hidrogel

8
Coll oids and Surf aces A: Phys icoch em. Eng. Aspe cts 441 (2014) 51–58 Con tents lists available at ScienceDirect ColloidsandSurfacesA:Physicochemical and EngineeringAspects  j ourn a l h om epage: www.elsevier.com/locate/colsurfa pHdependenceandthermodynamicsof Hg(II)adsorptiononto chitosan-poly(vinyl alcohol)hydrogeladsorbent XiaohuanWang a,1 ,RuzhongSun b,,ChuanyiWang a,∗∗ a Key Lab orator y of Fun cti ona l Materi als and Device s for Spe cial Environ men ts of CAS, Xinjiang Tec hni calInstit ute of Phy sic s & Che mis tryof CAS , 40- 1 Sou th Bei jing Roa d, Urumqi 830 011, PR Chi na b Col lege of Che mis tryand Pha rma cy Engineering, Nan yan g Nor malUniver sit y, 1638 Wol ong Roa d, Nan yan g 473 061, PR Chi na highlights  CTS-PVAhydrogel adsorbentshowed superioradsorptionpropertiesfor Hg(II)ions.  pH inuence andtheromodynamics of Hg(II)adsorptiononthehydrogel adso rbent was studi ed.  Functionalgroupsresponsiblefor Hg(I I) adso rption changedwiththe pHof solutions.  ThebindingforcebetweenHg(II)and functional groupswasstrengthened at hig htemperatures.  Resultsobtainedinthisstudymay provide ascienticandengineering basisforHg(II)removal. graphicalabst ract art icleinfo  Article history: Recei ved 2 Jun e 201 3 Recei ved in revised form 25 Augus t 201 3 Acce pted 29 Aug ust 2013 Available online 6 September 2013 Keywords: pH dependence Thermodynamics Chitosan/p oly(vinyl alcohol) hydrogel adsorbent Hg(II) Adsorption abstract Thechitosan/poly(vinyl alcohol)(CTS-PVA) hydrogel adsorbent withthree-dimensional networkstruc- tureshowedsuperioradsorptionpropertiesforHg(II)ions.ThepHinuencestudyshowedHg(II) adsorptiononthehydrogel adsorbent is stronglypH-dependent. TheadsorptioncapacityinpH 2.00 solution(200.20mg/g)ishigherthanthatinpH 11.00solution(140.27mg/g), whichindicatedthatHg(II) adsorptionon thehydrogel adsorbent wasnotonlyby elect rosta tic interactions. FT-IR spectral analysis beforeandafterHg(II)adsorptionrepresentedthatthefunctional groupsresponsibleforHg(II)adsorp- tionchangedwiththepHof solutions. Thermodynamic studiesrevealedthatHg(II)adsorptiononthe hydrogel adsorbent isa fav orable ,spontaneous, andendothermic chemisorption process. Thebinding force betwee nHg(II)ionsandfunctional groupswasstrengthened athightemperatures, whichmade theadsorptionmorefavorableathightemperatures. TheadsorptionprocessttedwellbytheLangmuir andtheFreundlichisothermmodels. TheLangmuir maximumadsorptioncapacityincreasedfrom697.70 to950.62mg/gwithincreasingtemperature from20to60 C. This st udywillcontributetoanin-depth understanding of adsorptionphenomena, andprovidea scien ticandengineering basisforthepractical applicationof theCTS-PVAhydrogel adsorbent. © 2013 Elsevier B.V. All r ights reserved. Corr espo nding auth or. Tel.: +86 377 6352 5056 . ∗∗ Corr espo nding auth or. Tel. : +86 991 3835 879 ; fax: +86 991 383 8957 . E-mail addresses: [email protected] (X. Wang), [email protected] (R. Sun), [email protected] (C. Wan g). 1 Tel.: +86991 3835879; fax : +86991 38389 57. 1. Introduc tion Allmercu ry compou ndsare known to be highlytoxic chemicals. Inor ganic mercury has been report ed to produce harmful ef fects inculture medium at 5 g/ L. It exis ts in two i on i c s tat e s: Hg (I ) an dHg( II) . Hg (I I) or m ercu ri c s alt s, are muc h mor e co mmo n in the envi ronment than Hg(I ) or mercur ous salt s [1]. Hg(I I) can be 0927 -775 7/$ – see fron t matt er © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org /10.1016/j. colsurfa.2013 .08.068

Upload: anique-renaisanze

Post on 15-Oct-2015

16 views

Category:

Documents


0 download

DESCRIPTION

jurnal

TRANSCRIPT

  • 5/25/2018 hidrogel

    1/8

    Colloids and Surfaces A: Physicochem. Eng. Aspects 441 (2014) 5158

    Contents lists available at ScienceDirect

    Colloids and Surfaces A: Physicochemical andEngineering Aspects

    journa l homepage: www.elsevier .com/ locate /colsur fa

    pH dependence and thermodynamics ofHg(II) adsorption onto

    chitosan-poly(vinyl alcohol) hydrogel adsorbent

    Xiaohuan Wang a,1, Ruzhong Sun b,, Chuanyi Wang a,

    a Key Laboratory of Functional Materials andDevices for Special Environments of CAS, Xinjiang TechnicalInstitute of Physics & Chemistryof CAS, 40-1

    South Beijing Road, Urumqi 830011, PR Chinab College of Chemistryand Pharmacy Engineering, Nanyang NormalUniversity, 1638 WolongRoad, Nanyang 473061, PR China

    h i g h l i g h t s

    CTS-PVA hydrogel adsorbent showed

    superior adsorption properties for

    Hg(II) ions. pH influence and theromodynamics

    of Hg(II) adsorption on the hydrogel

    adsorbent was studied. Functional groups responsible for

    Hg(II) adsorption changed with the

    pH ofsolutions. The binding force between Hg(II) and

    functional groups was strengthened

    at high temperatures. Results obtained in this study may

    provide a scientific and engineering

    basis for Hg(II) removal.

    g r a p h i c a l a b s t r a c t

    a r t i c l e i n f o

    Article history:

