hiradmat window design report v2.0 1michael monteil- 16 march 2010

56
HiRadMat Window Design report v2.0 1 Michael MONTEIL- 16 March 2010

Upload: yuliana-norrington

Post on 28-Mar-2015

240 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

HiRadMat Window

Design report v2.0

1Michael MONTEIL- 16 March 2010

Page 2: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Specifications v2.0Specifications v2.0

“Beam Size at the TT66 Vacuum Window”,C. Hessler, 26.02.2010

2Michael MONTEIL- 16 March 2010

Page 3: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Window geometry – C-C optionWindow geometry – C-C option

• Carbon/Carbon composite: 1501 G from SGL

• Cylindrical window• Diameter80 mm (Updated)

– Aperture 60 mm (Updated)

• Thickness: 0.5 cm (Updated)

• Aperture (flange internal diameter): 60 mm (Updated)

3Michael MONTEIL- 16 March 2010

Page 4: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Solutions #1 for C-C tightness problem:Solutions #1 for C-C tightness problem:Differential vacuum (Differential vacuum (V1.0V1.0))

• 1 Window C-C– Pumping speed needed: 8.4x109 l/s …

• 2 Windows C-C with differential pumping– Pumping speed needed: 8.4x103 l/s …

• 3 Windows C-C with differential pumping– Pumping speed needed: 8.4x101 l/s OK

4Michael MONTEIL- 16 March 2010

Page 5: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Solutions #1 for C-C tightness problem:Solutions #1 for C-C tightness problem:Differential vacuum (Differential vacuum (New values V2.0New values V2.0))• 1 Window C-C

– Pumping speed needed: 2.3x108 l/s …

• 2 Windows C-C with differential pumping– Pumping speed needed: 8.94x102 l/s OK !

• 3 Windows C-C with differential pumping– Pumping speed needed: 13 l/s Too low ?!

5Michael MONTEIL- 16 March 2010

Page 6: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Solutions #1Solutions #1

• What about radiations in this area ?– Possible maintenance needed on the roots pump…

• Protective atmosphere

• Decreasing pressure in Vacuumside with serial pumps

Michael MONTEIL- 16 March 2010 6

Page 7: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Michael MONTEIL- 16 March 2010 7

