hybrid star constructions with effective field theories

32
1 Hybrid star constructions with effective field theories eter Kov´ acs Senior Research Fellow Wigner RCP Collaborator: anos Tak´ atsy Zim´ anyi School’19, 2-6 December 2019 Supported by the ´ UNKP-19-4 New National Excellence Program of the Ministry for Innovation and Technology. eterKov´acs [email protected]

Upload: others

Post on 14-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hybrid star constructions with effective field theories

1

Hybrid star constructions with effective fieldtheories

Peter KovacsSenior Research FellowWigner RCP

Collaborator:Janos Takatsy

Zimanyi School’19, 2-6 December 2019•

Supported by the UNKP-19-4 New National Excellence Program of the

Ministry for Innovation and Technology.

Peter Kovacs [email protected]

Page 2: Hybrid star constructions with effective field theories

2

IntroductionHybrid stars

Quark starConclusion

MotivationM-R curvesNeutron stars

Envisaged phase diagram of QCD

Compact stars living at T ≈ 0 MeV.

Observation of compact stars can help to understand strongly

interacting matter in medium and investigation of strongly interacting

matter in medium can be used to describe compact stars

Peter Kovacs [email protected]

Page 3: Hybrid star constructions with effective field theories

3

IntroductionHybrid stars

Quark starConclusion

MotivationM-R curvesNeutron stars

Structure of compact stars

absolutely stable strange quark

matter

µ

ms

M ~ 1.4 M

R ~ 10 km

quarksu,d,s

n,p,e, µ

neutron star withpion condensate

quark-hybridstar

hyperon star

g/cm3

1011

g/cm3

106

g/cm3

1014

Fe

n,p,e, µs ue r c n d c t

gp

oni

u

p

r oto

ns−π

K−

u d s

crust

N+e

H

traditional neutron star

strange star

nucleon star

N+e+n

n superfluidΣ

,Λ,Ξ

,∆

Fig. from F. Weber, J. Phys. G 27, 465 (2001)

Peter Kovacs [email protected]

Page 4: Hybrid star constructions with effective field theories

4

IntroductionHybrid stars

Quark starConclusion

MotivationM-R curvesNeutron stars

Various M − R curves for different compact star EoS’s

I QCD directlyunsolvable at finitedensity

I One can use effectivemodels in the zerotemperature finitedensity region

I Neutron starobservations restrictsuch models [1,2]

M − R relations from various models [1]

[1] P. Demorest et al. (2010), Nature 467, 1081

[2] J. Antoniadis et al. (2013), Science 340, 6131

Peter Kovacs [email protected]

Page 5: Hybrid star constructions with effective field theories

5

IntroductionHybrid stars

Quark starConclusion

MotivationM-R curvesNeutron stars

Neutron star models (two flavours)

EoS Name Reference ρ < ρND ρND < ρ < ρ0 ρ0 < ρ Method Comments

BPS Baym et al.

(1971)

B.En.+El.+

Lattice X X

Empirical binding

energies

Commonly used for

low-density regime

HP (HP94) Haensel &

Pichon (1994)

B.En.+El.+

Lattice X X

Empirical binding

energies

Includes electron

screening

NV Negele &

Vauth. (1974) X

Hartree-

Fock X Variational

Used for intermediate

densities

FPS Lorenz (1991) CLDM CLDM np+eµ Density functional Unified EoS with FP

Skyrme potential

Sly Douchin &

Haensel (2001) CLDM CLDM np+eµ Density functional

Unified EoS with

Skyrme Lyon potential

WFF (WFF1) Wiringa et al.

(1988) X X np+eµ Variational A14+UVII

APR (AP4) Akmal & Pand.

(1997) X X np+eµ Variational A18+UIX*+δv

MPA (MPA1) Müther et al.

(1987) X X Rel. Brueckner HF

ENG Engvik et al.

(1996) X X Rel. Brueckner HF

PAL Prakash et al.