    Received 2 June 2013

    Received in revised form 25 August 2013

    Accepted 29 August 2013

    Available online 6 September 2013

    Keywords:

    pH dependence

    Thermodynamics

    Chitosan/poly(vinyl alcohol) hydrogel

    adsorbent

    Hg(II)

    Adsorption

    a b s t r a c t

    The chitosan/poly(vinyl alcohol) (CTS-PVA) hydrogel adsorbent with three-dimensional network struc

    ture showed superior adsorption properties for Hg(II) ions. The pH influence study showed Hg(II

    adsorption on the hydrogel adsorbent is strongly pH-dependent. The adsorption capacity in pH 2.0

    solution (200.20 mg/g) is higher than that in pH 11.00 solution (140.27 mg/g), which indicated that Hg(II

    adsorption on the hydrogel adsorbent was not only by electrostatic interactions. FT-IRspectral analysi

    before and after Hg(II) adsorption represented that the functional groups responsible for Hg(II) adsorp

    tion changed with the pH of solutions. Thermodynamic studies revealed that Hg(II) adsorption on th

    hydrogel adsorbent is a favorable, spontaneous, and endothermic chemisorption process. The bindin

    force between Hg(II) ions and functional groups was strengthened at high temperatures, which mad

    the adsorption more favorable at high temperatures. The adsorption process fitted well by the Langmui

    and the Freundlich isotherm models. The Langmuir maximum adsorption capacity increased from 697.7

    to 950.62 mg/g with increasing temperature from 20to 60 C. This study will contribute to an in-deptunderstanding ofadsorption phenomena, and provide a scientific and engineering basis for the practica

    application ofthe CTS-PVA hydrogel adsorbent.

    2013 Elsevier B.V. All rights reserved

    Corresponding author. Tel.: +86 377 63525056. Corresponding author. Tel.: +86 991 3835879; fax: +86 991 3838957.

    E-mail addresses: [email protected](X. Wang), [email protected] (R. Sun),

    [email protected] (C. Wang).1 Tel.: +86991 3835879; fax: +86991 3838957.

    1. Introduction

    Allmercury compoundsare known to be highlytoxic chemicals

    Inorganic mercury has been reported to produce harmful effect

    in culture medium at 5g/L. It exists in two ionic states: Hg(Iand Hg(II). Hg(II) or mercuric salts, are much more common i

    the environment than Hg(I) or mercurous salts [1]. Hg(II) can b

    0927-7757/$ see front matter 2013 Elsevier B.V. All rights reserved.

    http://dx.doi.org/10.1016/j.colsurfa.2013.08.068

    http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.colsurfa.2013.08.068http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.colsurfa.2013.08.068http://www.sciencedirect.com/science/journal/09277757http://www.elsevier.com/locate/colsurfamailto:[email protected]:[email protected]:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.colsurfa.2013.08.068http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.colsurfa.2013.08.068mailto:[email protected]:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.colsurfa.2013.08.068&domain=pdfhttp://www.elsevier.com/locate/colsurfahttp://www.sciencedirect.com/science/journal/09277757http://localhost/var/www/apps/conversion/tmp/scratch_5/dx.doi.org/10.1016/j.colsurfa.2013.08.068
  • 5/25/2018 hidrogel

    2/8

    52 X.Wang et al. / Colloids and Surfaces A: Physicochem.Eng. Aspects 441 (2014) 5158

    methylated by reducing bacteria in anoxic habitats and trans-

    formed into methylmercury (MeHg+ orMe2Hg). So, it is considered

    as the most toxic form of mercury [2]. Recently, great efforts have

    been made to develop methods that can effectively remove Hg(II)

    ions from wastewater, andat thesame time, recover itscompounds

    in a more concentrated form to avoid the second pollution after

    removing them from the water [3]. The use of adsorbents pos-

    sessing selectivity toward Hg(II) ions makes good contributions

    to achieving this target. Polymer adsorbents containing ligandssuch as nitrogen-containing functional groupsare often used in the

    selective removal of Hg(II) from aqueous solutions [46].

    Chitosan (CTS), a copolymer that is primarily composed

    of(14) linked 2-amino-2-deoxy-d-glucopyranose units, andresidual 2-acetamido-2-deoxy-d-glucopyranose units, is a biopoly-

    mer of the most widely studies on heavy metal removal. It shows

    outstanding adsorption capacity for Hg(II) ions ranging from 430

    to 1127mg/g especially in pH close to neutral, due to the presence

    of large number of functional groups (acetamido, primary amino

    and/or hydroxyl groups) with high chemical reactivity in its chem-

    ical structure [5,7,8]. However, the protonation of amino groups

    results in CTS dissolution in acidic solutions, which limits CTS to be

    used as an adsorbent in acidic media. In addition, the amine groups

    of CTS do not have good adsorption selectivity for different metal

    ions [9]. All of these determine CTS is not a satisfying adsorbent for

    the selective removal of Hg(II) ions from wastewater [10].

    Poly(vinyl alcohol) (PVA), a semicrystalline hydrophilic poly-

    mer, is usually used to blend with CTS to obtain a variety of

    materials with good mechanical and chemical properties, such as

    hydrogels [11,12], blend foams [13], blend/composite membranes

    or films [14], blend beads [15,16], etc. The addition of PVA can

    improve the mechanical property and reduce the brittleness of the

    dried sample. Meanwhile, hydroxyl groups in PVA polymer struc-

    ture may contribute to the adsorption for heavy metal ions. These

    materials have been widely studied in the removal of heavy metal

    ions such as lead, copper, silver and cadmium ions from water

    or wastewater [11,12]. However, little attention has been paid to

    investigating their adsorption characteristics for mercury ions.

    Our previous studies showed that the CTS-PVA hydrogel adsor-bent prepared by a glutaraldehyde cross-linking in combination

    with an alternate freeze-thawed process demonstrated superior

    adsorption properties for Hg(II) ions [17]. The hydrogel adsor-

    bent contains NH2, NHCOCH3 and C N groups as well as OH

    groups. It can selectively adsorb Hg(II) ions from multi-component

    solutions with high efficiency. The CTS-PVA hydrogel adsorbent

    containing 30wt.% PVA showed moderate mechanical property,

    excellent adsorption properties, and the most important is, it had

    no leaching in solutions. So, it was thereby selected as an objective

    adsorbent for typical adsorption experiments in the present work.