P1 (ATM) Window1 P2 Window2 P3

1.00E+03 3.16E-03 1.00E-08

D cm 6 6

K cm2/s 5.00E-02 5.00E-02

A cm2 2.83E+01 2.83E+01L cm 0.5 0.5

Q mbar*cm3/s 2.83E+00 8.94E-06

mbar 1.00E+03 3.16E-03

mbar*cm3/s 2.83E+00 8.94E-06

l/s 8.94E+02 894.1101

m3/h 3218.8 3218.8

C-C

DP

P

Q

S

P1 (ATM) Window1 P2 Window2 P3

1.00E+03 5.00E-03 1.00E-08

D cm 6 6

K cm2/s 5.00E-02 5.00E-02

A cm2 2.83E+01 2.83E+01L cm 0.5 0.5

Q mbar*cm3/s 2.83E+00 1.41E-05

mbar 1.00E+03 5.00E-03

mbar*cm3/s 2.83E+00 1.41E-05

l/s 5.65E+02 1413.714

m3/h 2035.7 5089.4

C-C

DP

P

Q

S

P1 (ATM) Window1 P2 Window2 P3

1.00E+03 1.00E-02 1.00E-07

D cm 6 6

K cm2/s 5.00E-02 5.00E-02

A cm2 2.83E+01 2.83E+01L cm 0.5 0.5

Q mbar*cm3/s 2.83E+00 2.83E-05

mbar 1.00E+03 1.00E-02

mbar*cm3/s 2.83E+00 2.83E-05

l/s 2.83E+02 282.7405

m3/h 1017.9 1017.9

C-C

DP

P

Q

S

P1 (ATM) Window1 P2 Window2 P3

1.00E+03 3.16E-02 1.00E-06

D cm 6 6

K cm2/s 5.00E-02 5.00E-02

A cm2 2.83E+01 2.83E+01L cm 0.5 0.5

Q mbar*cm3/s 2.83E+00 8.94E-05

mbar 1.00E+03 3.16E-02

mbar*cm3/s 2.83E+00 8.94E-05

l/s 8.94E+01 89.40847

m3/h 321.87 321.87

C-C

DP

P

Q

S

• P2 : Roots pump• 100 –> 1500 m3/h• 10-3 -> 10 Bar

• P3 : Ion pump• 400 l/s

P1 (ATM) Window1 P2 Window2 P3

1.00E+03 3.16E-03 1.00E-08

D cm 6 6

K cm2/s 5.00E-02 5.00E-02

A cm2 2.83E+01 2.83E+01L cm 1 1

Q mbar*cm3/s 1.41E+00 4.47E-06

mbar 1.00E+03 3.16E-03

mbar*cm3/s 1.41E+00 4.47E-06

l/s 4.47E+02 447.0551

m3/h 1609.4 1609.4

Q

S

C-C

DP

P

Reference

Page 8: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

8Michael MONTEIL- 16 March 2010

Page 9: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Solution #4 : BerylliumSolution #4 : Beryllium

• Metal -> Tight !! No differential pumping

⁺ Simple window assembly⁺ Thin thickness

⁻ Toxicity⁻ Price

Michael MONTEIL- 16 March 2010 9

Page 10: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Solution Solution #5#5 : Be + C-C : Be + C-C

• Solution #4 but the pressure load is supported by a C-C plate

⁺ Simple window assembly⁺ Thin thickness (no differential pumping…)⁺ Be cannot pollute vacuum unless C-C fail⁺ Tight

⁻ Price… but compare to intermediate Vac. Pumps price ?

Michael MONTEIL- 16 March 2010 10

Page 11: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Solutions - Sum-upSolutions - Sum-up

Michael MONTEIL- 16 March 2010 11

Page 12: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

ANSYS Study - Solutions #1ANSYS Study - Solutions #1stresses and deflection - stresses and deflection - C-CC-C under under DDP = P = 1.41.4atmatm

• Linear circular fixed support• 2 planes of symmetry• Geometry– Diameter80 mm– Thickness: 5 mm– Aperture: 60 mm

• Pressure 1.4 bar

12Michael MONTEIL- 16 March 2010

Page 13: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

ANSYS Study - Solutions #1ANSYS Study - Solutions #1stresses and deflection - stresses and deflection - C-CC-C under under DDP = P = 1.41.4atmatm

• Orthotropic properties : 18 plies [0°/90°…]• Smooth and continuous temperature

distribution

• Through-thickness energy deposition• Coefficient of Thermal Expansion varying with

temperature and directions

13Michael MONTEIL- 16 March 2010

Page 14: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C - Pressure load - DeflectionC-C - Pressure load - Deflection

14Michael MONTEIL- 16 March 2010

7.4 μm

Page 15: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C - Pressure load – Von-MisesC-C - Pressure load – Von-Mises

15Michael MONTEIL- 16 March 2010

5.9 Mpa

Page 16: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C - Pressure load – Tsaï-WuC-C - Pressure load – Tsaï-Wu

16Michael MONTEIL- 16 March 2010

Page 17: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C - Thermal load C-C - Thermal load ANSYS input =ANSYS input = FLUKA outputFLUKA output

Radial

C-C | 1 = 0.5 mm | 1.7e11 p+ | 288 bunches• Axisymmetrical radial temperature field

DepthR (cm)

T (°C)

Z (cm)

T (°C)

17Michael MONTEIL- 16 March 2010

Page 18: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C - Pressure + Thermal load – DeflectionC-C - Pressure + Thermal load – Deflection

18Michael MONTEIL- 16 March 2010

10.6 μm

Page 19: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C - Pressure + Thermal load – Von-MisesC-C - Pressure + Thermal load – Von-Mises

19Michael MONTEIL- 16 March 2010

31 Mpa

Page 20: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C - Pressure + Thermal load – Tsaï-C-C - Pressure + Thermal load – Tsaï-WuWu

