high-power density target design and analyses for ...high-power density target design and analyses...

35
High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory Nuclear Engineering Division Workshop on Applications of High Intensity Proton Accelerators Fermi National Accelerator Laboratory October 20, 2009

Upload: others

Post on 28-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

High-Power Density Target Design and Analyses for Accelerator Production of Isotopes

W. David PointerArgonne National LaboratoryNuclear Engineering Division

Workshop on Applications of High Intensity Proton AcceleratorsFermi National Accelerator LaboratoryOctober 20, 2009

Page 2: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Outline

Purpose

Design Challenges

Design Options

Solid Target Concepts– Lithium‐cooled Tungsten Pebble Bed 

– Lithium‐cooled Tungsten Plate

Liquid Target Concepts– Lead Bismuth Eutectic

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

2

Page 3: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Purpose

Develop a high‐power accelerator target concept for use as the primary stage in a two stage isotope production target– Neutrons are generated in primary target stage

• Spallation of heavy metal target material by high energy charged particles– Protons, Deuterons, or Helium‐3

– Neutrons are absorbed in second stage• Fissioning and decay processes produce desired isotopes in Uranium Carbide target

• High temperature (~2000 C) maintained in second stage to encourage fission and decay products to diffuse out of second stage target

3

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 4: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Design Challenges

Primary stage target must meet a number of engineering constraints and challenges– Physical Constraints

• Must produce sufficient neutrons to power second stage isotope production target

• Must be small in size to maximize efficiency of neutron use– Ideally cylindrical, <5 cm in diameter and ~9cm long– Beam will be approximately 1 cm in diameter with uniform cross‐section

– Structural Constraints• Must isolate coolant and target material from vacuum in beam line

– Must satisfy mechanical stress limits

– Thermal Constraints• Sufficient heat removal needed to maintain structure within acceptable limits

– Total beam power of ~400kW at 1 GeV» ~1/3 of power deposited in small target

• Must be thermally isolated from high temperature second stage

4

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 5: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Target material/coolant considerations

Solid Target Options– tungsten

• Good neutron yield

• Good heat transfer and structural characteristics in new target material

• High melting point (3422 °C) 

• May be clad when in contact with water or alkali metals

– uranium alloys• Better neutron yield than tungsten

• Poorer heat transfer in new target material

• Lower melting point (1000‐1400 °C)

• Many alloys compatible with alkali metals.  Likely must be clad in water or air cooled systems

• Higher decay heat load and longer‐lived decay heat load than tungsten target

Solid Target Coolant Options– Air

• Low heat capacity limits applicability

– Water• Low boiling point must account 

for two‐phase flow

• Corrosion management

– Lithium• Excellent conductivity, but low heat 

capacity compared to other coolants

– Sodium• Better heat capacity than lithium

– Mercury• Power generation in coolant limits 

applicability 

• Potential for two‐phase and non‐wetting issues

– Lead or Lead‐Bismuth Eutectic• Power generation in coolant limits 

applicability

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

5

Page 6: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Target material/coolant considerations

Liquid Target Options– mercury

• Good neutron yield

• Good heat transfer characteristics

• Low boiling point (357 °C) may have two phase flows

• Liquid at room temperature

• Does not wet many materials well careful surface preparation required

– lead• Better neutron yield per proton, but 

longer stopping distance than mercury

• Higher boiling point (1749 °C)

• High melting point (327.46 °C)

• Erodes structural materials in high speed turbulent flows

• Wets most structural materials

– Lead‐Bismuth Eutectic• Similar neutron yield to pure lead

• High boiling point (~1700 °C)

• Low melting point (123.5 °C)

• Erodes structural materials like lead

• Wets most structural materials like lead

• Higher polonium production higher decay heat load

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

6

Page 7: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Design Options

Liquid Lead‐Bismuth Eutectic Target vs. Lithium‐Cooled Solid Tungsten Target

Advantages Disadvantages

Lithium-Cooled Solid

Tungsten

Short stopping distance yields more neutrons in small target length

Most spallation products are contained within solid target material

High thermal conductivity and heat capacity in solid target

High thermal conductivity in coolant Potentially simplified target handling procedures