    The present work focused on the pH dependence and adsorption

    mechanisms of the CTS-PVA hydrogel adsorbent for Hg(II) ions in

    differentpH solutions,as well as the detailed adsorption thermody-

    namics. This study will contribute to an in-depth understanding ofadsorption phenomena and open up an effective way for mercury

    removal from water.

    2. Experimental

    2.1. Materials

    CTS (industrial grade, the degree of deacetylation was 75%,

    and the average molecular weight was 3105 g/mol) was pur-

    chased from Zhejiang Golden-Shell Biochemical Co. Ltd. (Zhejiang,

    China). PVA(industrialgrade, the degree of hydrolysis was99% and

    the average degree of polymerization was 1700) was provided by

    Lanzhou Xinxibu Vinylon Company Ltd (Gansu, China). Glutaralde-

    hyde with a concentration of 25%, mercuric acetate and other

    chemicalswere of analyticalgrade andcommerciallyobtainedfrom

    Tianjin Kermel Chemical Reagent Co., Ltd (Tianjin, China). Aqueous

    solutions were all prepared with Millipore water (18.25 M/cm).

    2.2. Preparation

    The CTS-PVA hydrogel adsorbent with a three-dimensional net-

    work structure waspreparedaccording to our previous report[17].

    Its schematic network structure and the digital photo of the dried

    samplewere shown in Fig.1. The sampleusedfor adsorption exper-

    iments was milled and sieved through an 80-mesh screen.

    2.3. Adsorption experiments

    The adsorption experiments were carried out by adding certain

    amount of the driedsampleinto a simulatedwastewater containing

    Hg(II) ions at a desirable concentration and pH value, and then the

    mixture was shaken in a thermostatic shaker bath at an appropri-

    ate temperature until the adsorptiondesorption equilibrium was

    established. The pH of solutions was adjusted by the dilute acetic

    acid or sodium hydroxide solution and measured by a pH meter

    (Mettler Toledo 320).Forinvestigating theeffectof theinitial pH (pH0) of solutions on

    adsorption, a pH range from 2.00 to 11.00 was selected, and a con-

    centrationof 85.56mg/L wasselected as the initial concentration of

    Hg(II) solution to avoid precipitation of Hg(II) ions. For equilibrium

    adsorption experiments at different temperatures (20, 30, 40, 50

    and 60C), Hg(II) solutions with a concentration range from about

    500mg/L to 2500mg/L were used, and the mixture was shaken in

    a thermostatic shaker bath for 24h to ensure the equilibrium to be

    established.

    The concentration of mercury in solutions was determined by

    an atomic fluorescencespectrophotometer (AF-640,Beijing Beifen-

    gruili Analytical Instrument Co., China). The adsorption capacity of

    the adsorbent sample for Hg(II) ions at a given time tor at equilib-

    rium can be derived using the following equation:

    q =(C0 C) V

    m , (A.1)

    where q is the amountof Hg(II) adsorbed at time tor at equilibrium

    (mg/g), C0 is the initial Hg(II) concentration (mg/L), Cis the Hg(II)

    concentration at time tor at equilibrium (mg/L), m is the mass of

    the adsorbent used (g) and Vis the volume of Hg(II) solution used

    (L).

    2.4. Characterization

    2.4.1. The determination of the isoelectric point (pI)

    Theisoelectricpoint(pI)of theCTS-PVA hydrogel adsorbentwasdetermined by the solid addition method [18]. 0.1mol/L NaCl solu-

    tion was used as electrolytic solution in this study. The pH value

    of the solution was adjusted with 0.1 mol/L NaOH or 0.1 mol/L HCl

    solutions to cover a range from 2 to 12 in approx 2pH unit incre-

    ments. To 25mLNaCl solutions with the desired initial pH value

    (pH0), 0.1000 g CTS-PVA hydrogel adsorbent samples were added.

    Then theconical flasks were securely cappedimmediately. The sus-

    pensions were manually shaken andallowed to equilibrate for48 h

    with intermittent manual shaking at room temperature. The final

    pH value (pHf) of each supernatant fluid was determined again.

    By plotting the difference between the pH0and the pHf(i.e., pH,which equals pH0minus pHf) versus pH0, a curve can be obtained.

    The pH value which is corresponding to pH= 0 in the resulting

    curve is the pI of the sample.

  • 5/25/2018 hidrogel

    3/8

    X. Wang et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 441 (2014) 5158 5

    Fig. 1. Schematic structure(A) and digital photo (B)of theCTS-PVA hydrogel adsorbent.

    2.4.2. Fourier transform infrared spectroscopy (FTIR)

    The FTIR spectra of the CTS-PVA hydrogel adsorbent before and

    after Hg(II) adsorption were recorded using a Fourier transform

    infrared spectrometer (FTS-165, BIO-RAD, USA). All the sampleswere prepared as potassium bromide tablets, and the range of the

    scanning wavenumbers was 5004000cm1.

    2.4.3. Surface area analysis

    The surface area of the CTS-PVA hydrogel adsorbent were ana-

    lyzed by a nitrogen adsorptiondesorption method at 77K using

    a surface area analyzer (Micromeritics, ASAP 2020). The pretreat-

    ment conditions are 105 C and vacuum for 3h. The surface area

    was calculated by the BrunauerEmmertTeller (BET) equation.

    3. Results and discussion

    3.1. pH dependence and adsorption mechanisms of the hydrogel

    adsorbent for Hg(II) ions

    3.1.1. Effect of the pH0of solution on adsorption

    The determination of the isoelectric point (pI) of an adsorbent is

    necessary for further elucidating the adsorption mechanism. So, a

    preliminary test of pI wasdetermined by thesolid addition method

    [18]. Result showed that the pI of the sample was 7.85. Therefore,

    in the solution of pH value below 7.85, the particle surface of the

    hydrogel adsorbent is positively charged. Otherwise, the surface is

    negatively charged [18].

