, carbazoles, imidazoles, indoles, acylhydrazides, pyrroles,

    pyrazoles, benzimidazoles, indazoles, azaindoles, and carbamates. The aryl ring can be awide variety of heterocycles and the r eaction tolerates a wide range of substituents, includingelectron-donating and electron-withdrawing groups. Inter- and intramolecular reactions areboth possible. Unprotected functionality of all sorts is tolerated. Various ring sizes can beformed/are tolerated in the reaction. A wide variety of copper sources and oxidation states workin the reaction. A variety of bases and ligands can be used and the reaction can even be runwith catalytic copper loadings.

    X = I, Br, Cl

    "Cu Source"

    BaseArSnR3 + YNHZ ArNYZ Tetrahedron Lett. 2002, 43, 3091

    Z = C, HApplicable to a wide variety of aryl stannanes. Nucleophilic partners include amines, anilines, indazoles, benzimiazolones, pyridones,and aryl amides.

    Useful Methods of Forming Aryl CN and CO Bonds:

    "Pd Source"

    BaseArX + RYHZ ArYRZ

    Tetrahedron Lett. 1995, 36, 3609Angew. Chem. Int. Ed. 1995, 34, 1348

    J. Org. Chem. 1996, 61, 1133J. Am. Chem. Soc. 1996, 118, 7215, 7217

    J. Org. Chem. 1996, 61, 7240Tetrahedron 1996, 52, 7525

    J. Org. Chem. 1997, 62, 1264, 1268J. Am. Chem. Soc. 1997, 119, 3395

    J. Org. Chem. 1997, 62, 5413Tetrahedron Lett. 1997, 38, 6367

    J. Am. Chem. Soc. 1998, 120, 827Tetrahedron Lett. 1998, 39, 5731

    J. Am. Chem. Soc. 1998, 120, 9722J. Am. Chem. Soc. 1999, 121, 3224

    Tetrahedron Lett. 1999, 40, 3543J. Org. Chem. 1999, 64, 5575

    Org. Lett. 2000, 2, 219Tetrahedron. 2001, 57, 2953

    Tetrahedron Lett. 2001, 42, 4381Org. Lett. 2000, 2, 1109

    Y = N, O, SZ = C, H

    Applicable to a wide variety of nucleophilic partners, including amines, amides, silyloxides,sulfonamides, anilines, carbamates, ureas, alkoxides, vinylogous amides, phenoxides,cyclopropylamines, tert-butylcarbamates, sulfoximes, hydrazines, hydrazones, and imines.Various heterocycles can be N-arylated including indole, pyrrole, imidazole, carbazole,benzotriazole, and phenoxazole. A variety of aryl donors are tolerated, including electron-rich, electron-poor, hindered, unhindered, and heterocyclic. A tropone has even beenaminated using this procedure. Five and six (not seven) membered heterocycles can

    routinely be formed via intramolecular cyclizations.

    X = I, Br, Cl

    Ni(0)ArX + NaOR ArOR J. Org. Chem. 1997, 62, 5413J. Am. Chem. Soc. 1997, 199, 6054

    R = alkylVarious nucleophilic parters can be used, specifically alkoxides, silyloxides, anilines, and amines. A variety of electron-withdrawing andelectron-donating groups are tolerated on the aromatic ring.

    X = Cl, Br

    +Tetrahedron Lett. 1993, 34, 1395

    J. Org. Chem. 1996, 61, 6581Tetrahedron Lett. 1996, 37, 8487Tetrahedron Lett. 1997, 38, 5123

    J. Am. Chem. Soc. 1997, 119, 6488

    For chromium: will tolerate electron-donating groups on the aromatic ring and a variety (lack of) protecting groups on the piperazine. Foriron: a range of amine nucleophiles can be used and some susbstitution on the aromatic ring is tolerable.

    R

    M

    i. Base

    ii. Demetalate

    HN

    XF

    RN X

    Ar3BiX2 + RYHZ ArYRZTetrahedron Lett. 1986, 27, 3615

    Synthesis. 1994, 775Tetrahedron. 1997, 53, 4137Tetrahedron. 1999, 55, 1341

    Y = N, OZ = C, H

    Can use with various substituted aryl groups, however phenyl is the most common. The nucleophilic partner can be an amide, aniline,alcohol, phenol, amine, or hydrazone.