20Michael MONTEIL- 16 March 2010

Page 21: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

ANSYS Study - Solutions #4ANSYS Study - Solutions #4stresses and deflection - stresses and deflection - Be Be under under DDP = P = 1.41.4atmatm

• Linear circular fixed support• 2 planes of symmetry• Geometry– Diameter80 mm– Thickness: 0.254 mm– Aperture: 60 mm

• Pressure 1.4 bar

21Michael MONTEIL- 16 March 2010

Page 22: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

ANSYS Study - Solutions #4ANSYS Study - Solutions #4stresses and deflection - stresses and deflection - Be Be under under DDP = P = 1.41.4atmatm• Smooth and continuous temperature distribution

• Through-thickness energy deposition

• Coefficient of Thermal Expansion varying with temperature

• Be:– Poisson’s ratio = 0.1– High Re = 275 Mpa– High Rm = 551 MPa

22Michael MONTEIL- 16 March 2010

Page 23: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be - Pressure load - DeflectionBe - Pressure load - Deflection

23Michael MONTEIL- 16 March 2010

8.1 mm

Page 24: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be - Pressure load – Von-MisesBe - Pressure load – Von-Mises

24Michael MONTEIL- 16 March 2010

319 Mpa

Page 25: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be - Pressure load – Safety factor Ult. StrengthBe - Pressure load – Safety factor Ult. Strength

Michael MONTEIL- 16 March 2010 25

1.7

Page 26: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be - Thermal load Be - Thermal load ANSYS input =ANSYS input = FLUKA outputFLUKA output

Be | 1 = 0. 5 mm | 1.7e11 p+ | 288 bunches• Axisymmetrical radial temperature field

Z (cm)

T (°C)

26Michael MONTEIL- 16 March 2010

Z (cm)

Radial Be

T (°C)

Page 27: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be - Pressure + Thermal load – DeflectionBe - Pressure + Thermal load – Deflection

27Michael MONTEIL- 16 March 2010

8 mm

Page 28: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be - Pressure + Thermal load – Von-MisesBe - Pressure + Thermal load – Von-Mises

28Michael MONTEIL- 16 March 2010

315 Mpa

Page 29: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be - Pressure + Thermal load – Safety factor Ult. StrengthBe - Pressure + Thermal load – Safety factor Ult. Strength

Michael MONTEIL- 16 March 2010 29

1.7

Page 30: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

ANSYS Study - Solutions #5ANSYS Study - Solutions #5stresses and deflection - stresses and deflection - C-C+BeC-C+Be under under DDP = P =

1.41.4atmatm• 2 Studies

– C-C (See Solution #4)• Pressure load• Pressure + Temperature loads

– Be (Following slides)• Flattered on a C-C plate (Fixed support)

and apply pressure load on the other side• Flattered on a C-C plate (Fixed support)

and apply pressure load on the other side + Temperature load

• 2 planes of symmetry• Geometry

– Diameter80 mm– Thickness

• C-C: 5 mm• Be: 0.254 mm

– Aperture: 60 mm• Pressure 1.4 bar

30Michael MONTEIL- 16 March 2010

Page 31: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

ANSYS Study - Solutions #5ANSYS Study - Solutions #5stresses and deflection - stresses and deflection - C-C+BeC-C+Be under under DDP = P =

1.41.4atmatm• Smooth and continuous temperature

distribution

• Through-thickness energy deposition• Coefficient of Thermal Expansion varying with

temperature

31Michael MONTEIL- 16 March 2010

Page 32: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Michael MONTEIL- 16 March 2010 32

Be (flatter on C-C) - Pressure load – DeformationBe (flatter on C-C) - Pressure load – Deformation

Page 33: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be (flatter on C-C) - Pressure load – Von-MisesBe (flatter on C-C) - Pressure load – Von-Mises

Michael MONTEIL- 16 March 2010 33

Page 34: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Thermal load Thermal load ANSYS input =ANSYS input = FLUKA outputFLUKA output