    The effect of the pH0 of solution on Hg(II) adsorption was

    shown in Fig. 2. The pH-dependent curve showed two peaks

    and a minimum, which revealed the strong pH-dependence ofHg(II) adsorption on the hydrogel adsorbent. Previous study about

    lead (II) adsorption on CTS-PVA hydrogel bead also showed a

    similar phenomena [12]. The adsorption capacity in pH 2.00

    solution (200.20mg/g) is higher than that in pH 11.00 solution

    (140.27mg/g), whichindicatedthat Hg(II) adsorption on the hydro-

    gel adsorbent was not only by electrostatic interactions, because

    that, the positively charged surface of the adsorbent in pH 2.00

    solution was not as favorable as the negatively charged surface

    in pH 11.00 solution for the adsorption of Hg(II) cations. The high

    adsorption capacity of the adsorbent in pH 2.00 solution also indi-

    cated that there must be more than one mechanismresponsiblefor

    Hg(II) adsorption on the hydrogel adsorbent. Our previous study

    has revealed that both chelation and ion exchange contributed to

    Hg(II) adsorption on the CTS-PVA hydrogel adsorbent [17].

    3.1.2. Analysis of adsorption mechanisms under different pH

    conditions

    In order to further illustrate the nature of Hg(II) adsorption o

    the hydrogel adsorbent under different pH conditions, FT-IR spectra of the dried sample before and after adsorption in different pH

    solution were compared.

    Firstly, we compared FT-IR spectra of the hydrogel adsorben

    before and after adsorption in pH 2.00 acetic acid and mercuri

    acetate solutions, respectively (Fig. 3). It was found that, com

    pared with the FT-IR spectrum of the unloaded sample (Fig. 3a)

    the FT-IR spectrum of the sample after adsorption in pH 2.00 aceti

    acid solution (Fig. 3b) showed several obvious spectral changes

    The characteristic peak of the N H stretching vibration situate

    at about 3372cm1 obviously shifted to the higher wavenum

    ber (3403 cm1). Meanwhile, the characteristic peaksof the C O

    stretching vibration (shifted from 1651 to 1635cm1), the N H

    deformation vibration (shifted from 1598 to 1557cm1) and

    the C N stretching vibration ( shifted from 1420 to 1384 cm

    1

    strongly shifted to the lower wavenumbers. These changes may b

    caused by the binding of NH2 and NHCOCH3 groups with pro

    tons to form complexes (Eqs. (B.1) and (B.2)), and thereby leading

    the surface of the sample to be positively charged [12].

    R NH2 +H+ R NH3

    + (B.1

    Fig. 2. pH0 effect on the adsorption of the CTS-PVA hydrogel adsorbent for Hg(I

    ions. Adsorption experimentsC0 : 85.56mg/L; sample dose: 0.0100g/50mL; th

    range ofpH0: 2.0011.00; temperature: 30C; contact time: 24h.

  • 5/25/2018 hidrogel

    4/8

    54 X.Wang et al. / Colloids and Surfaces A: Physicochem.Eng. Aspects 441 (2014) 5158

    Fig. 3. FT-IR spectra of the unloaded CTS-PVA hydrogel adsorbent (a), the sample

    after being dipped in pH 2.00 acetic acid solution (b) and the sample after Hg(II)

    adsorption in pH 2.00 mercuric acetate solution (c), respectively.

    NH CCH3

    O

    + H+ CH3C

    O

    NH2+

    R

    R

    (B.2)

    Compared with FT-IR spectra of the unloaded sample (Fig. 3a)

    and the sample after adsorption in pH 2.00 acetic acid solution

    (Fig. 3b), the FT-IR spectrum of the adsorbent after adsorption

    in pH 2.00 mercuric acetate solution (Fig. 3c) showed several

    new changes. The characteristic peaks of the saccharide structure

    stronglyshifted to the lowerwavenumbers.Meanwhile, the charac-

    teristic peak of the C H stretching vibration shifted tothe higher

    wavenumbers (2935 cm1).These indicated thatfreependant OH

    groups in the polymer structure should interact with Hg(II) ions in

    pH 2.00 mercuric acetate solution. The possible chemical reaction

    was given as follows:

    R OH + Hg2+ (R OH)Hg2+ or (R OH)2Hg2+ (B.3)

    Despite that, several other spectral changes were observed inFig, 3c when compared with Fig. 3a. The characteristic peak corre-

    sponding to the C O and C N stretching vibration shifted from

    1651cm1 to 1641cm1, which is not as obvious as that observed

    in Fig.3b. Thismaybeindicatethe interaction of NHCOCH3groups

    and C N groups with Hg(II) ions, because that the C N group is a

    milder basic ligand than NH2 or OH groups and it can interact

    with a verysoft acidsuch asHg(II) ions. The reaction between C N

    groups and Hg(II) ions has been confirmed by our previous study

    [17] and other related researches [19]. It was given as follows:

    RCH N R' + (CH3COO)2Hg RCH HgOOCCH3

    R'

    N

    (B.4)

    The characteristic peak of the N H deformation vibration in

    Fig.3c nearly disappeared completely when compared withFig. 3b.

    This may be due to the reaction between NHCOCH3 groups and

    Hg(II) ions, which was given as follows:

    R NH CCH3+(CH3COO)2Hg CH3C

    O

    N

    R

    HgOOCCH3orCH3C N Hg N CCH3R

    O OO

    R (B.5)

    Secondly, we compared FT-IR spectra of the hydrogel adsorbent

    before and after adsorption in different pH mercuric acetate solu-

    tions (shown in Fig. 4). Itcan be seen that, compared with the FT-IR

    spectrum after adsorption in pH 2.00 mercuric acetate solution

    Fig. 4. FT-IR spectra of the unloaded CTS-PVA hydrogel adsorbent (a) and samples

    after Hg(II)adsorptionin differentpH solutions(b: pH 2.00; c: pH 5.00; d: pH 7.00;

    e: pH9.00; f: pH11.00).