Small stopping distance leads to much higher power density

Coolant channels must be built into target, increasing target length

Higher activity in waste products, decay heat removal issues

Low heat capacity in coolant Oxygen content must be controlled to prevent fire Interaction between liquid lithium and common

structural materials largely unknown Tungsten must be clad in stainless steel

Liquid Lead-Bismuth Eutectic

Higher neutron yield per incident proton Single coolant and target material No need for complex structure to accommodate

coolant channels Good thermal conductivity and heat capacity Very high boiling point Spallation products can be removed on-line using

cold trap technology No danger of fire with oxygen exposure

Longer stopping distance requires longer target Oxygen content must be carefully controlled to

limit corrosion Fluid velocities must be carefully controlled to

prevent erosion High density coolant requires more robust

structure Potentially more complex target handling

procedures7

Page 8: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Solid Tungsten Target Design

Tungsten Plate Target vs. Tungsten Pebble Bed Target

Advantages

Simple Construction Low Pressure Drop Separate Window

Cooling Channel

Disadvantages

Low Volume Fraction of Target Material

Plate Deformation Limits Target Life

Advantages

High Volume Fraction of Target Material

Annular Design Provides Thermal Isolation

Target Material Can Deform Freely

Disadvantages

More Complex Construction

Manufacture of Very Small Pebbles May Not Be Feasible

High Pressure Drop Integrated Window

Cooling8

Page 9: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Heat Transfer In Tungsten Pebble Bed Target

Assumptions– Use average heat generation rate within beam radius throughout 

target (130 kW)• Total target power is over estimated• Peak target power is underestimated

– Neglect conduction between pebbles– Calculated pebble‐averaged temperatures

• Does not account for hot spots at contact points

– Coolant Inlet Temperature = 523 K• ~50 K above melting point

– Cladding Thickness = 0.1 mm

Consider three limiting cases to examine effects of pebble size on performance

• Constant centerline temperature• Constant pressure drop• Constant inlet fluid velocity

9

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 10: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

10

Pebble Bed – Constant CenterpointTemperature

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.02 0.04 0.06 0.08 0.1

Pebble Radius (cm)

Inle

t Vel

ocity

(m/s

)

800 degrees C

600 degrees C

400 degrees C

0

25

50

75

100

125

150

0 0.02 0.04 0.06 0.08 0.1

Pebble Radius (cm)

Pres

sure

Dro

p (p

si)

800 degrees C

600 degrees C

400 degrees C

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 11: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Pebble Bed – Constant Pressure Drop

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1Pebble Radius (cm)

Inle

t Vel

ocity

(m/s

)

400

450

500

550

600

650

700

750

800

0 0.02 0.04 0.06 0.08 0.1Pebble Radius (cm)

Ave

rage

Tem

pera

ture

(C)

Pebble Centerpoint

Clad Inner Surface

Clad Outer Surface

Target Pressure Drop = 30 psi

11

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 12: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

12

Pebble Bed – Constant Inlet Velocity

0

100

200

300

400

500

600

700

800

900

1000

0 0.02 0.04 0.06 0.08 0.1

Pebble Radius (cm)

Pres

sure

Dro

p (p

si)

0

100

200

300

400

500

600

700

800

900

1000

0 0.02 0.04 0.06 0.08 0.1Pebble Radius (cm)

Ave

rage

Tem

pera

ture

(C)

Pebble Centerpoint

Clad Inner Surface

Clad Outer Surface

V = 0.5 m/s

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 13: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Pebble Bed Target Concept Conclusions

Pebble bed target could be developed to satisfy thermal requirements

Many manufacturing challenges– Construction of steel clad tungsten pebbles

• Diameter less than 1 mm

– Arrangement of small pebbles in target• Randomly distributed pebble beds introduce large uncertainties

– Neutron production– Thermal performance

Many development challenges– Analysis of peak temperatures

• Contact points between pebbles• Heat deposition distribution

– Analysis of mechanical behavior of pebble/clad

Pursue plate‐type target as primary option

13

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 14: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Tungsten Plate Target Concept

Easy to construct

Plates are easily clad if necessary

Lower pressure drop than a pebble bed

Less surface area available for heat removal 

Lower target material volume fraction than a pebble bed

Must give special attention to beam window cooling

14

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 15: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Tungsten Plate Target Concept