Radial C-C

C-C + Be | 1 = 0.5 mm | 1.7e11 p+ | 288 bunches • Axisymmetrical radial temperature field

Depth C-C

T (°C)

Z (cm)

T (°C)

34Michael MONTEIL- 16 March 2010

Z (cm)

Radial Be

Page 35: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be (flatter on C-C) - Pressure + Thermal load – DeflectionBe (flatter on C-C) - Pressure + Thermal load – Deflection

Michael MONTEIL- 16 March 2010 35

x 2.6e+002

Page 36: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be (flatter on C-C) - Pressure + Thermal load – Von-MisesBe (flatter on C-C) - Pressure + Thermal load – Von-Mises

Michael MONTEIL- 16 March 2010 36

Page 37: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. StrengthBe (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength

Michael MONTEIL- 16 March 2010 37

Page 38: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

To do :To do :• Rough mechanical design– Solution #1 C-C with differential pumping

• Maybe coating• 15 cm length between upstream and downstream sides

– Solution #5 C-C + Be• Order quotes of Be• Same design that window in TI8, TI2, TT41 (Design by Kurt

Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing the Ti foil by a Be foil

• Nickel-coating to prevent oxidation on Be ?• 15 cm length between upstream and downstream sides

38Michael MONTEIL- 16 March 2010

Page 39: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Michael MONTEIL- 16 March 2010 39

Page 40: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Back up slides

Michael MONTEIL- 16 March 2010 40

Page 41: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

C-C 1.4 bar diameter 146 mm (v1.0)

Michael MONTEIL- 16 March 2010 41

Page 42: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure load - DeflectionPressure load - Deflection

42Michael MONTEIL- 16 March 2010

Page 43: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure load – Von-MisesPressure load – Von-Mises

43Michael MONTEIL- 16 March 2010

Page 44: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure load – Tsaï-WuPressure load – Tsaï-Wu

44Michael MONTEIL- 16 March 2010

Page 45: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Thermal load Thermal load ANSYS input =ANSYS input = FLUKA outputFLUKA output

Radial

C-C | 1 = 0.25 mm | 1.7e11 p+• Axisymmetrical radial temperature field

DepthR (cm)

T (°C)

Z (cm)

T (°C)

45Michael MONTEIL- 16 March 2010

Page 46: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure + Thermal load – DeflectionPressure + Thermal load – Deflection

46Michael MONTEIL- 16 March 2010

Page 47: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure + Thermal load – Von-MisesPressure + Thermal load – Von-Mises

47Michael MONTEIL- 16 March 2010

Page 48: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure + Thermal load – Tsaï-WuPressure + Thermal load – Tsaï-Wu

48Michael MONTEIL- 16 March 2010

Page 49: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Be Only Pressure 1 bar instead of 1.4 bar

Michael MONTEIL- 16 March 2010 49

Page 50: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure load - DeflectionPressure load - Deflection

50Michael MONTEIL- 16 March 2010

Page 51: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure load – Von MisesPressure load – Von Mises

51Michael MONTEIL- 16 March 2010

Page 52: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure load – Safety factor Ult. StrengthPressure load – Safety factor Ult. Strength

Michael MONTEIL- 16 March 2010 52

Page 53: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Thermal load Thermal load ANSYS input =ANSYS input = FLUKA outputFLUKA output

C-C | 1 = 0.25 mm | 1.7e11 p+• Axisymmetrical radial temperature field

Z (cm)

T (°C)

53Michael MONTEIL- 16 March 2010

Z (cm)

Radial Be

T (°C)

Page 54: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure + Thermal load – DeflectionPressure + Thermal load – Deflection

54Michael MONTEIL- 16 March 2010

Page 55: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure + Thermal load – Von-MisesPressure + Thermal load – Von-Mises

55Michael MONTEIL- 16 March 2010

Page 56: HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010

Pressure + Thermal load – Safety factor Ult.StrengthPressure + Thermal load – Safety factor Ult.Strength

Michael MONTEIL- 16 March 2010 56