# how to find

Post on 23-Dec-2014

1.685 views

Category:

## Technology

Embed Size (px)

DESCRIPTION

This is a Math Powerpoint presentation on how to find, the area of the different shapes.

TRANSCRIPT

• 1. How to Find Created by Ryan Massey

2. What is Area?

• Area is the space that is defined by the pe( rim )eter.
• All shapesthat are 2-d or two-dimensionalhaveArea.

The OrangeIn this shape IsAREA On the Next pagewe will Learn 3. How do I Find Area?

• Do you knowhow to Find the AREA of..
• Squares & Rectangles?
• Triangles?
• Circles?
• Ifnot, thats a-ok, Ill tellhow on the next page

4. Some of The 2-D AreaFormulas 3 6 5 10 2 Circles (bh)=A (5 x 10) =A (50)= A25=A (bh)= A Or Triangle bh = A 6 x 3 =A 18 =A bh = A (and anotherformula for the Square). Square / Rectangle ~~~~~~Example~~~~~~ Formula(s) Shape(s) 5. Squares & Rectangles

• ASquarehas all the same length onallsides.
• The area Formulafor the square is
• ARectanglehas2 sets of parallel lines , and each set has their ownlength.
• The area formula for the rectangle is
• Practice Problemsare on the next page

6. Examples

• Find the Area of the square abovethen check your steps below
• 1 st -
• 2 nd-(5) 2=A
• 3 rd-5 2= 5 x 5 = 25

5 610

• Find the Area of the square abovethen check your steps below
• 1 st -bh = A
• 2 nd-(6)(10)=A
• 3 rd-60= A

7. Practice Problems 57.5A 3.95 B 19 14 C 8. Problem A 57.5Write out our formula.. (bh) = A Fill in the numbers that we know.. (5 x 7.5) = A 9. Problem A(cont.) 57.5Multiply the numbers in the Parenthesis (5 x 7.5) = A 37.5 = A 10. Problem B 3.95 Write out our formula.. (s) 2 = A Fill in the numbers that we know.. (3.95) 2= A (3.95) 2= A Square the number (3.95) 2= 15.60 = A 11. Problem C 19 14 Write out our formula.. (bh) = A Fill in the numbers that we know.. (19 x 14.5) = A 12. Problem C(cont.) Multiply the numbers in the Parenthesis (19 x 14.5) = A 275.5 = A 19 14 13. Our Area's are 57.537.5 = A A 3.95 (3.95) 2= 15.60 = A B 275.5 = A 19 14 C 14. Triangles

• If you take a Square or rectangle, and placea Triangle on top of it, theareaaroundthe triangle would equal the area that was IN the triangle. ( give it a try).
• HINT:Make sure youthearea after you havemultiplied the Base(b)& Height(h)out.
• Formula: (bh) = A or.
• The Base is the bottom of the triangle.
• The Height is the Highest point of the triangle to the base ( look at the diagram on the next page for more help ).

15. Triangles ( cont . ) TheBLUElineisThe Height of thisTriangle. TheREDLineisThe Base of thisTriangle . TheGREEN Is the AREAOfthis Triangle 16. Practice Problems with Triangles 24 12 10 5 19 4 A B C 17. (suggestions) !!!WAIT!!! Before we move on to see the answers, Go ahead and WORK-OUT the answers,thenwatch &see how's it done!!! Happy Calculating! 18. Problem A 24 12 A Write out our formula.. (bh) = A Fill in the numbers that we know.. (12 x 24) = A ClicktoSee the Next set of Steps. 19. Problem A (cont.) 24 12 A Multiply the numbers in the Parenthesis (12 x 24) = A (288) = A Divide our area that we multiplied outby 2or . (288) = A (288) = 144 20. Problem B 10 5 B Write out our formula.. (bh) = A Fill in the numbers that we know.. ( 5 x 10) = A ClicktoSee the Next set of Steps. 21. Problem B(cont.) Multiply the numbers in the Parenthesis (5 x 10) = A (50) = A 10 5 B Divide our area that we multiplied outby 2or . (50) = A (50) = 25 22. Problem C 19 4 C Write out our formula.. (bh) = A Fill in the numbers that we know.. (4 x 19) = A 23. Problem C(cont.) 19 4 C Multiply the numbers in the Parenthesis (4 x 19) = A (76) = A Divide our area that we multiplied outby 2or . (76) = A (76) = 38 24. SoOur correct answers are.. A=25 24 12 A A= 144 10 5 B 19 4 C A = 38 25. Circles

• The Formulas for the circle are
• C , or circumference is the perimeter of the circle.
• A or Area is the space that is inside or space that is in the circle.
• Pi is a number that is a VERY Long Number.

26. Quick Definitions Radius Diameter When the circle chows the Diameter,youstillneed to 1 stfind the radius. And square the radius. ( Oryour answer will be WRONG!) H I N T Is double of theradius .( Or ) The line that goes from one side of the circle to the other side, passing through the center of the circle. Diameter(in blue) The line that isof the distance of the Diameter Radius ( or ) radii( In red>>) Definition Name/ Hint 27. How do I find Area of a Circle? 2 Write out our formula.. Fill in the numbers that we know.. A= (3.14)(2) 2 28. Finding the Area of Circles (cont.) Multiply the Numbers in the ParenthesisNow,it is 6.28 to the 2 ndpower. A= (3.14)(2) 2 A= 6.28 2 A= 6.28 2 A= 39.432 29. Practice Problems 5 8.5 30 Find theAREA Of the circlesA-C a b c 30. Problem a 5 Write out our formula.. Fill in the numbers that we know.. A= (3.14)(5) 2 31. Problem a(cont.) Multiply the Numbers in the ParenthesisNow,it is 15.7to the 2 ndpower. A= (3.14)(5) 2 A= 15.7 2 A= 15.7 2 A= 246.495 32. Problem b 30 Write out our formula.. Fill in the numbers that we know.. A= (3.14)( 30 ) 2 We Need to now findTheRADIUSofthisCircle. 30/2 = 15

Recommended