    (Fig. 4b), the FT-IR spectrum after adsorption in pH 5.00 mercuric

    acetate solution (Fig. 4c) showed several more obvious changes.

    Except for the obvious changes of the characteristic peaks of thesaccharide structure, C N groups and NHCOCH3 groups, the

    characteristic peaks of the N H stretching vibration obviously

    shifted to the higher wavenumber (from 3398 to 3428 cm1).

    Meanwhile, the characteristic peaks of the C H stretching

    vibration near 2935 cm1 and the C H symmetrical deformation

    vibration at 1417cm1 and 1381cm1 evidently shifted to the

    lower wavenumbers. These indicated that free pendant NH2groups may also interact with Hg(II) ions when the sample was

    dipped in pH 5.00 mercuric acetate solution. The possible chemical

    reaction was given as follows:

    2R NH2 +Hg2+ (R NH2)2Hg

    2+ (B.6)

    The FT-IR spectra after Hg(II) adsorption in pH 7.00 and 9.00

    mercuric acetate solutions were very similar (Fig. 4d and e). Com-

    pared with the FT-IR spectrum of the unloaded sample (Fig. 4a),

    the obvious shifts of the FT-IR spectra after Hg(II) adsorption in

    pH 7.00 and 9.00 mercuric acetate solutions mainly concentrated

    on the characteristic peaks of the N H stretching vibration, the

    C O stretching vibration, the N H deformation vibration and

    the C N stretching vibration.These indicated NH2, NHCOCH3,

    and C N groups may allparticipatein Hg(II)adsorption under such

    pH conditions.

    Compared with Fig. 4a, the FT-IR spectrum after Hg(II) adsorp-

    tion in pH 11.00 (Fig. 4f) only showed an obvious shift of the

    characteristic peak of the N H stretching vibration in NH2groups. This implied NH2 groups may be the main functional

    groups responsible for Hg(II) adsorption in pH 11.00 mercuric

    acetate solutions. According to the research of Li and Bai [12], OH

    ions can be adsorbed onto the surface of the CTS-PVA hydrogeladsorbent through hydrogen bonds when the pH of solutions is

    higher than its pI, and thereby lead to the surface of the adsorbent

    negatively charged (Eq. (B.7)) [12].

    R NH2 +OH R NH2. . .OH

    (B.7)

    So, in solutions which pH value is higher than the pI of the

    adsorbent, the negative charged surface of the adsorbent will

    facilitate Hg(II) ions being adsorbing by the electrostatic interac-

    tion.

  • 5/25/2018 hidrogel

    5/8

    X. Wang et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 441 (2014) 5158 5

    Table 1

    Parameters associated with Hg(II) adsorption on the CTS-PVA hydrogel adsorbent at different temperatures. (T: K; qm,exp: mg/g;KL: L/g; aL: L/mg;qm,cal: mg/g; S:m2/g; G

    kJ/mol; H: kJ/mol; S: kJ/(mol K);KF:L/mg.).

    T qm,exp The Langmuir model S RL G H S The Freundlich model

    KL aL qm,cal R2 KF n R2

    293 697.70 7.0215 0.0092 763.36 0.9973 87.056 0.16300.0429 4.748 94.5606 0.2925 0.9979

    303 723.87 10.8378 0.0141 769.23 0.9979 87.726 0.11280.0284 6.003 134.227 0.2492 0.9970

    313 741.31 15.6397 0.0202 775.19 0.9984 88.405 0.08160.0200 7.156 48.183 0.179 173.1929 0.2174 0.9972

    323 837.25 41.4079 0.0484 854.70 0.9987 97.473 0.03570.0084 9.999 307.7797 0.1532 0.9972

    333 950.62 71.1238 0.0754 943.40 0.9976 107.590 0.02320.0054 11.806 401.7723 0.1319 0.9892

    3.2. Adsorption thermodynamics

    3.2.1. Adsorption isotherms

    The adsorption isotherms of Hg(II) adsorption on the CTS-PVA

    hydrogel adsorbent at different temperature were presented in

    Fig. 5. The isotherm shapes are consistent with the favorable

    adsorption equilibrium patterns proposed by Weber et al. [20].

    This suggested the adsorption process of Hg(II) adsorption on the

    hydrogel adsorbent should be a favorable process. Such anticipa-

    tionwas also confirmed by the equilibrium parameterRLcalculated

    in the following section. The increase of the adsorption capacity

    with increasing temperature indicated that the adsorption processof the CTS-PVA hydrogel adsorbentfor Hg(II) ionswas endothermic.

    3.2.2. Adsorption isotherm analysis

    The analysis of isothermdata is veryimportant for developingan

    equation which canaccurately representthe results andbe used for

    design purposes. The adsorption data obtained in this study were

    analyzed by the well-known and widely applied isotherm models,

    namely, the Langmuir and the Freundlich isotherm models.

    The Langmuir model. The Langmuir model is perhaps the most

    straightforward non-linear isotherm model. It is predicated on

    the assumptions that the energy of sorption for each molecule is

    the same and independent of surface coverage. And that sorption

    occurs only on localizedsites and involves no interactions between

    adsorbed molecules [20]. The Langmuir model is usually expressedas follows [21]:

    qe =x

    m =

    KLCe(1+ aLCe)

    , (A.2)

    wherex is theamount of Hg(II) ions adsorbed (mg),m is theamount

    of adsorbent used (g),Ce(mg/L) andqe(mg/g) are the liquid phase

    Fig. 5. Adsorption isotherms of Hg(II) adsorption on the CTS-PVA hydrogel

    adsorbent at different temperatures. Adsorption experimentsthe range of C0:

    02500 mol/L; sample dose: 0.0500 g/25mL; pH0: 5.50; the range of temperature:

    2060 C; contact time: 24h.

    concentration and solid phase concentration of Hg(II) ions at equi

    librium, respectively.