Easy to construct

Plates are easily clad if necessary

Lower pressure drop than a pebble bed

Less surface area available for heat removal 

Lower target material volume fraction than a pebble bed

Must give special attention to beam window cooling

15

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 16: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Heat Transfer In Tungsten Plate Target

Assumptions– Use average heat generation rate within beam radius throughout 

target• Total target power is over estimated• Peak target power is underestimated

– Calculate plate‐averaged temperatures• Does not account for radial temperature distribution

– Coolant Inlet Temperature = 523 K• ~50 K above melting point

– Cladding Thickness = 0.1 mm 

Consider effects of four parameters on performance• Plate thickness• Inlet velocity• Coolant gap width• Clad thickness

16

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 17: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Plate Target – inlet velocity and plate thickness

0

200

400

600

800

1000

1200

1400

0 0.002 0.004 0.006 0.008 0.01

Plate Thickness (m)

Out

er C

lad

Surf

ace

Tem

pera

ture

(K)

0.1 m/s0.5 m/s1.0 m/s1.5 m/s2.0 m/sLimit

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.002 0.004 0.006 0.008 0.01

Plate Thickness (m)

Plat

e C

ente

rline

Tem

pera

ture

(K)

0.1 m/s0.5 m/s1.0 m/s1.5 m/s2.0 m/sLimit

Clad thickness = 0.1 mmGap width = 1.0 mm

17

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 18: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

18

Plate Target – gap width and plate thickness

0

500

1000

1500

2000

2500

0 0.002 0.004 0.006 0.008 0.01Plate Thickness (m)

Cla

d O

uter

Sur

face

Tem

pera

ture

(K) 1 mm

1.5 mm2 mm2.5 mm3.0 mmlimit

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.002 0.004 0.006 0.008 0.01

Plate Thickness (m)

Plat

e C

ente

rline

Tem

pera

ture

(K)

1 mm1.5 mm2 mm2.5 mm3.0 mmlimit

Clad thickness = 0.1 mmInlet velocity = 1.0 m/s

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 19: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

19

Plate Target – clad thickness and plate thickness

0

200

400

600

800

1000

1200

1400

0 0.002 0.004 0.006 0.008 0.01Plate Thickness (m)

Cla

d O

uter

Sur

face

Tem

pera

ture

(K)

0.1 mm0.5 mm1.0 mm1.5 mm2.0 mmsurface

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.002 0.004 0.006 0.008 0.01Plate Thickness (m)

Cla

d O

uter

Sur

face

Tem

pera

ture

(K) 0.1 mm

0.5 mm1.0 mm1.5 mm2.0 mmlimit

Gap width = 1.0 mmInlet velocity = 1.0 m/s

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 20: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Channel width optimization for fixed coolant channel velocity

9.9880E-04

9.9900E-04

9.9920E-04

9.9940E-04

9.9960E-04

9.9980E-04

1.0000E-03

1.0002E-03

0 5 10 15 20 25

Gap Number

Gap

Wid

th (m

)

Plate thickness = 3 mm21 plates

Channel Velocity = 1.0 m/sPressure Drop = ~800 Pa

20

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 21: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Computational Fluid Dynamic Studies

Use the commercial CFD code Star‐CD

Apply 3‐dimensional CFD simulations for – Confirmation of conclusions drawn from scaling studies

– Evaluation of effects of radial conduction of heat in solid components and convection of heat in the coolant away from the region heated by the particle beam

– Approximation of localized peak temperatures

Modeling Strategy– Solid Target

• Consider tungsten plate cooling and beam window cooling separately

• Consider one symmetric half of the target geometry

– Liquid Target• Consider a 10° wedge of the target geometry

Modeling assumptions– Uniform volumetric heat source in target materials 

• Limited to region actually heated by the particle beam

– Constant velocity condition at model inlet

– Zero gradient condition at model outlet

21

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 22: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Solid Target Plate Cooling

Model– Approximately 300,000 computational 

volume elements

– Vin= 1 m/s

– Tin= 250 °C Results

– Channel velocities• 0.1 < VC< 1.1 m/s

– Peak surface temperature• 485 °C

– Peak solid temperature• 527 °C

22

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 23: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Solid Target Plate Cooling

Model– Approximately 300,000 computational 

volume elements

– Vin= 1 m/s

– Tin= 250 °C Results

– Channel velocities• 0.1 < VC< 1.1 m/s

– Peak surface temperature• 485 °C

– Peak solid temperature• 527 °C

23

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 24: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Solid Target Plate Cooling

