i- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen z ssed *sysbteue t ssed aq2 pa23a33e z...

124
I-

Upload: lamtu

Post on 12-Dec-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

I-

Page 2: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 3: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

. .

. !i

. .

.

Page 4: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

. .

. b’

. .

. z

. .

* .

. .

. .

. .

. .

Page 5: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

x

Page 6: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 7: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 8: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

602 a%sd

807. as=d

soz ased

.("oysua2/T) 30 sxqeh snorter 103 sod 3' zan~e* paJeTnJTe3

.sy~pym uyq adoxopoq pus s~uars -733aoa szTJdo parl273 aqa %";csn 9.T aq2

x03 ssrJdo aqz 30 suo:JnTosax pawTnaTe3

S6T azed Aa3 9.T aqa aqrxxap 02 pasn smaJsKs

a2euTplo-0s sno~..xe~ aq2 30 s"or2rur3aa

06T a8ed

88T a%d

.uoyaa"n3 aneM mnauamom par-enbs JqJ Us mo33 am03 BuTcisams 02 suoranq

-~3~uo3 aq2 alaqm-snoqs 'dJ "or~s"n3 aqL

',b 3 0 sanTe* s*orJeA 203 Aa 5-z (q pus Aa S-T (B 3" s,~

xndur 103 MJ "o:>="n3 "or~nToiwos aq&

(Pa""FJ"os) SxUl3Id do LSl?

s-a

‘7-a

E-@

p‘5‘qCe z-a

~-a

V-3

q’ge c-3

AX

L8T assd *,b $0 SFJ"T"A s"or3eA .lo3 z-z (q p=e Z'T (e 30 s,(,m ) J*d=l: ~03

“‘J uoy~!3un3 uoyxnTo~"os aq2 30 sqdexs

L8T assd 'p 3OSa"TeAs"o~~Ea 103 z'z (q pus Z'T (E 30 s," xnduy "03

mu "orssun3 "o:~nTo~uo~ aq2 30 sqdelg

9LT a8od *suol23ap Aa OZ pua OT ‘T 103 uo;cJsa;trp s,aTxrxtad mox3 aT%ue ~2: 30 au~sos snsria* ; 30 ao~a

VLT aasd .KsuaFJFg3a uoy~ -3aTT03 JqQT %OZ BuFsn (Jxa~ aas) za2"nos sseT8 peaT e 103 "0:2nTosax sm paleTn3Te3

Eft assd *q2prn x32"nos (q pus qa8uaT ciaJ"nor, (s snszah s"ol~zaTa ~uap~zur *a3 OZ

pus OT ‘S ‘Z ‘T 203 s"o~~e"~3"T3laMoq~

ZLT ased .sn;rpa3 xawnos (q pue qJ8uaT ria2"noz (B snsxan

s"o3~saTa IluapFJu: Aaf) OZ pue OT ‘S ‘Z ‘7 x03 slanoqs 30 Juarnu;eauo2 Te"o~r~~ex~

99T a%sd *"oy2eTn3Tes aq2 "7 papnT3"F uaaq ssq KCs"a73733a "0r~saTTos Jq2T-T

ON *sadKJ SSETB S*O:IEA IO.J ciamoqs ~a3 T e lo3 paxaadxa S"OJ1JaTaOJoqd 30 ciaqu*N

S9T $zed .as"odsax apoqzes -oJoyd dAa pue df,,B moqs aTs3s P"eq-Jq8rri pue

saw eaq=a .(1-g aTqeL aas) eg ‘9 ‘t 61: ‘-2~

saddz ss~T8 peaT x03 sahln3 "oyssymsue~~

t/ST af@d

6PT azed

9'7T a8sd

*,X S"S3aA palaoTd OyJe3 d/N aqJ

'$?I Z'6>Zb>z~a3 6'9 JO3 e3ep uor%U asueuosa~

P-3 2 Z-3

q9= z-3

t-3

9-a

s-a

9’9” 9-8

99” F-8

42

“Z - B

7: -B

T-V

6-A

8-A

Page 9: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 10: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 11: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

_.:.:

._

,:.:.:

.

A -0

II z-

X

., -

Page 12: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

h

: ;:

m

N ”

e II

s:

N R II

+ N 2

N

I %t.l

.

ii N

e N

!-=

Page 13: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

N

II

n

Page 14: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

. /

Page 15: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

t wa .oG --- Y

Page 16: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

Q2

(GeV

2)

0 cn

0

G

\ . -

Iv

Page 17: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 18: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

w

N

Page 19: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 20: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 21: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

P

Page 22: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 23: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

DE 6Z

LV569L ‘Il!ds PY Wk a+mq!gD3 o+ IDU~!S a3uaJajaJ D ano6 woaq

aq( u! lstf 6ug~n.j *pa(JaAu! s! aml+ Il!ds peg

Ino NI IS8 ISkI

Page 24: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

w N

Page 25: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

w

Page 26: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 27: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

9t

'LS'I0890' x(=rsd) d = ('We) d 03 uaq:, pue elsp uoy2sctqyTes 8u:sn

(e:sd) 03 pacilamos sem zaznpsuel2 aql ~013 Burpea~ aSe-)ToA aqL

‘uor~em103u~ aln~e~adlua~ ~a21oz papyAold szzasnpsuel2 amssactd qxTm

sqTnq asag UT alnssald IodnA aqx 8uTlnseagg .sTTar, JaZleJ pFnbrT

ofil aq2 30 q3ea MoTaq pue ahoqe ~oT3 prnb:T aql uy paseTd sqTnq

lode& ua%olpXq dq pa~o~;cuorn alah salnseladuall pynbrT aqL

’ ( -a +a A + 0” ‘damp zJ:Tsa ~0x3

sauos 98/T aq2) 98/T +a2 cj/[ 02 TeuorJlodold ST pTa~1( aq2 s ! *Ii.

IOd ‘SF3781 +a w-e a 011 I(TTmba aznq;=‘luos sassaaold s~l~amtis

a%eqs IaqJo pus I(eaap uord -[spinal -seunueS Xeaap aq2 30 uo~s~a*uo~

manbasqns qarn uogsnpo~d (i

/I_ UOXJ ‘du~s;c~e ~eu%~s uolzrsod

TeaoI) aq2 30 t/T anoqe sasnpold (Ed) Terla>elu 30 lunoue sFqL ‘“TT 3-H

q3 pue ‘TT~M ~~a3 aq3 ‘ztazamo~~sads aq2 pus au?T lueaq aq2 uaafisaq

13F)tiWl AldW3-

BlflE tAOdVA kI3MOl

NW NOllvln3t1l3

t139NVH3X3 lt’1H-b-i-u j t

Page 28: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

6E

=2 (-LzL890000’ - L LL99ooo' + ES8T') =% L L

zL 998EOOOO * - I, ~mooo' + VTLLO' =Hd

:alan pasn say3 aqd '(6-11 '3aN)

saraysuap mnrxarlnap pus uaBo+Cq aq2 qsrTqnd 02 (8-11 -3a~)

s-~y3 ~eyxou6~od %uysn pau:eJqo SBM K~:suap ua8oxpdq aqL *a=n~

-eladmaa z)a%te> aq2 p~ard 02 pa~xa~uy aq ue3 L-II '3aa mox3 uaye~

oI,)L x 56t/8flLTO' +

(+7+lOO'~ + (~,h)/80L60'0s - Z9OOO'Z = (we)d) OTsoT

28'700' 8tSOO'

6StOO' 11500.

c-T44 zoo-)

LTOOO' L TOOO'

( OLTOO'

"qlE'T i

fC6'00'

1. Lt/TOO' m>Lt-1

I 99TOO'

567100' 8ZtOO'

009 00s

( oX)el) ( OX)91

Z a7 sloJE?Tpea

Z Hl P-W-r?

"OrJepl aqJ,

83LBWOBLXIdS AW 9'1 BOJ sxocmavx iI0 mans

Page 29: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 30: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 31: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 32: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

9’7

Page 33: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

_ ---

II --

- --

P < I 0 0”

x i f :

L

Page 34: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

r----

------

------

- -I

I I I

----=

;l---t

- __

I

-+

---I_

--- I I

0 '

-- ~-

e----

-w--

<---

-1-

-+wi

!t 4

1 L-

------

------

--A

11 1

I/l

“27

Page 35: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

D

Page 36: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

&5

*ua%o.~pKy 330 Bu~lar)wJs -JyJseTa 02 puodsarilos saT'lemau?y aq& 'lazunos

*oyuala3 aq2 mo13 STEUZ~S JarTdrJTnrnoxoqd OM~ aqrr 30 mns aqz 30 uoyznqr2Jsyp 3qSTaq asT*d

6-11 '31d

FIs*sl U38WnN 13NNVH3

081 091 Old 021 001 08 09 Ob 02 0

0 0

l

0

.os = g Cl =O3

Q3.0 =,J Ua604I4-4

I I I I I I I I I

ZS

OMJ aq'l mo13 sJq%Taq asTnd aq2 30 mns aq'l 30 uoyanqrzasyp aqz

6-11 '&I UI 'suo.z)~aTao~oqd 9~ 30 aZe.za*e ue pasnpold laJuno3

syq3 Buysza*s22 uo222aTa uv .slarTdyJTnmoloqd ,,(; mopurn zJ)lenb

ow 02210 2qSyT aoyua.za3 aq2 pa8em~ '&3* 8 00~ qaTfi pa2eo2la*o

pue mnurmnTe 30 8 00s~ LTaJemrxoldde qJ?fi paqeos pus papTom

dmnTs ‘a2yanT ,,% moct3 apem 2o~rrn v .a.~nssald ylaqdsomJe rla

aueJnqosr ss~ Ou$TTr3 seti aq,T, .slar)am frz.T 2noqe 30 saTs?Jcted

203 qaed aqZyT3 ait?eza*e ue peq ~3 aqL .ma2sds uoy2sa2ap uozz+

-2aTa aqz dn apem a8eysed VJ, aqa pus .1a3unoa aoyuazas aqL

UT 10 adozraopoq 0 aq3 laqara ur paanpold suozJaaTa uo-ysouy

qlosqe 03 O~~JH-X aq7 30 2~0~~3 IIT paseTd SEM zv& -swo3-d

aq2 ~a paa,ezoT SBM adossopoq d aqJ .suo222aTa uo-ysouy 6q

pasnes smaTqozd uoyl=nlztsuo=a= ~3~12 azymrurm 02 auop ss~ ZX&

pue sadoJsopoq aqa 30 laplo 8u~y~eas aq& .suoyJsas 550~3 aq2

%uy>eTnDTss uy pas" aznxlade aqa urqarrn aq 02 aua*a aq3 paur3ap

ZXL mol3 T~U%S v 'VT-Z SuTq fj pue 6T-z surq d palahor, rr1

.aln>lade a%eyaed laJuno= aq'l pauT3ap ~o~eTTy2uyss Z~J. aqL

'(sap03 pue Burying - ITT 'deqs aas)

uoy2smlo3uy u:q aszteo2 aq3 Bu:sn pa*Tosal aq pTnos szua*a

,,JeTs aTdVTnm,, aq2 30 %CL LTa~am~xolddB Jnqa pun03 s~fi 11

eadozsopoq 8 aq2 30 Buyuuyq T:E a*& (IOJBTTJJU~X 2rqseTd ,,z+

'oaoex) ado=vov-x =u .or~e~ q~prs urq T:, e qJ?rn ado>sopoq

d aqz 02 paqszem SBM (OaoH-3) adorrsopoq sseT8 qd aqL -marl2

Page 37: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

CO

UN

TS/4

C

HAN

NEL

S (X

IO

-*)

4 Ha

rdwa

re

Disc

rimin

ate

r

l

l

l

+

Page 38: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

.%uruunci uonl3aIa 103 %0-z uzq-) ssaT sdefile pue

xz.0 2noqe LIIensn sem qyqfi apem swi e~ep aq2 02 uorz2accior, B

sarnJ3 peap ow asaqq mold '3asu 01 qnoqe aq 02 pun03 SBR amy peap

zm au .loJwyrnTlJsyp 1113 aqz OJU~ 8~~08 sasTnd aq2 30 sqdezh!