    At low surface coverage, the Langmuir isotherm reduces to

    linear relationship. The most common linear form of the Langmui

    model is formulated as:

    Ceqe

    =1

    KL+ (

    aLKL

    )Ce, (A.3

    where KL(L/g) andaL(L/mg) are the Langmuir isotherm constants

    respectively, and aLrelates to the energy of adsorption. When Ce/q

    is plotted against Ce, a straight line will be obtained. The value ofK

    can be obtained from the intercept which is 1/KL, and the value oaL can be obtained from the slope which is aL/KL. The maximum

    adsorption capacity of the adsorbent, qm,cal, i.e., the equilibrium

    monolayer capacity or saturation capacity, is numerically equal t

    KL/aL. The Langmuir parameters of Hg(II) adsorption on the CTS

    PVA hydrogel adsorbent at different temperatures were listed i

    Table 1.

    From Table 1, it can be seen that the linear correlation

    coefficients (R2) at different temperatures are all close to 1. Thi

    indicatedthat the adsorption process fitted well with the Langmui

    model. So, it can be considered that Hg(II) ions were adsorbed with

    a monolayer on the particle surface of the adsorbent. The Langmui

    maximum adsorption capacity (qm,cal) increased from 697.70 to

    950.62mg/g with the temperature of solutions increasing from 2

    to 60C, which reflected the endothermic nature of the adsorption

    process again. Compared with other adsorbents (Listed in Table 2

    [2229], the Langmuir maximum adsorption capacity of the CTS

    PVA hydrogel adsorbent are quite high. This indicated the CTS-PVA

    hydrogel adsorbent is a superior adsorbent that can be used for th

    removal of Hg(II) from aqueous solutions. The value ofaLincreased

    from0.0092L/mg to 0.0754 L/mgwith increasingtemperature from

    20 to 60 C, which indicated the binding force between Hg(II) ion

    Table 2

    A comparison of themaximumadsorption capacityof theadsorbents forHg(II) ion

    Adsorbent Maximum adsorption

    capacity (mg/g)

    Source

    Chitosan adsorbent (which is

    crosslinked with glutaraldehyde)

    145 (25C) [22]

    Modified magnetic chitosan

    adsorbents (which is crosslinked with

    glutaraldehyde and functionalized

    with magnetic nanoparticles (Fe3O4))

    152 (25C) [22]

    The polyaniline/attapulgite (PANI/ATP)

    composite

    800 (25C) [23]

    A chitosanthioglyceraldehyde Schiffs

    base cross-linked magnetic resin

    (CSTG)

    982 [24]

    The cross-linked magnetic

    chitosan-phenylthiourea (CSTU) resin

    1353 [25]

    The chitosanECH matrix 621.83 [26]

    The polyaniline/humic acidcomposite 671 [27]

    The PPyRGO composite 980 [28]

    The ethylenediamine-modified

    magnetic crosslinking chitosan

    microspheres (EMCR)

    539.59 [29]

  • 5/25/2018 hidrogel

    6/8

    56 X.Wang et al. / Colloids and Surfaces A: Physicochem.Eng. Aspects 441 (2014) 5158

    Fig. 6. Plot ofRLagainst C0at different temperatures. Adsorption experimentsthe

    range ofC0: 02500mol/L; sample dose: 0.0500g/25mL; pH0: 5.50; the range of

    temperature: 2060C; contact time: 24h.

    and functional groups of the hydrogel adsorbent was strengthened

    at a higher temperature. This further substantiated the endother-

    mic nature of the adsorption process.

    The dimensionless constant separation factor or equilibrium

    parameter, RL, is another factor that can express the essential fea-

    tures of the Langmuir isotherm. It is defined by the following

    relationship [30]:

    RL =1

    1+ (KL/qm)C0 . (A.4)

    For favorable adsorption process, the value of RL should be

    ranged from 0 to 1. If the value of R L is beyond 1, it implies that

    the adsorption process is unfavorable. The value of RLof Hg(II)

    adsorption on the CTS-PVA hydrogel adsorbent changed with C0was shown in Fig. 6, and the values of R L at different temper-

    atures were given in Table 1. Values of RL were in the range of

    01, which indicatedthe adsorption process of the hydrogel adsor-

    bent for Hg(II) ions is favorable again. Values of RLdecreased with

    the increase of the temperature suggested the adsorption is more

    favorable at high temperatures.

    The Freundlich model. The Freundlich model is an empirical

    equation and perhaps the most widely used nonlinear sorption

    equilibrium model. This model applies to adsorption onto hetero-

    geneous surfaces with a uniform energydistribution and reversible

    adsorption. Moreover, this model is not restricted to the formation

    of the monolayer. Thats to say, the amount of adsorbate adsorbed

    on the adsorbent will increase in case of increasing the adsorbate

    concentration in the solution.The Freundlichmodel has the generalform as follows [31]:

    qe = KFCne , (A.5)

    whereKFis the Freundlichconstantwhich relates to sorption capac-

    ity(L/mg),n is the heterogeneity factor whichrelatesto the sorption

    intensity. KFand n are empirical constants which is dependent on

    several environmental factors. The value ofn ranges from 0 to 1,

    andindicates thedegree of non-linearity between thesolutioncon-

    centration and the adsorption. If the value ofn is equal to 1, the

    adsorption is linear. If the value is below 1, the adsorption process

    is chemical. If the value is above 1, the adsorption is a favorable

    physical process. The more heterogeneous the surface, the closer

    the value ofn is to 0 [12,32].

    For determination of these empirically derived constants, the

    Freundlich model is usually expressed the logarithmic form as fol-

    lows:

    log(qe) = n log(Ce) + log KF. (A.6)

    KFand n can be determined from the slope and intercept of the

    linear plot of log(qe) versus log(Ce). The Freundlich parameters of

    Hg(II) adsorption on the CTS-PVA hydrogel adsorbent at different

    temperatures were listed in Table 1.From Table 1, it can be seen that the linear correlation

    coefficients (R2) at different temperatures are close to 1, which

    indicated that the Freundlich model can also be used to describe

    the adsorption process of the CTS-PVA hydrogel adsorbent for

    Hg(II) ions. The values ofn decreased from 0.2925 to 0.1318 with

    increasing temperature from 20 to 60C. This suggested that the

    adsorption process of Hg(II) ions on the hydrogel adsorbent is

    chemical, and the surface of the adsorbent is more heterogeneous

    at high temperatures.