    X = Cl, O2CR'

    Cu(II)

    M = Cr(CO)3FeCpPF6RuCpPF6

    X = NH, CH2

    EWG

    F

    + BaseR2NH

    EWG

    NR2

    Tetrahedron Lett. 1996, 37, 7343J. Chem. Soc. Perkin Trans. 1 . 1997, 2229

    J. Org. Chem. 1997, 62, 3874

    Various amines and electron-withdrawing groups can be used.

    Br

    + BaseR'NH2 J. Org. Chem. 1987, 52, 2619

    Ammonia, primary, and secondary amines can be used. Gives regioisomeric product mixtures if unsymmetrical.

    R

    NHR'

    R

    OMe

    + BaseR2NH J. Org. Chem. 1993, 58, 5101

    A variety of amines can undergo the displacement. Electron-withdrawing groups are not required on the aromatic ring.

    R'

    NR2

    R'

    For Reviews on the Subject See:1. Ley, S. V.; Thomas, A. W. "Modern Synthetic Methods for Copper-Mediated C(aryl)O, C(aryl)N, and C(aryl)S Bond Formation"

    Angew. Chem. Int. Ed. 2003, 42, 5400 5449.

    2. Koser, G. F. "C-Heteroatom-Bond Forming Reactions" Top. Curr. Chem. 2003, 224, 137 172.

    3. Muci, A. R.; Buchwald, S. L. "Practical Palladium Catalysts for C-N and C-O Bond Formation" Top. Curr. Chem. 2002, 219, 131 209.

    4. Hartwig, J. F. "Palladium-Catalyzed Amination of Aryl Halides: Mechanism and Rational Catalyst Design" Synlett. 1997, 329 340.

    5. Hartwig, J. F. "Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and

    Mechanism" Angew. Chem. Int. Ed. 1998, 37, 2046 2067.

    6. Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. "Rational Development of Practical Catalysts for Aromatic CarbonNitrogen

    Bond Formation" Acc. Chem. Res. 1998, 31, 805 818.

    7. Hartwig, J. F. "CarbonHeteroatom Bond-Forming Reductive Eliminations of Amines, Ethers, and Sulfides" Acc. Chem. Res. 1998, 31,

    852 860.

    8. Frost, C. G.; Mendona, P. "Recent developments in aromatic heteroatom coupling reactions" J. Chem. Soc. Perkin Trans. 1. 1998,

    2615 2623.

    9. Yang, B. H.; Buchwald, S. L. "Palladium-catalyzed amination of aryl halides and sulfonates" J. Organometallic Chem. 1999, 576, 125

    146.

    10. Belfield, A. J.; Brown, G. R.; Foubister, A. J. "Recent Synt hetic Advances in the Nucleophilic Amination of Benzenes" Tetrahedron.

    1999, 55, 11399 11428.

    11. Hartwig, J. F. "Approaches to catalyst discovery. New carbon-heteroatom and carbon-carbon bond formation" Pure Appl. Chem. 1999,

    71, 1417 1423.

    12. Prim, D.; Campagnew, J.-M.; Joseph, D.; Andrioletti, B. "Palladium-catalysed reactions of aryl halides with soft, non-organomettalic

    nucleophiles" Tetrahedron. 2002, 58, 2041 2075.

    OMe

    + PIFATMSX

    Tetrahedron Lett. 1991, 32, 4321J. Am. Chem. Soc. 1994, 116, 3684

    Synlett. 1995, 211J. Org. Chem. 1995, 60, 7144

    Pure Appl. Chem. 1996, 68, 627

    A variety of substitution can be tolerated on the aromatic ring. R can be either alkyl or methoxy. The reaction has even been performed in

    the absence of methoxy group.

    R'

    OMe

    R'

    X = N3, OAc, SCN, SPh

    X

    J. Org. Chem. 2005, 70, 5164.Tetrahedron, 2005, 61, 6553. Synlett, 2006,18, 3105.Tetrahedron,2006, 62, 4435. Tetrahedron, 2006, 62, 4756. J. Org. Chem.2007, 72, 2737.Tetrahedron Letters, 2007, 48, 6573. Angew. Chem. Int. Ed. 2007, 46, 934.J. Org. Chem. 2007, 72, 3863. Org. Lett.2007, 9, 643. Tetrahedron Letters, 2007, 48, 7199.