-oaoqd adoJsoIITsso %uruTmexa bq pamlr3uo= se& auamalnsaam s%qL

*y3uap srq3 103 am?2 peap aasu ~'EE d~a~emyxo~dde

paz,oJypuy uoy~em~o3u~ ztaIE5s 2'13 aq3 q2Tfi pauTqmo2 uaqfi am72

peap 838x3* srra~e~s amy psap ~'1~1 aqa 02 s1r3 auTT JqZ@eJJS

.zaq2a%oz pappo aq pT*oqs sarnrq pnap zyaqa (maq2 uaanaaq

azel azuaprsuros poems aq2 Xq pale2Jsuomap) 7.13 uy asoq2 03

pa2eIacilown acre z~3 uy s~eu%ys aq2 30 worn asurS -2asu 08T

02 1120 sarnyq peap pax?3 Buraeq slo~suymyzssyp Telaaas dq amw

paap 203 palwruom alaM 173 pue z.i2 q3o9 'asT"dJL.0 se q%Tq

se payseal saae= asaq2 pue‘hy~e~od puo ,a uo Juapuadap azaM

sa3e1 ~o~euyrny~3syp ~3 aqa aTyqm XI)TzfeTod pue ,a 30 Juapuadapuy

l)sornTe aslnd/E.o ~noqa ue~ X~~ensn s~o~euyrny~~syp JJ aq&

.paJsadxa ST aq2 poap ssyuozlsaIa ~st?3 aIJJTT ‘auam?ladxa

artyaua aqr, ~03 rno~ ha* alaM sa~)o~ zv.Kl pue TV&Cl aq2 Sg

~pa~~n~~o cca?Brlq aqa 30 sue aqrl 30 au0 uy suoy23un3Tem

uaqm Jda-Jxa -Juaasysuos aq-02 pun03 a~amsuorz3a~~o3 auo-la*o 11~

.uoy2,euuo3u;r ctaTe3s puo Be-~3 8ursn pa22nzrisuo3 aq ues sloase3

suoy2sallos auo-Ia*0 laqao Kuam ‘asctno3 30 .palnsaam SBM sauana

passrm 203 uoT22azloz auo--la*0 ue ‘~~.ao/~~.rro oTle2 aq2 8urs" bg

.asTnd maaq qsea 30 %u$uuT%aq aq2 JeJasal SBM 2rnXyJ XI,XI

Page 39: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 40: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 41: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

z9 19

aaerzdas OK) alaqM 68-3 se qJns IluamyCadxa Tenp e UI

*)uamdTnba aqr, 30 %uyuoyasun3 aql ~or)y~om szaauamrladxa aq2 dIaq

02 d~a~ey~dolddo paaepdn pue paloas alaM unl %uTaq au-~1 azywa

aq2 103 mnlaztads sswn lu~ssy~~ e se TTafl se 8uyrlas la>amozasads

aq3 103 suoyzsas ~~0x3 lawnos snoTleA *srsi(~eue auyIuo ue uuo3ctad

02 qyq~ ~IJ~M sqqE??aq asTnd azmpxeq aqa 30 suoyxeuyqmos 1eauy-r pamJo3

puo sme~8o~syq aq%Taq asInd snorzah apem ctaandmo:, aq& *apem aztan

sadw BIISP 8~ 30 ~~02 v *sysd~eue auyT33o Juanbasqns ~03 adez

erlap Ida 008 ‘YXU-L a3om JalndmoD 00E6-sax auww aq,z

*puny amos 30 JSIZIJ,, paJsadxaun UE Xq parleuymlal unl 3uo-I:

E uo e~ep 30 sJunome a2zce-l: 8uyso-c ~lsuye?Be 3aaJold OII pasn SEM

JdaDuoD ssasal syq& *auqJ ~eqrl me unct e~ep aq2 pua 02 JuamdJnba

aqa mo~3 uoy2mn203uy q%noua paznaas qs?qfi ,,ssa5az,, B au-Fanp

saznuym 01 haha lazndmos aq3 dq peal alam asaqJ *bayzedeD a2e-z

aupmos zm 00~ q3-p~ szaIe2s ,,purw,, mm alafi =v=s aw

*larllaq sn paalas aneq pTnoM sJyun asaqa 30 uorqezado

ssaT-amyJpeap pue‘saJect q%rq qa:fi sma1qold salelauaIl ‘as~no~

30 ‘ STYJ, *XTTeuccazuy Dasu f OII paddy-[3 alax pue Tsu%rs anduy

aqrl 30 a%pa 8uTpea-l: aq2 330 paIT sr)yun asaqz uy szo2euymylJsyp

Page 42: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 43: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

99

r)s=r3 aw *yews IaT)uno3 aq3 q8nolqJ passed uoctz=aTa UB uaqt% pa2

-eTallor, 6TqaTq alaf4 str?uap aqr) 30 dum ‘alouuaqJln~ * (ZVL Pue

tvL. ‘7qap avmm ‘33at anmld ‘~2 aqr) UT Se) 33.lnos 2qaTT ames

aqa pamara saqn-)oaoqd OMJ ‘ST 3eqJ ‘Xlel)uamaTdmo3 SeM uo~~em~io3u~

Jqaraq asTnd aqz 30 aluos ‘V-mLa q3ea 103 (SHd) SpU%TS Jq8pq

asTnd 8T paanportd dnJas TeJuamyladxa aqa UT sciaqunor, aqL

SISA’IVNV LH313H 3SXld

*AI laxdeq3

ur passnssrp ale ‘(auy3un03 uol-JsaTa ueq~ laq30) Teauamy

-ladxa pue Te3yzaloaqz ‘suoyqDallo3 %laadeqD sTq2 uy passnasrp

aq TTTA z ssed pue T ssed UT sJuana aqrl 30 BuTssasold aqL

‘1 SSed

qaTM aTq?a=dmoa splenyaeq ala& smeBold-qns z SsEd aqa 30 TTV

‘am73 lalndmos 30 saJnuym f PUP T uaamaaq palrnbal XTTensn qoF

laqndmoa 30 ad& syq~, ‘TahaT z ssed aq2 2e s23a33a sywma2sLs

Luem 30 aurwaj dsea ~03 apcm syqL *adXJ za%w pue ‘3 ‘0 ‘,a

‘laqmnu un2 dq paur3ap sun= aql TTE 30 aasqns iCue 30 uorwua2e:,

--uO3 103 PaMOTTS W3laOJd %UppSaS X,E?p aqL *sarnFz Kue~l pa)eadaa sen

Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2

-euuo3uy se Sam?2 aaT auop SEM T ssed *ssem %uyssym uy pauurq

suoTI)aas 55013 aurT dq auyT aq3 asnpocfd 01) z ssed uy PaJeulmTnr,

sarpnzs asaqL ‘s,SHd aq2 uo sayauaysr33a ,,Jn3,, pue sarXIar3r33a

8uyyXlJ aurmlaaap 0~ qno paylIar, alafi sa?pnJs paTreqap Xuem

‘ySTp uo alaM szuana aq2 aauo .(%uruurq adoasopoq) uoyJemlo3ur

lnw t f

pua ZaZlw dsdma ?xmqns) ‘suoyvas sso13 EnTlaanap pue uaaowkq TCeur3 sauTT

02 ,=J pue 3 lad elJsads g aqrl paanpag 6 aanuw 7 E

.qo[ %u:zyl=mmns rlndano laded *suoT7sas 55015 ssem auyss-Fm 30

an3 ysra .aurJlas qxa 30 Kcmmnns uT'FJo13TH *suoy2aalloJ Twuamyladxa

TTe aUpnT3U~ elJ3ads ssm auyss-Fm palnsoam paDnpold unl Teu73 :zndrlnO

*SaSSETJ SHd 0JU-F UOpallp3 an3 %uyuyqmo2‘say3uay3T33a In3 :SHd sun1

*sasseTr, sapo:, 02~~ KpnJs Te3rdKJ

sap02 8uTuTqmo3 ‘saysuayar33a :au-F?5=lL sa7nuym 47-T

*aJaTdmoJ *Ta*aT syq2 r2 auop sy3dTeuc paT:eaap 2soZ4 XOOT smog S'T Z

*qoC Burzrlommns Jndqno laded *unl q3ea 30 dlwnmns mTT3olJTx * (auaha Xq JuaAa) 3as ‘e~ep ysxp TSSvd :andrlno

‘S3JUO1II -3aTa ‘la~amol~~ads‘~a%le~ :JOJ~UO~

‘ZVL Pue TVL‘I?IIN‘L.U‘L~ %uWaT ‘auyu-Fqrno2 ‘suo~J5alJoJ uoyzrsod :SHd

2uaAa q3ea pau%ysse sapor, pue $‘e‘d anbrun :aU?FlL x005 slnoq g t

Blvmns SISIWNY SLNBAP 3~1~ 83Lnao3 SSVd

‘FDGH3S SISA’IVNV

T - III 3%TvL

Page 44: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 45: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

69

OL

ZV,T, Pu= (TV&T, pus CIVX3Nd uaawaq paJa3oT 2azuno3 ,,K2rYTdyJTnm,,

aO7E~T:lU~3S JT-JseTd ,,T) ,LT~ aq2 30 swnome TTsms I)eqJ puno3

s&Y 21 .paJaadxa se SqIlaUaT uor2aype~ iraq'l 02 papuodsazio3

a-u ‘TvL:(ltrtlmd:msf) ~03 ~:E:T suo?qlodold aq2 pt?q sJua?3y3

-3ao3 u0~2-gppe SS’STa TemTz$do aqq (2qaraq asTnd aUy2-FU0T mnmruy

a%ElaAe amES aqJ aAT 02 SSETa 30 UOyJ.3SS qsea IDOl3 TEUap

qaea 30 Upa aqa asncpe ‘*a*?) Juam8as qwza moi3 SpUap aUpp0r

mnmTuy aq3 aJuaia3a2 e SB aUp00q3 -UO~lnTOSal pOOa JO TT?Uap

Teur3 e uyvqqo 02 KTleaurT zaq2a802 pappe aian y~er)s VL aqz 30

S,SHd aq2 paA%rlap KTsno$aald eTnrmo3 uo~Jeuyqmo3 aql 2QKTdd-e Kg

*msV~ ‘-[EUaJS uoyzdiosqe K%xaua Te~ol e 103 Jdaaxa SJSXTeUe aq2

uy asn 103 Kpeal aian SpUap aqz 30 qsorn ‘a%ew syq~ 3V

*sasarq auapuadap uorrlrsod snorlnds

azrm?urm sclqt%lzaq asTnd ,,pauaJaoT3,, asaqJ uo sJn3 *uoyqrsod 02

al\grsuasur saAln3 uoyJsurrnTlssyp apem pue actnrliade alywa aq2

SSO~LXS uoT'lnTosa= aqz pah0ldrn-g sTqL *%oZ papaaaxa la&au suor~

-591103 asaq& *s~.sKyzun iaqJln3 alo3aq SpIEQS 2q8yaq SSTnd aq'l

ozur STeymouKTod Jue-)Tnsal aqa apy&Jp 02 uaqz pue saleuyplooz $

pus ‘A ‘x aqq UT sTaTmouKTod 0~ sla3Uno5 aq2 30 SU0yaSl 3uaxa33rp

mol3 suoyanqylzsyp aq-J 30 sueam aqa 2~3 0~ SEM alaq poqlam aqL

-saasuypzooa $I pue ‘k‘x pactnseam aqq 30 Juapuadapuy asuodsal

zaztunor, T.e=rzuapr 02 asoT at& K%caua ames aqa 30 suolaaa-ja

Jr?qJ alnsua 02 uorJrsod 103 paJsallos uaqa alaM s,~~d aqL

-aaWS STq3 2~ SHd aIaUp

e ayem 01) paurqmoa uaqs PUB Jy%raq asTnd a8ezaiz amas aq2 a*eq 02

PaasnCpe am3 mw we awed aqrl no13 s,sHd wSrz pue 73aT aw

osTV *eTztaJrlD asay Bul;K3s~~es sJuana BE Jnoqa qly pa3ueTeq

SBM lyzd q-Jea ‘K~pqdK~ *(sqaa33a alnqzcade snorlnds p~.oae 02)

uo:Jsanb UT ia3uno5 aq'l 30 zta2uaB aq2 30 (,,Z Jnoqe) surq adossopoq

on3 uJq2JM TTe3 01 pua sado3sopoq aqz 30 qma UT 3~~s adozsopoq

au0 KTuo pal:3 aAeq 02 ‘ssam uoJozd aql 30 AaH ST u~q3J~ ssem

Buyssrm e aneq 02 pal;rnbax alam sJuat,a '(T-T aTql?J, aas) poTlad

0 %uyyea e~ep 1ls1:3 aqq 30 pua aqz rzau uaye2 sun1 yead JTJseTa 3

mot (s2uana ~05 Jnoqe) 5’3~~s~~e~s qarq aqz UIOJJ aTdmuss uol23aTa

alnd -)somTe ue %uysn pamzo3zcad SW uoyJeuyqmo3 qaea 30 uoytezymy~dg

'ZVL PUE ‘TVL ‘IIVX3Xd 3q8T1 pus Il3aT aq2 ‘Xl aq2 mol3 ST8UaP aqn2

-oaoqd 30 sIred g‘V TTB aurqmos 2~1~3 02 SEM alnpasozd aqd

*maTqold aq7 owy r)ndur

Cs, Fr a aw 30) s,sHd aql 30 sluamom puosas pue Is173 aq2 30 a3ua2

-syxa aq2 pamnsse KTuo abeq afi SE TeE3Ua8 a-Jrnb ST aTni sTqL

'('3 aq3 azyTemctou 02 uasoqr, aq ue5 aeqr, raqmnu B JsnF ST sT.ql

sasrpur pazeadactun ou a18 aciaqJ awrs znq c(ms m3juCd u3 '3) = 'N

‘YC ,j 30 xrlJsrn aqa 30 aslanur sy c alaqm s ,-("d) 'N = '3

ErCr C?FJ s s 3 3- d 3 3

Page 46: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

CO

UN

TS/2

CH

ANN

ELS

(X lO

-2)

CO

UN

TS/3

CH

ANN

ELS

(XlO

-2)

CO

UN

TS/3

CH

ANN

ELS

(X lO

-2)

0 0

g 0

g 0

P m

ru

a,

0

0 s

: 8

0 z

-_ = =

---

-

2

‘: C

OU

NTS

/2 C

HAN

NEL

S (X

lO-3

) C

OU

NTS

/2 C

HAN

NEL

S (X

IO-‘)

C

OU

NTS

/2 C

HAN

NEL

S (X

10-‘)

N

0

N P

m

m

0 :

g 5

Pi

o g

g g

0

-- -

i; -_

-

-- --

= E

*=

-=

-=

= =

-I-

==

<-

Page 47: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

-< fi

, 2

-FFT

CH

ANNE

L N

UM

BER

t----~

----.-

---l--

--~---

-v~

. . .