(1988) X X np+e(µ?) Schematic potential

Parameterizing E and S

(symmetry energy)

GM Glend. &

Moszk. (1991) X X npH+eµ Field theoretical

Same as the model in

Glendenning’s book

H4 Lackey et al.

(2006) X X npH+eµ Field theoretical

Stiffest EoS compatible

with nuclear constraints

MS (MS1) Müller & Serot

(1996) X X np(+eµ?) Field theoretical

Nonlinear mesonic

potentials

SQM Farhi & Jaffe

(1984) uds+e Bag model

These models are used for the entire neutron star.

BPS, NV and APR are commonly used togetherPeter Kovacs [email protected]

Page 6: Hybrid star constructions with effective field theories

6

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Hybrid star models

Hybrid stars: Compact stars with quark matter in the core.Different approaches in the literature:I BPS or BPS + NV at very low ρBI Some nuclear model at low ρB (2 or 3 flavour): Walecka

model, Parity doublet model, Relativistic Mean-Field(RMF) models

I Quark matter at high ρB (2 or 3 flavour):Nambu-Jona-Lasinio (NJL) model, Linear sigma model(LSM)

How to combine models at low density with models at highdensity?−→ Various approaches exist: Quark-Meson-Nucleon model(QMN) with statistical confinement; Hadron-quark crossoverwith P-interpolation; Energy minimization method; Coexistingphases method; Gibbs construction; Maxwell construction

Peter Kovacs [email protected]

Page 7: Hybrid star constructions with effective field theories

7

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

QMN with statistical confinement

based on: S. Benic et al., Phys. Rev. D, 91, 125034 (2015);

M. Marczenko et al., Phys. Rev. D, 98, 103021 (2018)

Features of the model:I Two flavour parity doublet model with mirror assignment

(N(938), N(1500), π(138), f0(500) (or σ), ω(782), ρ(770))I Linear sigma model (u, d constituent quarks, π(138),

f0(500)), quarks are not coupled to vectorsI Tree-level mesons, one-loop fermions (mean-field

approximation)

Grand canonical potential:

Ω =∑

x∈(p±,n±,u,d)

Ωx + Vσ + Vω + Vb + Vρ

Ωx = γx

∫d3p

(2π)3T [ln (1− nx) + ln (1− nx)] .

Peter Kovacs [email protected]

Page 8: Hybrid star constructions with effective field theories

8

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Statistical confinement with auxiliary field

Concatenation at the level of the grand potential. Nucleonshave to be suppressed at high ρB , while quarks at low ρB

=⇒ Modified Fermi-Dirac distributions:

n± = θ(α2b2 − p2

)f±

n± = θ(α2b2 − p2

)f±

nq = θ(p2 − b2

)fq

nq = θ(p2 − b2

)fq

b is a T and µB dependent bag field with 〈b〉 = b0

b might be associated with chromoelectric part of the gluonsector

Peter Kovacs [email protected]

Page 9: Hybrid star constructions with effective field theories

9

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

EoSs for the QMN model

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800

P[M

eV/fm

3]

ε [MeV/fm3]

αb0 = 350 MeVαb0 = 400 MeV

APRACB4

ACS-I j = 0.1

Chiral phase transition is shown, deconfinement starts at very large

ρB ; Other EoSs are shown for comparison

Fig. from M. Marczenko et al., Phys. Rev. D, 98, 103021 (2018)

Peter Kovacs [email protected]

Page 10: Hybrid star constructions with effective field theories

10

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Tolman-Oppenheimer-Volkoff (TOV) equationSolving the Einstein’s equation for spherically symmetric caseand homogeneous matter −→ TOV eqs.:

dp

dr= − [p(r) + ε(r)] [M(r) + 4πr3p(r)]

r [r − 2M(r)](1)

withdM

dr= 4πr2ε(r)

These are integrated numerically for a specific p(ε)

I For a fixed εc central energy density Eq. (1) is integrateduntil p = 0

I Varying εc a series of compact stars is obtained (with givenM and R)

I Once the maximal mass is reached, the stable series ofcompact stars ends

Peter Kovacs [email protected]