Model– Approximately 300,000 computational 

volume elements

– Vin= 1 m/s

– Tin= 250 °C Results

– Channel velocities• 0.1 < VC< 1.1 m/s

– Peak surface temperature• 485 °C

– Peak solid temperature• 527 °C

24

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 25: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Solid Target Window Cooling

Model– Approximately 

125,000 computational volume elements

– One symmetric half of geometry

– Parametrically evaluate effect of stainless steel beam window thickness

Result– Limit thickness to no 

more than 2.0 mm

25

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 26: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Solid Target Window Cooling

Model– Approximately 

125,000 computational volume elements

– One symmetric half of geometry

– Parametrically evaluate effect of stainless steel beam window thickness

Result– Limit thickness to no 

more than 2.0 mm

26

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 27: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Solid Target Window Cooling

Model– Approximately 

125,000 computational volume elements

– One symmetric half of geometry

– Parametrically evaluate effect of stainless steel beam window thickness

Result– Limit thickness to no 

more than 2.0 mm

(a) Adiabatic Surface 

(b) Cross Section 

CoolantFlow

27

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 28: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Beam Window Performance

0

500

1000

1500

2000

2500

0.1 0.3 0.5 0.7 0.9

Steel Power Density to Tungsten Power Density Ratio

Peak

Win

dow

Tem

pera

ture

(K)

Thickness = 3.5 mm

Thickness = 3.0 mm

Thickness = 2.0 mm

Thickness = 1.0 mm

Inlet Temperature

Temperature Limit

0

500

1000

1500

2000

2500

0 2 4 6 8 10Window Cooling Channel Inlet Velocity (m/s)

Tem

pera

ture

(K)

Wetted Surface Temperature (K)

Peak Window Temperature (K)

Inlet Temperature

Temperature Limit

Page 29: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Tungsten plate target concept conclusions

Tungsten plate target concept can potentially satisfy thermal requirements– Plate thickness ≈ 3.0 mm– Clad thickness < 0.5 mm– Gap width ≈ 1.0 mm– Channel velocity ≈ 1.0 m/s

No real need to optimize gap width for target of this size

Need to consider realistic power distribution– Optimize plate thickness

29

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 30: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Liquid Lead-Bismuth Eutectic Target Concept

High neutron yield per proton

Coolant is target material– No stress issues in target material

Simple design

Need careful oxidation control

Lower density → less target material per unit volume– Nearly equivalent to lithium cooled tungsten plate concept

30

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 31: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

LBE target scaling studies

Assume uniform volumetric heat source in LBE

Thermal analyses– Target coolant temperature rise = 40 °C

• Average inlet velocity = 2 m/s

• Mass flow rate = 3.6 kg/s

• Can  be reduced to 20 °C – Mass flow rate = 8.0 kg/s

– Increase total target diameter from 4.0 to 4.5 cm

Stability analyses– Annular turning flows are inherently unstable

• Leads to flow induced vibration issues when using heavy liquid metal 

• Follow stability guidelines from Idelchik’s Handbook of Hydraulic Resistance

– Develop turning vane concept for leading edge of central flow baffle.

31

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 32: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

LBE target turning vane

32

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 33: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

LBE Target Cooling

Model– Approximately 35,000 computational volume elements

– Vin= 2.0 m/s

– Tin = 250 °C Results

– Peak velocity occurs at inlet and outlet• Implies good fairing design

– Peak surface temperature• 493 °C 

– Peak temperature • 608 °C

Detailed physics analyses needed to provide enthalpy source distribution for further optimization  

33

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 34: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Conclusions

The high power density neutron converter will drive the two‐stage ISOL target

Many design options were considered in the development of a conceptual design

A lithium‐cooled tungsten concept has been developed for application as the neutron converter stage of a two‐stage high‐Z ISOL target

A liquid LBE target is being developed as one alternate to the lithium cooled neutron converter concept

34

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009 

Page 35: High-Power Density Target Design and Analyses for ...High-Power Density Target Design and Analyses for Accelerator Production of Isotopes W. David Pointer Argonne National Laboratory

Questions?

35

Workshop on Applications of High Intensity Proton Accelerators, Fermilab, October 20, 2009