2.

..*

. . - CJ

-

.

b)

elas

tic

scat

terin

g of

f hy

drog

en

for

E,=

1.5

GeV

, 9

= 50

0,

El=.

96

GeV

.

Scat

terp

lot

of

TFT

vers

us

TAl

for

a)

deut

eriu

m

run

at

E,=

19.5

G

eV,

0 =

60°,

E'

= 1.

196

GeV

. (T

his

setti

ng

had

the

larg

est

n/e

ratio

an

d wa

s =

25O

O:l)

.

Page 48: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

CT

CHAN

NEL

NUM

BER

.

A

o-

. . .

.

-- .

. . .

. .

.

. *,.

- .*

::.

. .

b)

elas

tic

scat

terin

goff

hydr

ogen

fo

r E,

= 1.

5 G

eV,

Cl =

50

0 an

d 12

' =

.96

GeV

.

Scat

terp

lot

of

CT

vers

us

TASU

M fo

r th

e sa

me

data

sh

own

in

Fig.

III

-3

afte

r th

e TF

T an

d TA

l cu

ts

have

be

en

appl

ied.

Ag

ain

a)

is

deut

eriu

m

for

E,=

19.5

G

eV,

0 =

60°

and

E'=

1.19

6.

COUN

TS/2

CH

ANNE

LS

1

Page 49: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

COUN

TS /

3

CHAN

NELS

” 5

0 5

N w

5 0 Tii

0

I I

I 11

111~

I

I I

lllll~

I

I III

11 1

I I

I111

111

I I

I Ill

ill

I 1

Illll

l- -L

Page 50: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

‘/LO-O 850’0 44R’O 5L6’0

9I.O’0 1:90-o L5H’U RCh’0

YLO’O Yt16.0

CRO~O C96.0

760’0 696-O

201’0 116’0

890’0 258’0

ELO’O L98 ‘0

6LO’O ZL8’0

780-o ‘1L8’0

OTT’0 626 ‘0

6tT ‘0 576.0

ICT’O 056’0

171’0 256’0

TSI’O 6E6 ‘0

191’0 9L6’0

ti8T ‘0 T86 ‘0

8GT ‘0 ‘iH6‘0

9TZ’O 596 ‘0

E7Z’0 186 ‘0

ORZ’O 986-O

7TE ‘0 L86 ‘0

91.1‘0 770-O LYO’O 660’0 191’0 LSO’O ZS6‘0 878’0 926’0 LS6’0 L96’0 258’0

9Sl'0 696'0

770’0 ELO’O 001’0 WI’0 C98’0 ZV6.0 4Lh’O 086’0

L40’0 L9ct.O

+?81'0 4L6’0

8’10’0 080’0 ZZI’O STZ’O 898’0 8’16’0 086’0 986’0

Z90’0 ZL8’0

111’0 Li6’0

050’0 580’0 ILT’O 77Z‘0 OL8’0 046’0 286-O L86’0

990’0 VL8’0

L80’0 6Z6 ‘0

460’0 476’0

701’0 T46’0

TIT’0 LS6’0

421-o 687’0 096 ‘0 Y96’0

5FI ‘0 7lZ’0 LL6’0 C86.0

Zll’0 8’12 ‘0 L86’0 886.0

+I91 ‘0 6LZ’0 986.0 686’0

ST

OX

4

?

01.0’0 OVR.0

5:.0-o ow - 0

LW - 0 Z98’0

150-o UZ6’0

iSO’ ‘ll.6’0

4 ‘X1 . 0 776.0

180’0 OLl ‘0 r.70’0 OLC’O 901’0 667 ‘0 s40-0 Z60’0 BET ‘0 612’0 i:46’0 8<6’0 E48’0 ZE6.0’ 756’0 696’0 LS8-0 SE6’0 956 -0 TL6’0

880’0 OLb’O

970-o 5LO’O 898’0 9’/6’0

OEZ’O 640’0 001 ‘0 9'/T'0 192’0 986 ‘0 ZLB-0 IS6 ‘0 786‘0 886’0

001’0 'JL6.0

861’0 4L6’0

ELZ’O 086 ‘0

hfO’0 ZL8.0

t/80*0 ‘/46-O

SIT’0 186’0

OCT’O L86 ‘0

071’0 686 ‘0

OLZ’O 490’0 OTI’O V91’0 LOE’O !66’0 LL8‘0 LS6’0 686-O C66’0

001-o liL6’0

ILZ’O 286’fl

z40)‘0 4L8’0

680’0 946’0

6OfI.O 850.0 R[T’O LLI’O w?L’O 266.0 6L8’0 646’0 T64’0 ‘166’0

110’0 LS8 ‘0

9LO’O ZL8’0

L80’0 LL8’0

880’0 6L8’0

9Tl.O C3T ‘0 641’0 X6 ‘0 596 ‘0 OL6’0

9zt-0 IS6.0

6ET’0 956-O

462’0 986’0

Z7C’u Kh6’0

6VT’0 856’0

LL.[‘O Z86’0

86T'O L86’0

4‘[Z’0 cl86 ‘0

L8E’0 766’0

110-o 1’,(1’0 Z60’0 LL.I ‘0 C7O’lJ TLC’0 601’0 802 ‘0 LSO’O Vi8‘0 ‘/Z6’0 L46’0 C96’0 L48-0 L’ib-0 696’0 ‘116-O 198-O

940’0 If6’O

Oh0 . 0 4/6’O

ZOI’O 160-C

111’0 C86’0

LO?.‘0 LhO’O 8LO’0 6IT’0 172 ‘0 190-o 086’0 ZLB’O ES6’0 (86’0 166.0 9L8’0

460’0 076’0

COT’0 956-i)

Z90’0 Lf6’6

472’0 466’0

050’0 980’0 fL8’0 656’0

E8Z’0 190-o 711’0 966’0 TRB’O 256’0

E8Z’0 986 ‘0

ESO’O ZhO’O 6LB’o 196 ‘0

‘ICI’0 166’0

771-o <66-o

7ZE’O Tf.0’0 ZZT ‘0 f66’0 L88.0 ‘196’0

6’it‘0 IL6’0

1CI’O 686’0

01t ‘0 966’0

‘78’1’0 Y66.0

17Z’O 9L6-0

LLZ’O U66’0

EZC’O 166’0

L5E’O 866’0

trLO’0 198 -0

6LO’0 9L8’0

580’0 T88’0

ZhO’0 tn8’rl

721’0 6E6 ‘0

ZEI ‘0 ss4 ‘0

[LI’O ELZ’O oL6’0 ?L6 ‘0

982’0 ZTE’O 886 ‘0 I66 ‘0

S’/K ‘0 802’0 79c-0 096 .O t66.0 566’0

9’;T’O 4ZZ’O 607’0 ZYb’O 7 6 6 .O 966 ‘0

SEO’O 090’0 960’0 Z98-0 Str6.0 086’0

LEO-0 950’0 601-O L98’0 046’0 986-O

68T ‘0 896’0

ozz -0 986-O

09z-0 T66’0

6’10’0 SL8’0

ESO‘O 088’0

9LO’O LXX’0 EZZ’O 0V6’Oa?L6’0 6L6’0

E80’0 LZ1’0 LSZ’O

cl LS6’0 166’0 966’0

160’0 771’0 ZOE‘O 296’0 L66’0 000’7

0+10-O OLO’O 8IT’O 662: ‘0 950-o L60’0 SS1’0 WE-0 698’0 ES6’0 886’0 266’0 288’0 596’0 666’0 000’1

8LO’O E98’0

‘180’0 6L8’0

260’0 888’0

860’0 S88’0

07

IET’O 881’0 661’0 09 I 216’0 fL6’0 6~6’0 C7T’O WZ’O 07C’O 3

04 8S6’0 766’0 566’0 1 951’0 8tZ’O CGC.0 0

0, ,-,

OE oz 01 3 c LJL

01 e IVL

090'0 E98-0

E90’0 618’0

110’0 t-88.0

SLO’O 988’0

ZOI‘O TST’O T9Z.O E36’0 9f6-0 786’0

OTT’0 991’0 862’0 096’0 E66’0 866’0

L’IE’O 000’7

OET’O 66T.O E6E’0 L96’0 000’1 000’7

S70’0 098’0

ST OZ sz

z- III X?BVL

Page 51: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

equal to (1 - Cr) previously defined). The boxed-in elements

indicate our choices for "optimal" n/e separation points in order

of decreasing electron detection efficiency.

Six PHS classes were selected and are summarized in Table

11-I-3. A test of the analysis procedure is how invariant the

cross sections are to PHS class. Over the six classes the cross

sections were usually found to vary less than 4% absolute while

the detection efficiency varied by over 20% from the different

PHS cuts made.

TRACKING AND CODES

The first task in analyzing a hodoscope system is to assign

a unique slat to every event in each hodoscope. The backup coarse

hodoscope on the p-8 slats proved valuable in analyzing multiple

slat events. For example, in an event consisting of a cluster of

hit slats along with a single separate slat, we found that the

backup hodoscope information favored assigning the event to the

single slat as often as to the cluster. Events requiring the coarse

hodoscope information were called "saved" events. Four hit patterns

were recognized and classified: 1) a single slat, 2) two adjacent

slats, 3) two slats separated by one blank slat, and 4) three

slats with one imbedded blank slat or four adjacent slats. Each

event had a tracking code (numbered O-8) assigned to each hodoscope.

Odd code numbers (1, 3, 5, 7) were given hodoscope patterns that

didn't require saving and even numbered codes (2, 4, 6, 8) were

the corresponding codes for saved patterns. The code number 0

TABLE III - 3

PHS CLASSES

CLASS CT TFT

I 30 10

II 40 20

III 50 20

IV 60 30

V 60 40

VI 60 40

MULT TAl TASUM EFFICIENCY (TYP)

- 10 95 .998

- 15 95 .980

- 20 95 .969

- 25 95 .910

15 25 95 .792

15 25 100 .771

The Table shows the various cut conditions selected for optimal

A le separation.

All cuts pass eventswhich have a pulse height signal greater than

the value shown. Class II is our choice for the analysis class.

80 81

Page 52: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

HODOS~OPE PATTERNS referred to the case where no slats in a hodoscope fired. In Fig.

111-7, typical hit patterns and their code and bin assignments are

shown.

As the Y-hodoscope had no backup coarse hodoscope, optics infor-

mation was used to project an allowed hit range for the +40 mrad to

-50 mrad slits at the spectrometer's entrance. The events resolved

in this manner are the "saved" events for this hodoscope. If no

Y bin showed a hit, the event was assigned a random 6 angle that fell

within the acceptance.

Different tracking criteria can have different r/e mixtures.

Multiple TT events can masquerade as electrons but have a high pro-

bability of giving bad codes (multiple tracks). To examine this, we

first selected events in the analysis class passing the TFT,TAl and CT cuts.

If the event fell above 95 in TASUM it was called an electron and

below 95,a pion. Table III-4 shows p codes vs. 0 codes with the

upper entry being the fraction of PHS analysis class events with those

codes, and the lower entry the a/e ratio.

One sees that the n/e ratio is large away from unique single tracks

i.e., the (1.1) box. On the basis of Table 1X1-4, six code classes

were established of increasing track quality. These are summarized

in Table III-5,whichshows the code class (l-6) assigned to each (P,6) code.