Page 11: Hybrid star constructions with effective field theories

11

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

M − R curves for the QMN model

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10.5 11 11.5 12 12.5 13 13.5 14 14.5

M[M

]

R [km]

αb0 = 450 MeVαb0 = 400 MeVαb0 = 370 MeVαb0 = 350 MeV

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10.5 11 11.5 12 12.5 13 13.5 14 14.5

PSR J0348+0432

PSR J0437-4715

BRP

m0 = 790 MeV

GW170817

Fig. from M. Marczenko et al., Phys. Rev. D, 98, 103021 (2018)

Peter Kovacs [email protected]

Page 12: Hybrid star constructions with effective field theories

12

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Schematic picture of pressure (H-Q crossover)

based on: K. Masuda et al., PTEP 2013 073D01

Pres

sure

(P)

Baryon density (ρ)

hadron crossover quark

In the crossover region hadrons starts to overlap−→ both low and high ρB models loose their validity.Gibbs condition (extrapolation from the dashed lines) can bemisleading.

Peter Kovacs [email protected]

Page 13: Hybrid star constructions with effective field theories

13

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Hadron-quark crossover with P-interpolation

Features of the model:I H-EOS: Two and three flavour hadronic EoSs with

Y -mixing: TNI2, TNI3, TNI2u, TNI3u, AV18+TBF,SCL3ΛΣ

I Q-EOS: NJL-model with u, d , s quarks and vectorinteraction

I mean-field approximationP-interpolation (ρ = ρB):

P(ρ) = PH(ρ)f−(ρ) + PQ(ρ)f+(ρ), (2)

f±(ρ) =1

2

(1± tanh

(ρ− ρ

Γ

))(3)

ε(ρ) = εH(ρ)f−(ρ) + εQ(ρ)f+(ρ) + ∆ε (4)

∆ε = ρ

∫ ρ

ρ

(εH(ρ′)− εQ(ρ′))g(ρ′)

ρ′dρ′ (5)

Peter Kovacs [email protected]

Page 14: Hybrid star constructions with effective field theories

14

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

P(ρ) for hadronic matter for diff. models

ΛΣ

Fig. from K. Masuda et al., PTEP 2013 073D01

Peter Kovacs [email protected]

Page 15: Hybrid star constructions with effective field theories

15

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

P(ρ) for pure quark matter for diff. gV s

Fig. from K. Masuda et al., PTEP 2013 073D01

Peter Kovacs [email protected]

Page 16: Hybrid star constructions with effective field theories

16

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Interpolated pressure

Fig. from K. Masuda et al., PTEP 2013 073D01

Peter Kovacs [email protected]

Page 17: Hybrid star constructions with effective field theories

17

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

M − R curves for hadron-quark crossover model

M/M

M/M

ΛΣ

ΛΣ

(a) (b)

Hyperons make the EoS softer −→ 2M limit not reached

Fig. from K. Masuda et al., PTEP 2013 073D01

Peter Kovacs [email protected]

Page 18: Hybrid star constructions with effective field theories

18

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Energy minimization (EM) method

based on: X. H. Wu et al., PRC 99, 065802 (2019)

Features of the model:I Hadronic matter: Relativistic mean-field (RMF) model (2

flavours, nucleons interacting through σ, ω and ρ mesons,mesons treated at tree-level, additional ω − ρ interaction)

I Quark matter: NJL-model with u, d , s quarks and vectorinteraction

I mean-field approximation

Total energy of the mixed phase:

εMP = uεQP + (1− u)εHP + εsurf + εCoul (6)

u = VQP/(VQP + VHP) (7)

minimization w.r.t. the densities (np, nn, nu, nd , ns , ne , nµ) andu gives equilibrium conditions (under global charge neutralityand baryon number conservation)

Peter Kovacs [email protected]

Page 19: Hybrid star constructions with effective field theories

19

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Special cases of the EM method

I Coexisting phases method: εsurf and εCoul are treatedperturbatively (minimization or Gibbs condition withoutsurf. and Coul. terms) ⇒ PHP = PQP , andεMP = uεQP + (1− u)εHP + εsurf + εCoul