    3.3. The specific surface area of the hydrogel adsorbent toward

    Hg(II) ions binding

    The Langmuir monolayer saturation capacity (qm,cal, mg/g) cal-culated from the Langmuir equation (Eq. (A.3)), i.e., the ultimate

    adsorption capacity at high concentrations, can be used to esti-

    mate the specific surface area (S, m2/g) of the CTS-PVA hydrogel

    adsorbenttoward Hg(II) binding, usingthe following equation[33]:

    S =qm,calNA

    1000M , (A.7)

    where N is Avogadro constant, 6.021023 mol1, A is the cross-

    sectional area of metal ion (m2), M is the molar weight of

    Hg(II) ions, 200.59g/mol. According to the radius of Hg(II) ion

    (1.101010 m), the cross-sectional area of Hg(II) ion was cal-

    culated to be 3.801020 m2. The specific surface areas of the

    hydrogel adsorbenttowardHg(II) binding at differenttemperatures

    were calculated and listed in Table 1.From Table 1, it can be seen that the specific surface area of

    the hydrogel adsorbent toward Hg(II) ions binding increased with

    increasingtemperature.This indicatedthat Hg(II) adsorptionon the

    hydrogel adsorbent is chemisorption. The BET specific surface area

    of the sample was determined to be 14.724m2/g, which is much

    smaller than the binding specific surface area calculated. This fur-

    ther confirmed the chemisorption nature of the adsorption process.

    3.4. Thermodynamic parameters

    Withthe helpof equilibrium dataobtainedat different tempera-

    tures, thermodynamicparameters such as Gibbs freeenergy change

    (G, J/mol), enthalpy change (H, J/mol) and entropy change (S,

    J/(mol K)) of the adsorption process of the CTS-PVA hydrogel adsor-bent for Hg(II) ions can be determined by Gibbs equation and Vant

    Hoff equation listed as follows:

    G = RT ln KL, (A.8)

    ln KL =H

    (RT) +

    S

    R , (A.9)

    where KLis the equilibrium constant obtained from the Langmuir

    model (L/g),Tis the absolute temperature (K), R is the universalgas

    constant (8.314J/(mol K)). The values ofHand Scan be deter-

    mined from the slope and the intercept of the plot of ln(KL) versus

    1/T. The plotand thermodynamic parametersof the adsorption pro-

    cess of the hydrogel adsorbent for Hg(II) ions were shown in Fig. 7

    and Table 1, respectively.

  • 5/25/2018 hidrogel

    7/8

    X. Wang et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 441 (2014) 5158 5

    Fig. 7. The plot of ln(KL) versus1/T.

    The linear correlation coefficient (R2) obtained from Fig. 7 was

    0.9807. It is very close to 1. Such a good linear relationship made

    the calculation of the values ofHand Saccording to Eq. (A.9)

    possible.The values ofG are all negative at all temperatures. This indi-

    cated that the adsorption process was spontaneous. The reduced

    values ofG with increasing the temperature suggested the spon-taneous nature is improved at higher temperature. The positive

    value ofHsuggested the adsorption process was an endothermicprocess. The positive value ofSindicated the entropy of the sys-

    temincreased after adsorption, that is to say, therandomness at the

    solidliquid interface increased. This unusual phenomenon may be

    owing to the fact that the desolvation disturbs the structure of the

    reaction medium and promotes the disorganization of the system

    during the formation process of complex. It was also observed by

    Weber et al. [20] and Guerra et al. [34].

    4. Conclusions

    Hg(II) adsorption on the CTS-PVA hydrogel adsorbent is a favor-

    able, spontaneous, and endothermic chemisorption process. The

    pH of solution had a great effect on Hg(II) adsorption on the hydro-

    gel adsorbent. The adsorption mechanisms and functional groups

    responsible for Hg(II) adsorption changed with the pH of solutions.

    In lower pH solutions, chelation between functional groups and

    Hg(II)ionswas the mainmechanism.Free pendant OHgroupsand

    C N g roups a s w ell a s NHCOCH3groupswere themain functional

    groups responsible for Hg(II) adsorption. When pH of solution was

    close to thepI ofthe hydrogel adsorbent,freependant OH, NH2and NHCOCH3groups aswell asC N groupsallinvolved inHg(II)

    adsorption. While in solutions which pH was much higher than the

    pI of the hydrogel adsorbent, electrostatic interaction played animportant role. Both chelation and electrostatic interaction made

    contributions to Hg(II) adsorption, and free pendant NH2groups

    became the main functional groups responsible for Hg(II) adsorp-

    tion. The binding force between Hg(II) ions and functional groups

    was strengthened at higher temperature, and thereby the adsorp-

    tion was more favorable at high temperature. Hg(II) adsorption on

    thehydrogeladsorbent canbe well explainedby both theLangmuir

    and the Freundlich isotherm models.

    Acknowledgements

    This work is financial supported by the Western Light Pro-

    gram of the Chinese Academe of Sciences (XBBS201116), the

    National Natural Science Foundation of China (21107133), and the

    One Hundred Talents program of Chinese Academy of Science

    (1029471301).

    References

    [1] D.W. Boening, Ecological effects, transport, and fate of mercury: a generareview, Chemosphere 40 (2000) 13351351.

    [2] I. Wagner-Dobler, Pilotplant for bioremediation of mercury-containingindustrial wastewater, Appl. Microbiol. Biotechnol. 62 (2003) 124133.

    [3] N. Li, R.B. Bai, C.K. Liu, Enhanced and selective adsorption of mercury ions ochitosanbeads graftedwith polyacrylamide viasurface-initiatedatom transferadical polymerization, Langmuir 21 (2005) 1178011787.