The efficiency for each code class was fit to a second order polynomial

in the counting rate of the APE2 coincidence (a coincidence between the Y

hodoscope, the X hodoscope and TR2), and of the TR2 counter. This tracking

efficiency correction was calculated for each run and applied to the

s1.a; Bin 12 Bin 11

CODE 3 CODE 4 x I 20

-1 1 xx x xx

llllliiiillliiiiiii~ to Two Adjacent Bin 15 or 16 Bin 5 or 6 Slats (Randomly Selected) (Randomly Selected)

CODE 5 CODE 6 x

1 I I 1 I I

'7 x 20 1 XXX 40 Two II -1 Slats Separated Bin 8 Bin 15

CODE 7 CODE 8

Three 1 :.x Y. 20 -1

1 1-1 -YG XYXX

Slats and 1 Bin 7 - 8 Bin 3 zl"ts (Randomly Selected)

ALL OTHER PATTERNS WERE CONSIDERED UNRESOLVABLE

AND LABELED "ZOO EVENTS"

FIG. III - 7

83 82

Page 53: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE III - 4

1 P

e Code ~--+

1 2

0.8176 0.0394 0.0125 0.0007 0.1770 0.4893 0.5532 1.6667 0.0403 0.0041 0.0017 0.0002 0.6839 1.9032 2.6154 5.7500

0.0354 0.0032 0.2900 1.1389

0.0032 0.0004 0.7917 2.7000

0.0018 0.0002 1.5000 2.0000

0.0003 0.0 1.1429 3.0000

0.0012 0.0001 1.7308 4.5000

0.0000 0.0 7.0000 1.0000 0.0004 0.0 1.1250 5.0000

0.0001 0.0 4.6667 3.0000

5 0.0083 0.0008 0.7433 3.1111

6 0.0004 0.0001 2.5556 3.0000

7 0.0027 0.0004 0.8226 2.6667

8 0.0050 0.0002 1.5893 3.2000

p 0 C 01 d e 2

1 3

4

5

6

7

8

>8

3 4 5 6 7 8

0.0048 0.0004 0.7706 1.1000 0.0017 0.0002 2.8462 5.0000

0.0012 0.0000 2.4643 8.0000

0.0001 0.0000 5.0000 8.0000

0.0006 0.0 3.5000 6.0000

0.0001 0.0 2.3333 0.0 0.0002 0.0000 3.6000 4.0000

0.0000 0.0 8.0000 0.0

0.0004 0.0080 1.4444 0.4667 0.0001 0.0003 7.6667 3.1429

0.0001 4.0000

0.0000 4.0000

0.0001 3.5000

0.0 4.0000 0.0 9.0000

0.0 3.0000

0.0004 1.2500

0.0000 8.0000

0.0001 2.0000

0.0 1.0000 0.0000 5.0000 0.0001 5.5000

TABLE III - 5

0 Code ---.-+

0 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

1 6 5 5 3 4 3 3 4

1 4 2 2 2 2 2 2 2

1 5 3 3 2 2 2 2 2

1 4 2 2 2 2 2 2 2

1 4 2 2 2 2 2 2 2

1 2 2 2 2 2 2 2 2

1 4 2 3 2 2 2 2 2

1 4 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1

84

>8

1

1

1

1

1

1

1

1

1

data. The analysis stream used only events with code classes 4-6.

The average efficiency for electron data runs was 98% and never

lower than 94%.

ACCIDENTALS

Random master trigger coincidences were created by splicing the

TAlD trigger CT signal together with the rest of the information from

the TA2D trigger. These events were uniquely tagged by the trigger

flags (ORT false and ORA true). Each accidental event that passed

the analysis class criteria (PHS classes 4-6 and code classes 4-6)was

used to decrement the missing mass histogram and final TASUM PHSplot

by 1.176 (this factor is the short spill correction). The accidental

rate was highest for the cross section measuredoffdeuterium at

60 degrees, 19.5 GeV incident. For those settings the number of

accidentals that was subtracted from the analysis class sample amounted

to 2% of the total. For the bulk of the data the percentage contri-

bution was much less than 1%.

OVER-ONE CORRECTION'

We could accept at most one event per pulse as the electronics

had only one set of PHA's and flag units. As counting rates on the

main trigger, ORT, were very low (usually less than .Ol per pulse)

this was not the source of much data loss. Missed ORT events were

corrected for by using the ORTK scaler information. Missed accidental

events were corrected by using the TAZD scaler and a count of the

number of TAZD events read by the computer (gotten by counting events

with a TAZD flag set true). These two over-one corrections were

85

Page 54: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

combined in a single correction consistent with the decrementation

scheme explained in the last section:

ORTas (ZEK cp ) - 1.176 TA2Das (TA2Dsc ) Cl = SC: = sfc

ORTas - 1.176 TA2Das

where subscripts as = analysis class event count, sc = scaler

event count, sfc = software flag scaler event count, and the 1.176

is the short spill correction (previously mentioned).

EVENT BINNING

At a particular setting (same Eo, E', 8, and target) there are

20 p bins x 15 B-bins into which events can fall. As a TR2 signal is

required of all events, the p-bin range is limited to 2-19, and the

9 bin range is limited to 2-14. The maximum+ acceptanceis set by the

fixed slit at the entrance to the spectrometer. We required that

-60 mrad < Q < 50 mrad as reconstructed from the hodoscope informa-

tion. Typical p, G and 4 distributions are shown in Fig. III-B.

The solid line on the $J distribution is a Monte Carlo prediction

based on the 1.6 optics (see Appendix D). Similar predictions for

p and 8 were not made as real events are not expected to be uniformly

distributed in p and 8. The solid angle for each of the 234 p- 0

bins was calculated using a Monte Carlo program and stored (on disk)

for both 50 and 60 degrees. Bins of constant missing mass cut across

the p-8 plane diagonally. A particular p-8 bin is included in a mass bin

if its center falls inside the boundaries of that bin.

t

P Hodoscope 1000 Distribution

800 z m ;; 600 5 3 s 400

200

0- I I I 4 8 12 16 20 4 8 12

800

0

P BIN 8 BIN

I I I I I I

Reconstructed + Distribution

- Monte Carlo Calculation

-60 -40 -20 0 20 40 60 4 (mrad)

FIG. III-8

Hodoscope Distributions

16

86 87

Page 55: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

The data were taken with overlapping momentum settings of the

spectrometer. This "scanning" was done by lowering the momentum

by one third of the total momentum acceptance for each new setting.

There results a high degree of overlap among the settings comprising

a line. The "counts" (number of electrons) and "weights" (the solid

angle, correction factors, incident flux, etc.) for each missing mass

bin were concatenated over the entire line and subsequently stored

on disk.

RUN WEEDING

There were 1760 runs taken in the experiment. One hundred

thirty runs were found to be unacceptable. Ninety three of these

were abnormally terminated due to major equipment malfunctions or

experimenter error. Twenty one runs were excluded by examining

compatability with similar runs. All runs taken at the same setting

were required to give reasonable x2 comparisons of the cross sections

into the full acceptance. Runs so eliminated were found to have

notes made in the experiment's log books that the beam was mis-

steered or badly focused , the target had problems, or the electronics

or the computer had some minor malfunction. The various run correc-

tion factors were scanned on a run-by-run basis and runs with large

deviations examined carefully. The mean and width of each of the

five PHS's were scanned to look for malfunctioning detectors. Large

jumps in these quantities corresponded to changes in Eo, G and sign

of E'. Tracking efficiency scans unearthed a few runs with dead

hodoscope slats not noted in the log book. These types of comparisons

lead us to discard another sixteen runs.

TESTING THE ANALYSIS PROCEDURE

After run weeding we felt confident in concatenating runs

into settings (i.e., same target, Eo, E' and 0). At this level of

reduction, two tests were made. The first was designed to test

tracking and PHS efficiencies, and the second was sensitive to cross

section variation across the acceptance and setting to setting

compatability.

The efficiency test was easily made. As described earlier in

this Chapter, we derive 6 PHS classes and 6 tracking classes. We

can analyze our data using 36 different criteria with PHS efficiencies

running from 99.9% to 80% and tracking efficiencies ranging from

99% to 80%. The pion contamination varies from several percent

(depending on running conditions) to virtually nil (<.5X) over the

36 PHS tracking classes. The total electron detection efficiency

ranges from lOO%to 64%. The analysis class was selected as the

reference point and the 35 other cross section compared to it.

Table III-6 shows a typical comparison for all the hydrogen running

for E' between 1.200 GeV and 1.400 GeV for electrons at 60 degrees

(the concatenation over E' was done to increase the statistics).

For each line, each setting was so examined. We found no statistically

significant deviation. This leads us to believe we know our

inefficiencies to about 20% of their value for both the PHS efficiency

and the tracking efficiency. As seen from Table 111-6 there is no

definite correlation between PHS efficiency and tracking efficiency.

89

88

Page 56: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE III - 8

MINIMDM CODE CLASS vs. PULSE HEIGHT CLASS

2512.2 2486.4 2445.4 2434.4 2273.4 2054.5 1.001+0.020

0.99706 0.997+0.020 0.991+0.020 0.991*.020 0.988+0.021 0.989+0.022

0.99493 0.98830 0.98386 0.92375 0.83523 0.01832 0.01340 0.00963 0.00942 0.00787 0.00575

2479.3 2454.3 2416.3 2 1.011-&0.020 1.006+0.020 l.OOqtO.020

0.97913 0.97705 0.97056 0.01286 0.01036 0.00741

2459.3 2434.3 2398.3 2387.3 2231.3 2016.3 3 1.018+0.021 1.011+0.021 1.00~0.021 1.00~0.021 1.001+0.021 1.001+0.022

0.96892 0.96691 0.96056 0.95624 0.89777 0.81178 0.00874 0.00683 0.00490 0.00476 0.00400 0.00373

2246.3 2030.3 0.997+0.021 0.997fp.022

0.90710 0.82022 0.00512 0.00457

2277.6 2255.6 2222.6 2211.6 2069.6 1866.6 4 1.011+0.021 1.003+0.021 9.995+0.021 0.995+0.021 0.992+0.022 0.9am.023

0.90972 0.90791 0.90220 0.89816 0.84328 0.76260 0.00201 0.00178 0.00154 0.00150 0.00126 0.00110

2040.6 2021.6 19993.6 1982.6 1853.6 1670.6 5 1.041+0.023

0.79210 l-034+0.023 1.02~0.023 1.025+0.023 1.02~0.024 1.016+_0.025

0.79061 0.78564 0.78212 0.73476 0.66467 0.00083 0.00080 0.00053 0.00053 0.00046 0.00040

6 1968.6 1951.6 1928.6 1918.6 1793.6 1614.6

1.032+0.023 0.77104

1.025.&O.O23 1.018&0.023 1.017~0.023 1.012+0.024 l.OO&M.O25 0.76974 0.76579 0.76254 0.71637 0.64789

0.00056 0.00054 0.00037 0.00037 0.00032 0.00028

The four numbers shown in the Table are: 1) number of electrons corrected for accidentals; 2) ratio to analysis class cross section; 3) electron detection efficiency; and 4) the pion subtraction factor. < E' < 1.4 GeV.

The data were taken on hydrogen with EO= 19.5, 0 = 60'. and for 1.2 GeV

90

Page 57: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

Typically, we assign a 3.2% systematic error from tracking and

PHS efficiency.

The second test we made on the data was a cross section com-

parison. Every line with few exceptions was measured three times

in each scan (some of the low E. lines at the low E' were taken in

bigger than l/3 acceptance jumps). Except for the beginning and end

of each line we have three cross section measurements of the same

points which we can compare. A reference cross section is gotten by

concatenating the counts and weights for the three partial cross

sections. This is then compared to individual cross sections.

A x2 test is also made by forming the residuals

U.-U R .= -A-.- 1

iJL4ixi2 ' i and j = 1, 2, 3, i # j

i i

A histogram of the residuals for the 50 and 60 degree data is

shown in Fig. 111-g. The distribution is what one expects normally

distributed data to produce. We conclude that there are no serious

aperture biases in the analysis.

1000 L

1324 RESIDUALS MEAN = -0.063 RMS = 0.964 CURVE=l05.6 cR2/2.

100

I I I I I I I I I I I I I I -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2

RESIDUAL (o- 1 IbV,l,.

FIG. III-9 A histogram of the residuals Rij. The curve is what one expects . normally distributed data to give.

92 91

Page 58: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

CHAF’TER IV

CALCULATED AND MEASURED CORRECTIONS

MEASURED CORRFCTIONS

The full target yields include contributions from the target

walls and from processes which produce both positrons and electrons.

To remove these unwanted contributions we measured these yields

besides the full target electron yields. These were the empty target

cross-sections measured for both scattered electrons and positrons

and the full target measured for scattered positrons. The pres-

cription used to correct the full target cross section is given by

(4.1) +

'COR= 'FULL- 'MT- (0 +I FULL- uMT *

The signal from the empty target typically amounted to about

6% of the full target signal for hydrogen and 4% for deuterium.