I Gibbs construction: εsurf and εCoul are neglected, σ ≈ 0,global charge neutrality, hadronic and quark phases can becharged separately, ⇒ PHP = PQP , andεMP = uεQP + (1− u)εHP

I Maxwell construction: εsurf and εCoul are neglected,σ >> 0, local charge neutrality, both hadronic and quarkphases charge neutral ⇒ PHP = PQP , andεMP = uεQP + (1− u)εHP

Peter Kovacs [email protected]

Page 20: Hybrid star constructions with effective field theories

20

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

Pressure with the EM method

0.0 0.5 1.0 1.5 2.00

100

200

300

400

Hadron Quark Gibbs Maxwell droplet rod slab tube bubble

P (M

eV/fm

3 )

nb (fm-3)

TM1G

V=0

L=110.8

(b)

Fig. from X. H. Wu et al., PRC 99, 065802 (2019)

Peter Kovacs [email protected]

Page 21: Hybrid star constructions with effective field theories

21

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

M − R curves with the EM method

11 12 13 14 150.0

0.5

1.0

1.5

2.0

2.5

Hadron EM Gibbs

M/M

R (km)

TM1GV=0

L=50

L=110.8

(a)

Fig. from X. H. Wu et al., PRC 99, 065802 (2019)

Peter Kovacs [email protected]

Page 22: Hybrid star constructions with effective field theories

22

IntroductionHybrid stars

Quark starConclusion

QMN and stat. confinementHadron-quark crossoverEnergy minimization method

M − R curves with the EM method

11 12 13 14 150.0

0.5

1.0

1.5

2.0

2.5

M/M

R (km)

TM1GV=0.4 GS

L=50

L=110.8

(b)

Fig. from X. H. Wu et al., PRC 99, 065802 (2019)

Peter Kovacs [email protected]

Page 23: Hybrid star constructions with effective field theories

23

IntroductionHybrid stars

Quark starConclusion

(Axial)vector meson extended linear σ model (eLSM)The Equation of State (EOS)M − R relations of eLSM

Lagrangian of the eLSM

based on: P. Kovacs et al. Phys. Rev. D 93, no. 11, 114014 (2016),J. Takatsy et al., Universe 5, 174 (2019)

L = Tr[(DµΦ)†(DµΦ)]−m20Tr(Φ†Φ)− λ1[Tr(Φ†Φ)]2 − λ2Tr(Φ†Φ)2

+ c1(det Φ + det Φ†) + Tr[H(Φ + Φ†)]−1

4Tr(L2

µν + R2µν)

+ Tr

[(m2

1

21 + ∆

)(L2µ + R2

µ)

]+ i

g2

2(TrLµν [Lµ, Lν ]+ TrRµν [Rµ,Rν ])

+h1

2Tr(Φ†Φ)Tr(L2

µ + R2µ) + h2Tr[(LµΦ)2 + (ΦRµ)2] + 2h3Tr(LµΦRµΦ†)

+ ΨiγµDµΨ− gF Ψ (ΦS + iγ5ΦPS ) Ψ,

DµΦ = ∂µΦ− ig1(LµΦ− ΦRµ)− ieAµe [T3,Φ],

Lµν = ∂µLν − ieAµe [T3, Lν ]− ∂νLµ − ieAνe [T3, L

µ] ,Rµν = ∂µRν − ieAµe [T3,R

ν ]− ∂νRµ − ieAνe [T3,Rµ] ,

DµΨ = ∂µΨ− iGµΨ, with Gµ = gsGµa Ta.