    [4] S. Kagaya, H. Miyazaki, M. Ito, K. Tohda, T. Kanbara, Selective removal of mercury(II) from wastewater using polythioamides, J. Hazard. Mater. 175 (201011131115.

    [5] P. Miretzky, A. Fernandez Cirelli, Hg(II) removal from water by chitosan anchitosan derivatives:A review, J. Hazard. Mater. 167(2009) 1023.

    [6] H.B. Sonmez, B.F. Senkal, N. Bicak, Poly(acrylamide) grafts on spherical beapolymers for extremely selectiveremovalof mercuric ions fromaqueoussolutions,J. Polym.Sci Part A: Polym.Chem.40 (2002)30683078.

    [7] A. Bhatnagar, M. Sillanpaa, Applications of chitin- and chitosan-derivativefor the detoxification of water and wastewater a short review, Adv. ColloiInterfaceSci. 152 (2009) 2638.

    [8] G.Crini,Recentdevelopments inpolysaccharide-basedmaterialsusedas adsorbents in wastewatertreatment, Prog. Polym. Sci. 30 (2005)3870.

    [9] E. Guibal, Interactions of metal ions with chitosan-based sorbents: a reviewSep. Purif. Technol. 38 (2004)4374.

    [10] G. Crini, P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes usinb atch s tudie s: a re view of r ecent liter ature , Pr og . Po lym. Sci. 33 (20 08399447.

    [11] T. Wang, M. Turhan, S. Gunasekaran, Selected properties of pH-sensitivebiodegradable chitosanpoly(vinyl alcohol) hydrogel, Polym. Int. 53 (2004911918.

    [12] L. Jin,R.B. Bai,Mechanismsof leadadsorption on chitosan/PVAhydrogel beadsLangmuir 18 (2002) 97659770.

    [13] X. Wang, Y.S. Chung, W.S. Lyoo, B.G. Min, Preparation and properties of chitosan/poly(vinyl alcohol) blend foams for copper adsorption, Polym. Int. 5(2006) 12301235.

    [14] H.A.Shawky,Synthesis of ion-imprintingchitosan/PVA crosslinked membranfor selectiveremoval of Ag(I), J. Appl. Polym.Sci. 114 (2009)26082615.

    [15] M. Kumar, B.P. Tripathi, V.K. Shahi, Crosslinked chitosan/polyvinyl alcohoblend beads for removal and recovery of Cd(II) from wastewater, J. HazardMater. 172 (2009)10411048.

    [16] W.S.W. Ngah, A. Kamari, Y.Koay, Equilibriumand kineticsstudiesof adsorptioof copper(II) on chitosan and chitosan/PVA beads, Int. J. Biol. Macromol. 3

    (2004) 155161.[17] X. Wang, W. Deng, Y. Xie, C. Wang, Selective removal of mercury ions using

    chitosanpoly(vinyl alcohol) hydrogel adsorbent with three-dimensional network structure, Chem. Eng. J. 228 (2013) 232242.

    [18] L.S. Balistrieri, J.W. Murray, The surface-chemistry of goethite (alpha-FeOOHin majorion seawater, Am.J. Sci. 281 (1981) 788806.

    [19] R.S. Vieira, M.L.M. Oliveira, E. Guibal, E. Rodriguez-Castellon, M.M. BeppuCopper, mercury and chromium adsorption on natural and crosslinked chtosan films: an XPS investigation of mechanism, Colloids Surf. A 374 (2011108114.

    [20] W.J. Weber, P.M. McGinley, L.E. Katz, Sorption phenomena in subsurface systems concepts,models and effects on contaminant fateand transport, WateRes. 25 (1991) 499528.

    [21] I. Langmuir, The constitution and fundamental properties of solids and liquidparti solids, J. Am. Chem. Soc. 38(1916) 22212295.

    [22] G.Z. Kyzas, E.A. Deliyanni, Mercury(II) removal with modified magnetic chtosan adsorbents, Molecules18 (2013) 61936214.

    [23] H.Cui,Y. Qian,Q. Li,Q. Zhang,J. Zhai,Adsorptionof aqueous Hg(II)bya polyanline/attapulgite composite, Chem. Eng. J. 211212 (2012) 216223.

    [24] M. Monier, Adsorption of Hg2+, Cu2+ andZn2+ ionsfrom aqueous solutionusinformaldehydecross-linked modifiedchitosan-thioglyceraldehydeschiffs baseInt. J. Biol. Macromol. 50 (2012) 773781.

    [25] M. Monier, D.A. Abdel-Latif, Preparation of cross-linked magnetic chitosanphenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions fromaqueous solutions, J. Hazard. Mater. 209210(2012) 240249.

    [26] R.B. Rabelo, R.S. Vieira, F.M.T. Luna, E. Guibal, M.M. Beppu, Adsorption ocopper(II) and mercury(II) ions onto chemically-modified chitosan membranes equilibrium and kinetic properties, Adsorpt. Sci. Technol. 30 (2012122.

    [27] Q. Li, L. Sun, Y. Zhang, Y. Qian, J. Zhai, Characteristics of equilibrium, kineticstudiesfor adsorptionof Hg(II) andCr(VI)by polyaniline/humicacid compositDesalination 266 (2011) 188194.

    [28] V. Chandra, K.S. Kim, Highly selective adsorption of Hg2+ by a polypyrrolereduced graphene oxide composite, Chem. Commun. 47 (201139423944.

    [29] L. Zhou, Z. Liu, J. Liu, Q. Huang, Adsorption of Hg(II) from aqueous solutioby ethylenediamine-modified magnetic crosslinking chitosan microsphere

    Desalination 258 (2010) 4147.

    http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0005http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0005http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0005http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0010http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0010http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0010http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0015http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0015http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0015http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0015http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0145http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0140http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0135http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0130http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0125http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0120http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0115http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0110http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0105http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0100http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0095http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0090http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0085http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0080http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0075http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0070http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0065http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0060http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0055http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0050http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0045http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0040http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0035http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0030http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0025http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020http://refhub.elsevier.com/S0927-7757(13)00679-1/sbref0020ht