The fraction of the measured cross section accounted for by charge

symmetric processes depends on Eo, E', and 0 and in general increases

as E' decreases. This correction,made by subtracting the measured

positron yield from the electron yield, was a primary factor in

determining the lowest E' at which data were taken. Most lines were

run until the ratio of positron to electron yield on the full target

reached .35 (o+&IL/oiLL = .35).

The assumption used in Eq. 4.1 is that there are no important

sources of electrons (other than scattered beam particles) which are

not charge symmetric. A test of this assumption was recently made

experimentally (Ref. IV-l) during the second cycle of E-89 by

measuring the electron yield from the target using a positron beam

and comparing that to the charge symmetric situation with electrons

incident in the same experiment. This wrong sign signal was equal

for the two signs of the incident particle charge to within the

accuracy of that experiment (5% at Q2 = 3 GeV2to 10% at Q2 = 15 GeV2).

For both the empty target and positron signals we make the

hypothesis that the structure in missing mass is smooth. We take

smooth analytic representations of these data as our best estimate

of their actual value. We are assuming that neighboring data points

are not independent but contain similar physical information. Using

the bulk of the data rather than the individual data points can

improve estimates of these corrections.

Plots ofthesedata show that the double differential cross

sections are approximately exponential at these large angles. We

find the following simple parametrization

(4.2) u pas= 106(a + b E,+ c Ez) e -d E'sin e(pb/GeV-sr)

works well for the positron cross sections. The resulting fit

parameters are given in Table IV-1 for the various EO's ,0's and targets.

To propagate the error introduced by these subtractions, we estimate

that the functions thus fitted give the correct cross sections to

(4.3) Au/u = MAX (.l, .3 - .l W (GeV))

This gives an error in this correction of 20% in the elastic

peak regions decreasing to a minimum of 10% for W > 2 GeV. This

error approximation does not significantly improve the errors over

what the measured data would yield. The prescription of subtracting

93 94

Page 59: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 1

POSITIVE SUBTRACTION

+ + oPOS = 'FULL - 'MT = 106(a + bEo + cEi) e -d Pt (&$)

a b c d x2& 60°, H -13.3290 4.25038 -0.0484835 16.4419 85.71112

60°, D -13.2485 3.76622 -0.0684701 15.1213 1531130

5o", H -19.3759 4.52011 -0.0766568 14.4748 41.1137

50'. D - 9.52999 3.43338 -0.0555869 13.6932 31.0/43

EMPTY TARGET SUBTRACTION

Line E.

1 19.5

2 16.0

3 13.3

4 10.4

5 6.5

6 19.5

7 16.0

a 13.5

9 7.0

%lT

e

60'

5o"

= a e W + cW2) 1 pb \

a

'GeV-sr'

b c x2& O.i60334E-1 -.970139 .536463 la.7124

0.201885E-3 2.59807 -.0407573 15.0/17

0.9028313-2 -.292653 .591770 71.8178

0.1587563-l -.499663 .789576 17.4125

0.250682E-2 2.89575 .179453 92.4163

0.1959943-4 2.62323 .0310931 13.719

0.2689963-4 3.21611 -.0468157 13.2/11

0.6017343-2 .237730 .445982 13.0/17

0.339265E-1 .986842 .521663 12.5119

models allows us to treat all the data in the same manner (we

did not measure all the quantities in Eq. 4.1 for about 30% of the

data, as these corrections were small, and we felt confident in our

ability to estimate them from the measured data). These errors

will be taken as part of the systematic error in the final cross

sections. The X2's quoted in Table IV-l were evaluated using the

statistical counting errors.

An interesting side note and source of puzzlement to us wasthat

the empty target (stainless steel) cross sections were appreciably

different in character from the deuterium cross sections. Our

expectation would be that iron could be well approximated by a

"bag" of deuterons. Fermi motion effects would tend to be similar.

But, the ratio of the iron cross sections to the LD2 cross sections

for wrong sign running is E' dependent, increasing with E'. The

growth is as much as a factor of two for the highest incident energy

lines and always at least a factor of two more than what would be

expected. This means that the size of the empty target cross section

was larger than expected from simple nucleon counting. The corrected

empty target cross section, u& - u + EzT , is the right size for

scattered beam particles, but the charge symmetric part is anoma-

lously large and increases relative to the signal as E' is increased.

We doubt that this effect has been generated by a measurement or

analysis error.

For D2 divide result by l.l6(empty target

only).

95 96

Page 60: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

CALCULATED CORRECTIONS

It is traditional to correct the data for the effects of

radiation in the target and in the scattering process itself. For

deuterium, the motion of the bound neutron and proton provide

and additional correction. We have applied three calculated

corrections to this electroproduction data. First, the elastic and

quasi-elastic (as appropriate to deuterium) radiative tails were

subtracted. The "tail subtracted" data were then corrected to account

for radiation which shifts the theoretical electron yields to

higher missing mass. The deuterium cross sections are the source

of the neutron data, and corrections for Fermi-motion effects were

calculated and applied before comparisons with the hydrogen data

were made.

ELASTIC TAIL SUBTRACTION

The elastic tail was calculated by the methods given in

G. Miller's thesis (Ref. IV-2). The elastic tails come from incident

electrons radiating energy through photon emission .and elastically

(or quasi-elastically) scattering off the target particle. The

energy degradation can occur before and after the elastic scatter.

Both produce scattered electrons of lower energy than elastically

scattered beam particles. These lower energy electrons enhance the

cross sections measured at missing masses higher than the proton

mass. The materials in the beam before and after the scatter are

referred to as "real radiators" and are summarized in Table 11-2.

In addition to the effect of this real radiator, there are the quantum

electrodynamic processes involving radiation from the electron

being accelerated during the elastic scatter. This source of

radiation is often discussed in terms of the "internal" or

"equivalent" radiator,as such radiation is similar to that caused

by the real material in the beam. An approximate expression for

the equivalent radiator is

(4.4) teq= % (an (Q2/mz) - 1)

For Q2 = 20 GeV2, t = .04. eq

The expressions given by Tsai

(Ref. IV-3) were used to calculate this correction exactly to

lowest order in a andareused in Miller's approach.

Smaller corrections also included are an estimate of multiple

photon emission and target radiation from the recoiling proton

(only in the case of hydrogen). The elastic tail calculation

requires knowledge of the form factors G E and GM for Q2 less than

the effective Q2 of the point being corrected (the effective

Q2= 4 El2 sin2(8/2)/(1 - 2 E'sin2(G/2)/M)). We have assumed

form factor scaling (GE = G /u Z Gi) and a fit to the measured Me

elastic scattering data for G E ( see Chap. V). The exact expressions

used forthe elastic tails (as well as the inelastic radiative

corrections) are given in Ref. IV-4.

Plotted in Fig. IV-1 are the elastic tail fractions, that

is the elastic radiative tails divided by the raw cross section

for representative lines at 50 deg. and 60 deg. for both hydrogen

and deuterium targets.

98 97

Page 61: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

W = 2.5 GeV POINT 6.5 13.3 19.5

20 HYDROGEN ’ I

/

W = 2.5 GeV W = 3.5 GeV For 7.0 GeV For 19.5 GeV

I HYDROGEN ’

12

8

4

0

I I I I I I I I

DEUTERIUM 60" (b)

6.8 0.9 1.0 I.1 1.2 1.3 1.4 1.5 1.6 1.7 E’ (GeV)

O rI ‘1 ” ” ” 0.8 0.9 1.0 I.1 1.2 1.3 1.4 1.5 1.6 1.7

E’ (GeV) 1OICIO

FIG.IV-1

The elastic radiative tail fraction for representative lines at 50" and 60'. Thea= arrows at the top of the graph indicate where a missing mass, W, of 2.5 GeV falls for E,= 6.5, 13.3 and 19.5 GeV at 60° and W = 2.5 for E,= 7.0 GeV and W = 3.5 for E,= 19.5 GeV at 50°.

For the deuterium quasi-elastic peak, we used the procedure

given in Ref. IV-5 (also see Appendix C) to compute the quasi-

elastic cross section which was then radiated to produce a "quasi-

elastic” tail. The Reid hard-core wave function (Ref. IV-6) for

the deuteron has been used in all the smearing and quasi-elastic

calculations.

We take the error in the elastic and quasi-elastic tails to be

the same as those estimated in Ref. IV-4 (55%) plus an additional

MAX(5, Q2(GeV2))% to account for the high Q2 uncertainty of the

squared form factors. This gives + M&X(10, 5 + Q2(GeV2)% error

on the tail subtraction. This error usually contributes less than

2.5% to the systematic error.

INELASTIC RADIATIVE CORRECTIONS

The inelastic radiative corrections are applied to the tail-

subtracted data. This correction accounts for the radiation from

scattersoccurringat low missing mass giving events at higher measllrtld

missing mass. We have used a new technique involving an iterative

procedure with an analytic representation of all data taken at one

angle on the same target.

The exact radiation calculation (as done for the elastic

tails) would take too much computer time (as presently coded).

Instead, an equivalent radiator is used to simulate internal

bremsstrahlung. The hard radiation of this internal radiator is

strongly peaked along the incoming and the outgoing directions of

the electron, hence little angular deflection in tile trajectory of

99 - IO0

Page 62: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

RADIATIVE CORRECTION FLOW CHART

the electron occurs. Usually an "angle peaking" approximation

is used which includes only radiation along these two directions.

As the electron can be degraded in energy both before and after the

scatter, we must, in principle, integrate over all E o's and higher

E' s that can contribute to scattering at the measured point.

Examination of this double integration shows that most of the

contribution to the integral comes from either radiation before or

radiation after the scatter, but not both. One takes advantage of this

byan "energy peaking" approximation. The two-dimensional integral

in E o and E' is well approximated by three terms: a) scattering

at the measured E. of the beam with contributions coming from all

allowed higher E's; b) scattering at the measured E' with contri-

butions coming from incident energies down to the lowest allowed

EO's (determined by one pion threshold); and c) scatters in

the"near"region with soft photon emission.

The new technique uses the fact that radiating "known" cross

sections involves only integrals. What is done in practice is to

start with a reasonable model of the data (such as an w' fit

(Ref. IV-7)). Using the model, a radiative correction ratio

R =o rad /a model model-radiated is calculated for each data point,

and a radiatively corrected set of cross sections is formed by

multiplying the data and its error point-for-point by this ratio.

The model is then refit to the data. New radiative corrections are

calculated and reapplied to the tail subtracted data. A flow chart

of the procedure is shown in Fig. IV-Z. The major part of the correction

I u exp (Input)

' = o - 'elastic rare ew tails

'final = 'rare * R

'model = Fit to 'final / I

/ 1 1 Rrad = a-radiation/

1 ofinal /

Elastic Scattering Correction

Model From Previous Data Gives First Estimate of Rrad

Model Radiative Corrections

Refit Model

Form Radiative Correction

Ratio from Model

Check for Convergence

101

FIG. IV-Z

102

Page 63: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

The radiative correction ratios for representative incident energies at 50' and 60'. The ratios are ulotted for W>1.75 GdV.

comes from energies near the measured energies,and since the cross

sections are quite smooth, convergence occurs after a few iterations.

The model used has no resonance structure past a W = 2.0 GeV.

Any high mass resonance (W >2.0 GeV) will not have the appropriate

radiative correction enhancement. This probably is a valid assump-

tion as no high mass resonances have been observed for W ~5.7 GeV

for the process e+p + e'+X (Ref. IV-8) for Q2's of approximately

1 GeV'. The radiative correction ratios for some of the lines

are shown in Fig. IV-3. The deuterium ratios are within .02 of

the plotted hydrogen ratios. The formulas used for radiating

the fitted cross sections are given in Ref. IV-4.

Some questions arise as to the correctness of the peaking

approximation used in the radiative correction procedure. To check

its validity, the "exact" (as in the elastic case) radiative correc-

tion ratios werecalculated at some W points spanning the range of the

present data, again using an w' model as the source of the

Wl and W2 structure functions. Two independent programs agreed to

better than 5% with the peaking approximations and the equivalent

radiator used for W <4.5 GeV (Ref. IV-g).

We quote the systematic error given in Ref. IV-4 for the

radiative correction ratio: 53% near threshold (W ~1.3 GeV) growing

to +5% at the lowest values of E'. - This error is considered sys-

tematic and will be combined with the other sources of systematic

6 0.80 F

0.80

0.70

2.0

(b)

I I I I I I I I I I 1 I I I I

2.0 3 .o 4.0 W (GeV)

error.

103

FIG. IV-3

104

Page 64: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

SMEARING CORRECTIONS

The deuteron is a very loosely bound structure consisting of

a neutron and a proton. A first approximation for the deuteron

cross section would be the sum of the proton and the neutron cross

sections. This approximation is wrong to the extent that the

motion of the nucleons inside the deuteron distort the free nucleon

structure functions. Structure functions so modified are referred

to as "smeared" structure functions.