+ Polyakov loop potential (for T > 0)Peter Kovacs [email protected]

Page 24: Hybrid star constructions with effective field theories

24

IntroductionHybrid stars

Quark starConclusion

(Axial)vector meson extended linear σ model (eLSM)The Equation of State (EOS)M − R relations of eLSM

Determination of the parameters14 unknown parameters (m0, λ1, λ2, c1,m1, g1, g2, h1, h2, h3, δS ,ΦN ,ΦS , gF ) −→ determined by the min. of χ2:

χ2(x1, . . . , xN) =M∑i=1

[Qi (x1, . . . , xN)− Qexp

i

δQi

]2

,

(x1, . . . , xN) = (m0, λ1, λ2, . . . ), Qi (x1, . . . , xN) −→ from themodel, Qexp

i −→ PDG value, δQi = max5%,PDG valuemultiparametric minimalization −→ MINUIT

I PCAC → 2 physical quantities: fπ, fKI Curvature masses → 16 physical quantities:

mu/d ,ms ,mπ,mη,mη′ ,mK ,mρ,mΦ,mK? ,ma1 ,mf H1,mK1 ,

ma0 ,mKs ,mf L0,mf H0

I Decay widths → 12 physical quantities:Γρ→ππ, ΓΦ→KK , ΓK?→Kπ, Γa1→πγ , Γa1→ρπ, Γf1→KK? , Γa0 , ΓKS→Kπ,Γf L0 →ππ

, Γf L0 →KK , Γf H0 →ππ, Γf H0 →KK

I Pseudocritical temperature Tc at µB = 0Peter Kovacs [email protected]

Page 25: Hybrid star constructions with effective field theories

25

IntroductionHybrid stars

Quark starConclusion

(Axial)vector meson extended linear σ model (eLSM)The Equation of State (EOS)M − R relations of eLSM

Features of our approach

I D.O.F’s: – scalar, pseudoscalar, vector, and axial-vector nonets– u, d , s constituent quarks (mu = md)

– Polyakov loop variables Φ, Φ with UYMlog or Uglue

log

I no mesonic fluctuations, only fermionic ones

Z=e-βVΩ(T,µq )=∫

PBC

∏a Dξa

∫APBC

∏f DqfDq

†f

exp

[-∫ β

0 dτ∫V d3x

(L+µq

∑f q

†fqf

)]approximated as Ω(T , µq) = Utree

meson(〈M〉) + Ω(0)qq (T , µq) + Ulog(Φ, Φ), µq=µq-iG4

e-βVΩ

(0)qq =

∫APBC

∏f ,g DqgDq

†f

exp

∫ β0 dτ

∫x q

†f

[(iγ0~γ · ~∇- ∂

∂τ+µq

)δfg − γ0Mfg

∣∣ξa=0

]qg

I tree-level (axial)vector massesI fermionic vacuum and thermal fluctuations included in the

(pseudo)scalar curvature masses used to parameterize the modelI 4 coupled T/µB -dependent field equations for the condensates

φN , φS ,Φ, ΦI thermal contribution of π,K , f L0 included in the pressure,

however their curvature mass contains no mesonic fluctuationsPeter Kovacs [email protected]

Page 26: Hybrid star constructions with effective field theories

26

IntroductionHybrid stars

Quark starConclusion

(Axial)vector meson extended linear σ model (eLSM)The Equation of State (EOS)M − R relations of eLSM

Inclusion of vector meson Yukawa term

LYukawa-vec = −gv√

6ΨγµVµ0 Ψ

V µ0 =

1√6

diag(v0 +v8√

2, v0 +

v8√2, v0 −

√2v8)

mean-field treatment

< vµ0 >= v0δ0µ, < vµ8 >= 0µ

Modification of the grand canonical potential

Ω(T = 0, µq)→ Ω(T = 0, µq)− 1

2m2

vv20 , with µq = µq − gvv0

While the field equations

∂Ω

∂φN

∣∣∣∣φN=φN

=∂Ω

∂φS

∣∣∣∣φS=φS

= 0 and∂Ω

∂v0

∣∣∣∣v0=v0

= 0 ,

Peter Kovacs [email protected]

Page 27: Hybrid star constructions with effective field theories

27

IntroductionHybrid stars

Quark starConclusion

(Axial)vector meson extended linear σ model (eLSM)The Equation of State (EOS)M − R relations of eLSM