The smearing effect is most pronounced for quasi-elastic

scattering where the electron scatters elastically off one of the

nucleons inside the deuteron resulting in nuclear breakup. The

narrow electron elastic peak which results from scattering off free

nucleons is broadened or "smeared out" because of the target

particle's motion.

The smearing correction is done within the framework of the

impulse approximation. The electron is assumed to interact with

only one of the nucleons, the other nucleon being "spit" off as

a free "spectator." Taking the Fermi-motion into account relativ-

istically (that is conserving energy and momentum at all times)

puts the interacting nucleon off its mass-shell. So not only is

the target particle not in its rest frame, but it is off its mass

shell. The first effect blurs the angular resolution of the

scattering and both effects shift the invariant mass of the inter-

action. We follow the proceduregivenin Appendix C to calculate

smeared structure functions from unsmeared ones. The smearing

correction for the inelastic structure functions is often para-

meterized as a smearing ratio, Si = Wli/Wli(SMEARED). More

analysis of the smearing problem is detailed in Appendix C.

The hydrogen cross section subtraction from the deuterium data

was done with a smooth analytic function representing the proton

data appropriately smeared. This procedure is preferable over

point-for-point data subtraction corrected by a smearing ratio.

Smearing ratios are not model insensitive because of the large

kinematic range of the smearing integrals (typically + .2 units

in w' ). The calculated smeared cross sections are less model

sensitive because of this. Forming a smearing ratio reintroduces

the model in a local manner. Furthermore, the same arguments given

for the empty target subtraction and the positron subtraction by a

model subtraction are valid here too. The error assigned to this

procedure was +5% of the up(model-smeared) and was considered

as part of the systematic error in uN* The smeared neutron

'1N structure function can be obtained by subtracting the calculated

smeared proton contribution from the deuteron:

(4.5) wlNc3fhm~) = wlD - wlp(smm~~)

The smearing procedure like radiative corrections is not invertible.

An iterative procedure, similar to that used to account for radia-

tion processes, was used to extract the unsmeared neutron structure

functions. To extract an unsmeared neutron, we have to use the

smearing ratios despite their model sensitivity. The first estimate

105 106

Page 65: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

of the neutron smearing ratios are the calculated proton smearing

ratios. This yields an "unsmeared" neutron which generates new

smearing ratios through a fitted model to that neutron data and

so on. A diagram of the logic flow is shown in Fig. IV-4. We

take the error in the smearing ratios to be similar to that cal- f&?

culated in Ref. IV-9 and is typically less than t 1.5%.

The principal problem that arises with smearing compared

with radiation is that smearing extends over a larger kinematic

range (see Appendix C). The principal smearing contribution comes

‘f from approximately +'Z-unit-s-in w' about the w' for which the

calculation is being made. This aspect of smearing makes conver-

gence occur slowly in this iteration procedure, especially for non-

linear parameterizations of structure such as in the resonance

region.

The maximum deviation of the smearing ratios from unity occurs as

x' +1 (Sp= .62 for x' = .92, but for 90% of the data where x' c.8

the ratio lies in the range 0.90< Sp< 1.02). The smearing ratios

calculated for this experiment are shown in Fig. IV-5.

THE EXTRACTION OF Wl

As stated in Chapter I, the large angle cross sections are

insensitive to the value of R: us/ut used in extracting Wl from the

cross sections due to the smallness of E in the measured region.

The contribution of us is always less than 4.5% for R = .18. We

UNSMFARING FLOW CHART

'p Model Fit

ITo uP Data .

Fit Proton Data

i:"::?=!ps1'ps12 F '; Model1

smeared smeared 'D - 'p model

Smear Proton Model

Extract Smeared Neutron by Subtraction

4 U

SN = p model smeared

'p model

Form First Estimate of Neutron Smearing Ratio

Form Unsmeared Neutron

1 I smear

uN model = J d3ps/~p,~z?~ 'N model I

\L SN = 'N model

smear 'N model

Yes

uN Finished

Fit Neutron Data

1 Smear Neutron Model

Form Neutron Smearing Ratio

Convergence

107 FIG. IV-4

108

Page 66: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

I .o 0.8

I .6

I .4

0.2

I I I I I

0 0.2 0.4 0.6 0.8

FIG. IV - 5

The smearing ratios (~model/~model smeared)

for the neutron, SW, and the proton, SP.

calculated Id 1 by

(4.6) W1= k? 1 1-e

'mott 2 m&3/2)' 1 + cR

We assign an error of + .5 ER to this procedure, and this error

is taken as part of the total systematic error. A value of .18

was used for R.

SUf?MARY OF SYSTEMATIC ERRORS

Systematic errors of two types are considered: 1) point-to-

point errors and 2) overall normalizations errors. Counter

efficiencies, tracking efficiencies, the pion subtraction factor,

and the fast electronic flag efficiencies are considered here as

sources of point-to-point fluctuations. As it is unclear what

correlations may exist between these contributions, the conservative

approach of adding them linearly together has been adopted. The

detailed contributions and the typicalsizesof the estimated errors

are given in Table IV-Z.

The overall systematic errors which contribute are given in

Table IV-3. In each category the detailed contributions with

typical values of the error are shown. We choose to combine these

errors by adding all contributions to a particular category together

linearly and then combining the various categories in quadrature

(see 83 at the bottom of Table IV-3 ). For the N/P determination

many systematic errors tend to cancel,such as those associated with

the beam, the spectrometer, the inelastic radiative corrections, and

the Wl extraction. Others will partially cancel,such as point-to-

110 109

Page 67: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 2

POINT-TO-POINT SYSTEMATIC ERRORS TABLE IV - 3

Contribution Size (X)

P D

PHS Cuts: CT .05 .05

TFT .5 .5

TAl .05 .05

TASUM .2 .2

Codes: + Cut .2 .2

p2-19 C"t .3 .3

e '"' 2-14 .3 .3

Code Class 4-6 .5 .a

Flags: ORX .5 .8 STR2 .05 .05

Over One:

Pion Subtraction Factor:

Linear Sum: 3.2 4.3

0.0 0.0

.5 1.0

Category Contribution Typical Size (%)

Beam EO

P D

.8 .8

.6 -6

.2 *2

Target

Spectrometer Solid Angle 1. 1.

Measured Subtraction

Empty Target

Positron Yields

.7

2.

.4

2.

Radiative Corrections

Tails

Inelastic

W1 Extraction

Neutron Extraction

1. .8

4. 4.

1. 1.

P Subtraction

Unsmearing

OVERALL SYSTEMATIC ERRORS

Flux

Halo

Density .5 .5

Purity .5 .5

Length .5 .5

1) Linear Addition

2) Quadrature Addition

3) Contributions Linear, Categories quadratically

4) 3) Added in quadrature to Point-to Point Error

4) For N/P = 6.0%

11.9 12.3

5.0 5.0

6.3 6.0

7.1 7.4

N

3

2

17.3

6.2

7.8

8.9

111 112

Page 68: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

point systematics, radiative tails, and the measured subtractions.

For these the average of the P and D errors were used and added in

quadrature with the other contributing sources of error. The

resulting systematic error in the N/P ratio is approximately + 6.0% -

including the point-to-point contribution (+ 4.9% excluding point- -

to-point errors).

These Tables include various kinematic quantities, the

cross sections for P, D, and N, and WI for P and D. Given in

the parenthesis for each P and D measurement are: 1) the statistical

counting errors and 2) the total systematic error for that point.

For the neutron cross sections the "counting" error includes the

5% hydrogen subtraction error added in quadrature to the statistical

counting error of the deuterium cross section.

THIS PAGE LEFI BLAiW

113

Page 69: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

19.5 GeV 50'

3. LOO

3. zllo

3.300

3.400

3.500

3.600

a. TOO

3.800

3.900

4.000

k.&UO

4.200

4.300

4.400

4.500

4.600

3.100

3.200

A.300

3.400

3.500

3.600

3.100

3.800

3.900

4.000

4. AU0

4.ZUO

4.300

*.,uo

4.100

4.600

Q2 (C.3)

24.159 O.L428 0.731) 0.719

24.000 0.1397 0.719 0.701

23.421 0.13b5 0.101 0.683

22.326 0.1332 G.bUl O.bb4

L2.229 0.1299 0.661. 0.645

21.603 0.1213 0.641 O*bLS

20.959 0.1227 ‘,.6&l 0.005

20.298 0.1189 0.600 0.584

19.620 0.1151 0.578 0.503

19.924 0.1112 U.55L 0.542

IB.210 0.107L O.!J.U 0.520

11.418 0.1029 O.lAO 0.496

16.129 0.0986 Il.487 0.415

15.963 0.0943 0.463 0.452

15.178 0.0897 0.419 0.428

14.316 0.0051 0.415 0.405

L x’ x’

PRGTGN

L.Y73 f (0.668. 0.1351

3.2111 t (0.435. 0.1731

3.752 f (0.351, 0.2208

4.616 t (0.330, 0.2791

5.931 * (0.340, 0.3531

7.db9 j (0.390, 0.4431

7.632 f (0.424, 0.5571

10.059 * IOiYOE. 0.7071

12.063 t IO.5811 0.899)

13.680 t 10.673, 1.1551

Lb.486 t lO.U49, 1.5111

19.058 t l1.157r 2.0011

2j.YIb t ll.510, 2.7591

LY.117 * Il.8951 3.9781

L9.083 * l2.b22. 5.990)

39.494 f lb.lEb, 9.4991

d2. (A) dML' Gdf-or -i

DWTFiP.ON

3.90 f I G.dG. 0.22)

3.81 t i 0.50. 0.281

5.10 * I 0.43, 0.351

6.94 f I U.41. U.451

7.93 * I 0.41, 0.571

10.34 * I 0.49, 0.721

13.02 * t 0.59. U.YZJ

16.72 * I G.?4r 1.19)

16.20 f I 0.851 1.561

24.09 t I l.U7r L.UUJ

28.50 f I 1.37, Z.bdl

30.99 * I 1.871 3.461

38.90 * I 2.74. 4.801

51.97 f I 3.69. 0.941

51.20 f I 4.93. IO.491

NwlnoN

1.29 I. I 0.80,

0.69 f I 0.52,

k.i!7 * I 0.47,

2.27 f I 0.40.

2.30 * I 0.50.

3.58 f I 0.59.

4.94 t I 0.72,

7.12 f I 0.89.

b-19 f I 1.03.

lO.bY t I 1.27,

IL.76 t 1 1.59.

IL.46 t I 2.10.

17.36 Z I 2.96.

27.19 t I 3.92.

22.10 t I 5.161

+5.02 * 111.95. 77.90 f I LA. I91 lb.571

0.201 0.04001 * l0.00018. 0.002241

0.26) 0.03933 r 10.00514. 0.0021)bl

0.34) 0.05283 t lO.00443, 0.003631

0.44 I 0.37Ll3 f l3.03430, 0.004651

0.561 J.U82dd t l0.00431. 0.0059lI

0.721 O.IOE5.6 f l0.00510, 0.001541

0.931 0.13732 t lO.OObZO. 0.009671

1.211 0.177Zd t l3.00I81. 0.012631

1.601 0.19388 f l3.00905. 0.016641

2.141 0.15834 f 13.01141, 0.022291

L.721 O.dObU9 t IO.014731 0.02837)

3.591 0.33544 f 10.02025. 0.03743)

4.90 0.42340 t 10.02986. 0.052231

7.211 0.56895 f 10.0403Y. 3.075901

10.911 U.Sb37L f lO.05427, 3.115491

17.25) U.86172 f 13.1~061. 0.13354J

0.03054 f l0.00186. 0.00135)

0.03319 : 10.00449* 0.001781

0.03807 f lO.00364, O.OO.?Zll

0.048U3 f (0.00344, 0.002911

0.06199 r 10.00356. 0.00369)

0.07737 * l0.00410, 0.004611

0.09073 f 10.00447. 0.0058al

0.10064 t 10.00539, 0.007501

0.128J3 t lO.00619. 0.00998)

0.14652 f lO.00721. 0.012378

0.16674 t 10.00914. O.Olb27)

0.20630 f 10.01253. 0.02166)

0.26033 f t0.01644. 0.030031

0.3189b f I0.0207J. 0.043551

0.32021 r (0.02987. O.Obf90

0.43740 f lO.06851. 0.105201

114

Page 70: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

16.0 GeV 50'

2.700 20.291

2.100 19.812

2.9OO 19.323

5.000 lU.616

3.100 18.292

3.200 17.751

3.300 17.192

3.430 16.617

3.500 14.024

3.600 15.414

3. IOU 14.787

3.uoo 14.143

3.900 13.492

4.oou 12.503

4.100 12.107

9* cod, c

0.1732

0.1695

0.1655

0.1614

0.1572

0.1527

0.1452

0.1435

0.1386

0.1335

0.1253

0.1229

0.1174

0.1117

0.1058

x- x’

0.160 0.736

0.740 0.716

0.720 0.697

0.699 0.676

0.677 0.656

0.655 0.634

0.632 0.612

O.bOY 0.590

0.585 0.567

0.5bA 0.543

9.536 0.519

0.511 O.kYS

0.4m5 O.kIO

0.459 0.445

0.432 O.41Y

62”J& dadI’ (o.v-.r)

PIomN

d.LO7 f (1.043. 0.159)

2.UlY * IO.!w8r 0.205J

4.4&k t 10.539. 0.2721

3.967 t (0.344, 0.352)

8.144 t 10.616r 0.454)

10.711 t 10.791, 0.581J

LO.631 f l0.654. 0.742)

15.507 * Il.1441 0.9511

19.349 * 11.4021 1.218J

19.451 f l1.431, 1.5621

Lb.463 t (1.727, 2.025)

30.Y7O t 12.054, 2.672)

3b.ltb t (2.559. 3.6401

39.231 t (3.060, 5.1991

46.201 t 13.885. ?.652J

4.200 11.394 0.0998 0.405 0.3% 5U.7IU f 15.697.12.5621

2rlUU

2. eoo

2.900

3.000

3.100

3.200

3.300

3.400

3.500

3.600

3.700

3.800

3.950

4.000

4.100

4.200

DSPRION tlwmcw

6.22 f i I.L)b. U.ZSt 1.71 t I 1.56. 0.23)

7.40 f I 1.02, 0.33) 5.13 f I 1.04, 0.301

7.63 f 1 0.771 0.4Lt L.41 f I 0.81, 0.40)

9.40 t 1 U-76. 0.551 ‘2.Y5 t I 0.82. 5.53)

11.26 A J 0.83. 0.71) 3.31 t f 0.92. 0.70)

15.21 f I 1.13. O.Y2J 5.48 f 1 1.23. 0.921

19.49 * I 1.>9, 1.201 b.bl t I 1.51. 1.21)

22.00 f I I.61, 1.5dJ 1.74 f t 1.76, 1.61)

24.50 * I 1.87. 2.071 7.47 f t 2.07, 2.121

35.17 f ( i.48, 2.701 h.S2 t t 2.69, 2.761

40.21 f I 3.38. 3.541 15.54 f I 3.61. 3.65)

59.61 f I 4.d4. 4.621 w.75 L I 5.07. 4.79)

57.60 f ( 4.94, b.LbJ 23.03 t I 5.24. 6.52)

57.77 f I 4.dY. (I.971 16.69 f I 5.33, 9.331

81.41 f ( 5.56, 16.561 4U.06 i 1 6.09, 14.111

107.46 f I 1.&G. Lt.771 52.4O t I 8.33, 22.bbJ

0.02IZ8 f (0.00692. 0.00105J

0.01600 f l0.00392, 0.001391

O.il3OJl f I0.00361, 0.00182J

0.34024 t 15.05367, 0.00235)

0.05514 t IO.004191 O.OOJOBJ

0.07309 f 10.00544, 0.0039bJ

0.07303 f l0.00607. O.O05lOJ

U.10715 f (0.00791. O.OObStJ

0.13471 f (0.00975, o.ooa*ti 0.13620 f 15.01002~ 0.01094t

0.1(1659 f 10.01219, 0.01427J

0.21920 f (0.01459, 0.01597J

0.26304 f l0.01931, 0.02604J

0.211270 f IO.02205. O.O3?47t

0.33591 f lO.02521, 0.05702t

0.37116 f 10.04169, 0.091931

0.04130 f 10.01035. O.OOlbbt

0.04935 t lO.00679. 0.002101

U.05Llb f 10.00518r 0.00284t

0.0633s t 10.00513, 0.003701

0.01639 C l0.005bS. 0.004601

0.10381 f l0.00769. 0.0062JJt

0.12667 f lO.03951, 0.0052bJ

0.15259 f J0.011111 0.01091t

0.17249 t l0.01304r 0.01440t

0.24624 f (0.01734. 0.01866t

0.29db2 f 10.02395, O.OZiWl

0.42325 f (0.03436. 0.03292t

0.4119b f (3.03522, 9.04409t

0.4lbtb A 13.03522. 0.06442)

0.63457 f WO4037, 0.09846t

0.7db39 t 10.05706. 0.159301

115

Page 71: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

13.5 GeV 50'

2.400 17.122 0.2030 0.771) 0.746

2.100 lb.712 0.1985 0.157 0.748

L.b(rO lb.205 0.1938 0.735 0.707

2.700 15.941 0.1989 0.712 o.b82

2.500. 15.381 0.1838 0.689 0.662

2.900 14.904 0.1794 U.664 0.639

3.330 14.410 0.1729 0.640 0.616

3.100 13.899 0.1671 0.614 0.591

3.200 13.372 0.1611 u.5nu o.shb

3.wLl 12.828 0.1549 0.562 0.541

3.400 12.261 0.1455 0.535 0.515

3.500 ll.bb9 0.1419 0.507 0.411

3.bOO 11.095 0.1349 0.479 0.4bl

3.700 10.454 0.1278 0.450 G.434

3.900 9.856 0.1204 0.421 0.4Gb

2.400

2.300

2.600

Z.?UU

2.UJO

2.900

3.000

3.100

3.200

3.300

3.430

3.500

3.600

3.700

3.noo

g&i' 2 (&&)

DIOTIRON

5.80 t I 1.91. O.dSJ

7.14 t I 1.5b, U.dOJ

10.40 f 1 1.42, 0.591

11.27 f I 1.26, O.dlJ

lb.17 Z I l.d9, 1.02)

21.26 t I 1.65, A.&Ok

27.61 t I 2.13, A.611

29.90 t I 2.95, 2.20)

39.31 * I 4.11. 3.101

50.47 f I 4.96. 3.771

62.25 t 1 5.95, 4.YbJ

72.39 f 1 5.99, b.tlt

93.15 C I 6.35, 9.lYJ

iOi.11 f 1 0.64. 13.11J

121.10 f I 8.69, 20.24)

PROTOJJ

3.869 t IO.969. 0.2%OJ

4.~95 t tl.109, 0.311J

7.010 t ll.lOkr 0.4061

10.02U t 11.119, 0.501J

11.449 t 11.127, 0.6641

14.362 t (1.241, 0.974)

18.431 f 11.462, 1.09Qt

20.580 t I1.914, 1.368)

24.944 t l2.181, 1.751)

3~.571 * 12.518. 2.284)

41.059 t (3.162, 3.000)

47.265 f 13.504, 3.914)

5d.WY * 13.570. 5.329t

b1.394 t (4.565, 7.605J

73.099 f 16.374.11.205J

NIDmoit

1.51 t 1 1.97, 0.751

L.70 t 1 1.59, 0.141

d.36 t 1 1.41. 0.561

2.53 t I 1.33. 0.79t

5.a t I 1.50, 1.01t

7.50 f I 1.79, 1.281

1U.b) t 1 2.30, 1.65)

3.9s f I 3.1). 2.25)

13.72 f I 4.32, 3.191

IV.49 * 1 5.22, 3.89)

24.93 t I 6.29, 5.14)

LL.04 t I 6.44, 6.96)

3Y.UU f I b.bbr 9.551

31.44 f I 7.41, 13.71t

0.01753 f 13.00439. 0.001091

0.32004 f 0.035051 0.00142t

0.03555 t 10.00543, O.OOlObJ

O,U4615 f 10.00517r 0.002321

0.05330 t (0.00525, O.OOJOPt

0.06736 t lO.DO582. 0.0041OJ

0.00711 t lO.OObOL, 3.00515t

0.091108 f 10.00964. 0.00652J

0.11911 t 10.01049, 0.00044t

0.16262 t 10.01220, O.GLiG7t

0.20063 t J0.01545, O.Olkbbt

0.23304 f J0.01727. 0.01930t

0.26816 f 10.017tb. 0.02652J

0.33854 t 10.02293, 0.0302Ot

0.37079 f 10.03233. O.OSbIkt

0.02b21 f 10.00992, O.OOJIbJ

0.03256 t 10.00712, 0.003668

O.OkttS : lO.OObSk~ O.OOLb9t

0.052OU A 10.005811 0.003721

0.0752b f 10.00649, 0.004741

0.09970 t 10.00775r O.OObOOt

0.13Ob1 t l0.01009, 0.00772t

0.14243 t 10.01404, 0.01049t

0.19881 f ~0.01975, 0.01491J

0.24447 f ID.02404, 0.01527J

0.30423 f (0.02923, 0.02424t

0.35940 t f5.02955, 0.03307t

0.46352 t 10.03012, 0.04571J

0.50791 f (0.03334, O.Gbb17t

46.00 * I 9.54. 21.07) 0.61429 Z 10.04406. 0.10269t

116

Page 72: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

7.0 GeV 50'

2.000

2.103

2.ZOJ

2.300

2.400

2.soo

2.bOJ

2.700

2.8UO

2.900

2.000

2.100

2.200

2.350

2.4OJ

2.500

2.600

2.700

2.000

2.930

7.283 0.3058 0.700 0.645

6.985 0.2950 O.bb4 0.613

6.672 0.2835 O.bLU 0.580

6.345 0.2713 o.svo 0.545

0.003 5.2583 0.552 0.510

5.647 0.2446 0.513 0.475

5.27L 0.2300 0.473 0.438

4.B91 0.2lYb 0.433 0.4oL

4.491 0.1984 0.392 0.304

4.076 0.1913 0.351 0.326

PROTON

bV.54 t I 6.57, 4.321

le.05 t I 7.14. 5.74)

llL.9b f 1 9.551 7.551

155.33 f 111.11. 10.101

Id,.54 t 112.03. 13.33)

23l.Ub t 113.94, 17.2bb

3UO.bl t ll4.80, 22.73)

381.d> A Ilb.35, 30.751

COO.71 t 119.41, 40.381

53a.56 t 128.07. 56.811

0.37247 f 10.33685. 0.0045OJ

0.08693 f 13.00158. 0.00609J

O.l;L191 f l0.0103L. 0.00815J

0.17095 t 10.01223. 0.01111t

0.20830 f IO.01350. 0.0149bJ

0.272b3 t IO.01598. 0.01979)

0.35208 f lO.01734. 0.02662J

0.464555 f 10.01959, 0.03683J

0.56482 f 10.02380. 0.0495Ot

0.67385 * (0.03526. 0.07134J

DWTERON NIOTION

97.33 t I 7.17. b.341 3L.GL t I 8.82. b.kbJ

139.14 * 4 8.49. 8.391 4Y.09 t I 9.bl. 8.631

189.78 t Ill.301 ii.5bb 74.40 f 112.77. 11.97)

224.46 f lll.L3, lb.031 75.94 t 114.42, 16.671

271.43 t (16.83, 21.blJ hf.17 t 116.87, 22.52)

368.26 t 117.44. &Y.bCJ 133.57 t 121.24. 30.801

472.b8 t 121.J5, 3d.001 lU>.2> t 125.85, 39.611

558.90 f 124.17. 40.41) 204.17 t (30.39. 5O.JlJ

700.62 : 125.09, 63.14J 270.59 t 133.62. 66.131

U.10144 t 10.00810~ 0.00661J

0.14154 f 10.00900r 0.0089ot

0.20493 f 10.01220. 0.01248J

0.24703 f l3.0134b. ').01765t

U.30472 k 10.01553r 0.02426)

0.422lJ f 10.01999r 0.033961

0.55362 * lO.02465, 0.044511

0.66945 t JO.02895. 0.05799J

0.15UY5 t lO.03376. 0.07814J

763.00 * 135.12, 83.951 dku.80 t 145.74, 86.84t 0.95934 t l0.04486, 0.105431

117

Page 73: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

19.5 GeV 60'

(0%

2.000 3u.544 0.1151 0.907 0.884

2.100 30.170 0.1137 0.395 0.012

2.200 29.779 0.1123 O.Utl3 0.860

2.300 29.367 O.llOLI o.(lt49 0.847

2.400 28.93Y 0.1093 0.656 0.834

2.500 2U.491 0.1077 0.841 O.tJLO

2.690 2Y.026 0.1060 O.UL7 0.806

2.100 27.543 0.1043 0.u11 0.791

2.800 27.041 0.1025 0.795 0.771

2.900 26.521 0.1006 0.779 0.759

3.000 25.913 0.0986 0.762 0.743

3.lhlO 25.426 0.0966 0.744 O.tdb

3.2&J 24.1152 0.0945 0.72b 0.708

3.300 24.259 0.0923 0.709 0.690

3.400 23.648 0.0901 O.bU9 0.672

3.500 23.U18 0.0870 O.bbV 0.653

3.603 22.370 0.0554 0.649 0.633

3.700 21.704 0.0929 0.629 0.614

3.800 21.020 0.0504 0.606 O.SY3

3.900 23.311 0.0178 0.5011 G.572

(0% L.OOU

2.100

2.200

2.300

2.400

2.500

2.600

2.100

2.600

2.voo

I*000

3.100

3.LGO

3.300

1.400

3.500

3.600

3.700

3.nohl

3,900

DJNTIRDN nNoTaoN

0.145 t 10.019, 0.0101 U.009 I (0.016, 0.0041

0.176 i 10.019. O.OlYJ O.OlA t 10.016. O.OObJ

0.305 f 10.0231 O.Olf) 0.051 f IO.0201 0.009,

0.334 2 l0.025. O.OLPJ 0.053 t 10.027, 0.013J

0.429 f tO.OZII, 0.0261 O.UZa f IO.032, O.OUt

0.484 f 10.533, (1.0371 U.063 t 10.0381 0.02bJ

0.682 t l3.041e O.GkUJ 0.130 t 10.048, 0.031)