The EOS of eLSM

I Pure eLSM comparedto Walecka and freequark models

I At low energies the EoSof the eLSM is close tothe EoS of theWalecka - model

I At higher energies ittends to the EoS of thefree quark model

I note: Walecka Int means

LW ,Int = − b3mn(gσσ)3 − c

4(gσσ)4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ε [GeV/fm3]

p[G

eV/fm

3]

eLSM, gv= 0

eLSM, gv= 2

Free quark

Walecka

Walecka (e, ρ), BPS

Walecka (Int)

Walecka (Int, e, ρ), BPS

I In the Walecka models electrons andρ mesons are also included(dashed-dotted lines)

Peter Kovacs [email protected]

Page 28: Hybrid star constructions with effective field theories

28

IntroductionHybrid stars

Quark starConclusion

(Axial)vector meson extended linear σ model (eLSM)The Equation of State (EOS)M − R relations of eLSM

M − R relations of eLSM

R [km]

M[M

⊙]

2 4 6 8 10 12 14 160

0.5

1

1.5

2

2.5

3

eLSM, gv= 0

eLSM, gv= 2

Free quark

Walecka

Walecka (e, ρ), BPS

Walecka (Int)

Walecka (Int, e, ρ), BPS

GR

Rotation

Causalityp < ∞

Peter Kovacs [email protected]

Page 29: Hybrid star constructions with effective field theories

29

IntroductionHybrid stars

Quark starConclusion

(Axial)vector meson extended linear σ model (eLSM)The Equation of State (EOS)M − R relations of eLSM

Changing the gv vector coupling in eLSM

5 6 7 8 9 10 11 12 13 14 150

0.5

1

1.5

2

2.5

R [km]

M[M

⊙]

gv= 0

gv= 1

gv= 1.5

gv= 2

gv= 2.5

For gv & 2.5 p(ε) becomes zero at ε = 0 ⇒ small M, large R

Peter Kovacs [email protected]

Page 30: Hybrid star constructions with effective field theories

30

IntroductionHybrid stars

Quark starConclusion

Conclusion

Conclusion

I Different hybrid starconstructions exist −→current astrophys. restrictions(like 2M limit) can befulfilled in many ways

I The quark–vector mesonYukawa interactions have avery important role in the EoSand consequently in theM − R curves

I Even pure quark stars are notexcluded by currentobservations

Plans

I Different hybrid starconstructions with eLSM

I Better (more consistent)approximations in theeLSM part

I Inclusion of the totalvector-quark Yukawa term,consistent treatment

I Beyond mean-fieldcalculations

Peter Kovacs [email protected]

Page 31: Hybrid star constructions with effective field theories

31

Thank you for your attention!

Peter Kovacs [email protected]

Page 32: Hybrid star constructions with effective field theories

32

IntroductionHybrid stars

Quark starConclusion

Particle content

• Vector and Axial-vector meson nonets

Vµ = 1√2

ωN+ρ0√

2ρ+ K?+

ρ− ωN−ρ0√

2K?0

K?− K?0 ωS

µ

Aµ = 1√2

f1N+a0

1√2

a+1 K+

1

a−1f1N−a0

1√2

K01

K−1 K01 f1S

µ

ρ→ ρ(770),K? → K?(894)ωN → ω(782), ωS → φ(1020)

a1 → a1(1230),K1 → K1(1270)f1N → f1(1280), f1S → f1(1426)

• Scalar(∼ qiqj

)and pseudoscalar

(∼ qiγ5qj

)meson nonets

ΦS = 1√2

σN+a0

0√2

a+0 K?+

0

a−0σN−a0

0√2

K?00

K?−0 K?00 σS

ΦPS = 1√2

ηN+π0√

2π+ K+

π− ηN−π0√

2K0

K− K0 ηS

unknown assignmentmixing in the σN − σS sector

π → π(138),K → K(495)mixing: ηN , ηS → η(548), η′(958)

Spontaneous symmetry breaking: σN/S acquire nonzero expectation values φN/S

fields shifted by their expectation value: σN/S → σN/S + φN/S

Peter Kovacs [email protected]