0.026 t lU.049, O.Ub21 0.155 t l0.055, 0.0491

1.344 i 10.065r 0.0811 0.454 f 10.075. 0.0671

1.342 2 (0.014. G.lObJ 0.302 t to.018. 0.0911

1.774 i (0.095~ 0.1381 0.417 t l0.113~ 0.123J

2.306 i 10.127. 0.102) 0.703 t l0.148, 0.166)

2.559 i t0.156, lhZ3VJ 0.647 t t0.133. 0.2241

3.620 t IU.lPBt O.dl7J 1.22b f 10.229, 0.302)

4.505 t JO.Zdllr 0.4211 1.597 t 10.277. 0.4031

5.672 L IO.Pd2. O.LboJ 2.154 t (0.3311 0.5571

7.032 ; 10.3311. O.tblJ 2.791 t (0.399. 0.7571

8.611 i 10.416, l.Ojlt 3.137 t 10.48S* 1.037)

9.785 * (0.573, 1.417) 1.121 f 10.650, 1.4311

11.749 t dO.Ltl, l.YIIdJ 4.312 t lO.bIOv 2.025)

&a dMP'(O.V-.r)

PROTON

0.053 i JO.010, 0.0041

cJ.OLj t 10.011. 0.0061

0.131 f 10.015. O.OOSJ

0.140 i IO.016. O.OlOt

0.144 t lO.020, 0.014t

0.304 t 10.024, 0.0191

0.379 i 10.0301 0.025)

0.563 t 10.037, 0.034)

0.116 f 10.044, O.MIJ

0.922 f 10.059, 0.0601

1.039 t l0.067, 0.0791

1.183 t lO.0901 0.105J

l.U25 t 10.119. 0.1381

L.311 i lO.L471 0.191J

2.997 t 10.150, 0.238t

A.506 i 10.L01, 0.315t

4.730 t 10.234. 0.418)

5.679 t (0.266, O.SbOt

6.343 t 10.346, 0.7601

7.509 t (0.346. 1.051J

$&I (o&r)

0.00079 f 10.000151 O.OOOObI

0.00080 t 10.00017. 0.00001J

0.00196 t 10.00022. 0.OOOllt

0.00210 f 10.00024. O.OOOlSt

0.00367 f 10.00031, 0.00021J

0.004511 t l0.00037r 0.00025t

0.30573 t l0.00045, 0.000311

0.00852 i 10.00056, 0.00051J

O.OlOt3b f ~0.00067, O.OOOb1J

0.01402 i 10.0001)4, 0.00091t

0.01585 i 10.03102. 0.00121t

0.02114 i 10.0013lr O.OOlbOt

0.02791 i l0.00153r 0.00211t

0.03562 i l0.00226, 0.00279t

0.04620 t l0.00271. 0.003bSt

0.05423 i l?.OJ311* 0.004871

0.07339 i 10.00362, 0.0044W

O.iNNN i 10.004141 0.00870t 0.09906 i (0.00541. 0.0118bt

0.11758 f 10.00542. O.Olbkbt

0.00211 i 10.00028. 0.000151

O.OOZbk t IO.000211 0.00019t

0.00456 t 10.00034, 0.00025t

0.00505 t 10.00037, 0.00032t

0.00645 i 10.00042~ 0.000421

0.00729 t t0.00049, 0.00055J

O.OlOZY i 10.00063, 0.000721

O.OlZbL i ~0.00074r O.OOf-+t

0.02039 f JO.00091r 0.001.4t

0.02041 t 10.00112, O.OOlblJ

0.02705 t lO.00145~ 0.002llt

0.03526 a lO.OOL14, 0.00278t

0.039bV t 10.00240, 0.003611

0.05545 t 10.00304, O.OOlltJ

0.06945 A (0.00367r 0.00449t

0.09169 t (0.0043br 0.001TIt

0.10906 t IO.00524, O.Oil@Ot

0.12396 t lO.OObk?t O.OlbO4t

0.15272 i 10.00194, 0.02212J

(r.lYO94 2 (0.00591, 0.03lObt

118

Page 74: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

16.0 GeV 60°

&, Q2 oa.?)

2.000 24.305 0.1336 O.&l85 O.YSiJ 0.202 t ~O.OZlr 0.0121

2.100 23.715 0.1317 0.870 0.843 u.34z * ~O.OZ7, 0.010

2.200 23.533 0.1197 0.555 o.uze 0.441 f (0.033, 0.0231

2.330 2z.vao 0.1276 o.u39 U.813 0.5b5 * (0.043, 0.0321

LA50 21.509 0.1254 0.822 0. 1Pb 0.74M L l0.05b. 0.045i

2.500 22.071 O.lZ3l 0.004 0.779 1.135 t 10.075, 0.0611

2.600 21.614 0.1207 0.786 0.762 1.327 t (0.090, 0.084)

2.lDO 21.140 0.1152 0.7b7 0.744 1.672 t 10.120, 0.1134

2.900 20.b4.5 0.1155 0.74Y 0.125 2.439 t (0.156, 0.1521

2.900 20.137 0.1128 0. IL5 U.7li5 hOY7 t (O.IPb, 0.2041

~.OOO IP‘LO9 0.1100 0.707 V.6UU L15J f lO.ZZlr 0.271)

3.100 19.013 0.1071 0.6Ob 0.4b3 4.613 r JO.ZbZ., 0.3591

3.200 18.499 0.1041 0.664 O.b44 5.516 t 10.323. 0.4771

ha00 17.911 0.1009 0.642 O.bZZ 7.5lr t (0.450, O.b94I

3.406 11.~19 0.0977 0.619 O.bOO 9.525 t tO.ttb. 0.0521

2.500 lb.700 0.0944 0,595 0.571 L&.lUP t 10.77bl 1.159I

2.UJU 0.425 t dU.UJZ, O.ULSJ

2.100 0.574 f JU.Ub7, 0.0311

2.200 0.730 f 10.046, 0.045J

2.500 0.942 f tO.ObO, O.ObO)

2.400 1.243 t 10.080. U.OYOJ

2.500 1.710 2 10.102. O.lObi

1.600 1.916 5 (O.llb, U.A4AJ

2.740 2.734 t lO.l4dr O.liJPJ

2. a00 3.600 f (O.ld5, 0.25rh

2.400 4.799 * i0.&?1, 0.358J

3.000 5.753 f to.2651 0.4531

3.100 7.Zl5 f 10.307. 0.6111

3.200 8.798 f l0.360. 0.11311

3.300 10.559 t dU.4JY. I.1141

3.400 14.049 * iO.UJd, 1.54bJ

4.500 17.185 f 10.052, et.1741

0.055 t lO*O~h, 0.0141

0.094 t (0.042, 0.011)

0.1&b * 10.053, 0.0301

0.174 * (0.069, 0.043)

O.&O i 10.091, 0.062J

0.442 t 10.117. 0.007J

U.JbO t lO.lJtr O.lLlI

U.7AL f JO.llbr O.lbOj

1.087 f l0.220* 0.233)

l.b4l f JO.2701 0.3lIl

1.451 t (0.327. 0.435)

L.3Y3 t IO.3181 0.597J

d.Yl2 t (0.465. Od24l

A.*07 t 10.609. I.LA71

5.LJO f 10.9431 1.564)

b.Z89 f 10.943, 2.218)

0.00199 f l0.00020, u.ooo11j

0.00355 t 10.0002b. 0.00016J

0.00455 : IO.00052, 0.00023)

0.00550 f (0.00043. 0.00032j

0.00741 : l0.00056r 0.00044~

0.0113Z f (0.00074, O.OOOalJ

0.01324 2 l0.00090~ 0.000841

0.019r3 * IO.00123, o.oollm~

0.02449 L lO.OOl5b. 0.00153l

0.05111 t 13.001971 0.00205J

0.03191 r J0.00224r 0.00274J

0.04744 : 10.00266. O.OOlb5J

0.05622 t 10.00529, O.OOWb~

0.07754 t lO.O049I, O.OOb49J

0.09790 t JO.O0797* D.00575J

0.114b5 t tO.00500~ 0.011911

0.00416 t 10.00032, 0.000251

0.005b4 t 10.00036, 0.00038J

0.00720 t t0.00045, 0.00044J

0.00931 t ~0.00059, 0.00059J

0.01232 t 1o.ooot9, 0.00019I

O.OA700 t lO.OOlOZ, 3.OOlObJ

U.Ol9Il t IO.OOLlb, 0.00141I

0.01735 : ~0.001491 0.001091

0.03bZZ t 10.00155, 0.00255J

0.04835 * ~0.00225* o.ooa401

0.058IU t JO.00269. 0.004581

0.07323 & (0.00311. 0.0062OJ

O.OWbb t 10.00367, 0.00047)

0.10804 f l0.005011 0.0114OJ

0.14436 t :0.00554* 0.015.7J

O.L7733 2 l0.008%8, 0.022431

119

Page 75: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

13.3 GeV 60°

2.000 lV.120 0.1523 O.dbO 0.827

2.10* 18.761 0.1497 0.84L 0.810

2.200 18.384 0.1469 0.825 0.79.?

2.300 17.990 l.1440 o.uo3 0.773

2.430 17.578 0.14OY 0.783 0.75)

2.500 17.145 0.1377 0.762 0.733

2.bOo lb.702 0.1343 0.740 0.711

Z.?OO 16.237 0.1308 0.717 0.640

1. I500 15.755 0.1271 O.bo* 0.661)

2.900 IS.256 0.1233 0.670 0.645

3.000 14.739 0.1194 0.645 0.621

3.100 14.204 0.1153 0.619 0.5YO

5.&O 13.652 0.1110 0.593 0.571

5.300 13.053 0.1066 0.567 0.54b

3.400 12.495 0.1020 0.539 0.519

6'0 (-i&j d20 XE' CeV-sr (A) dME' cev-sr

1.000

2.100

2.200

2.500

et.400

2.500

2.000

2.100

Z.dOO

2.400

3.000

3.100

3.LOO

a.aotl

Ot.OTNNON

1.198 t lU.OdP, 0.0851

1.635 f lO.OYZ. 0.127r

2.267 f LO.121. 0.152J

2.802 f lO.l‘tL)r 0.1831

3.501 * lO.IUL, 0.2971

5.020 f lO.L47. O.J5bJ

5.938 f 10.3Z8, 0.5741

8.229 t 10.420. 0.701)

10.704 f (0.561. ti.8511

12.725 f lO.0>7* 1.36‘a1

18.025 f lO.U54r A.7711

22.619 k 11.255, Z.lOjl

28.236 f (L.ld3, 2.8151

33.456 A l4.Zt.5, 4.5221 12.na4 f (4.399, 4.671)

d2a zizJP(C.V-rr I& )

PWION

0.656 L 10.066. 0.043)

(r.YIJ f IO.0691 0.064J

I.341 * (0.093. 0.128J

1.189 t lO.114* 0.164)

L.455 f l0.149, 0.1731

3.049 t 10.183. 0.1371

3.7% f IO.ZZ7. 0.355)

4.d49 J: 10.313, 0.575J

b.611 t (0.469. 0.8OlJ

U.dL3 f (0.646, 0.9blJ

LA.U55 t IO.8771 J.OLTl

lb.bO3 t lL.247, 1.2801

17.300 9. ll.321, 1.846)

24.100 f (1.264, 2.4441

29.057 t lL.518, 3.1611

0.220 t (0.104. 0.013)

0.364 k (0.108, O.LOOJ

0.600 f (0.142. 0.127)

a.690 f 10.177. 0.1611

0.~03 f l0.222, 0.2701

A.510 f (0.298. 0.3341

1.500 f 10.589. 0.5491

2.573 t (0.519. 0.6851

3.576 f IO.bbL. 0.5451

3.605 t 10.793. 1.3691

b.VL4 f il.0191 1.7961

0.909 f. 11.435. 2.151J

ll.405 f lL.348, L.8971

0.00434 f 10.00044r 0.0002aJ

0.00622 t JO.000461 0.00042J

0.00391 t 10.00062, 0.00005J

O.OlLLb f 10.00076. 0.00109J

0.01644 f l0.00100. O.OOllbJ

0.02065 f lO.OOl23r 3.001591

0.02562 f l0.00154, O.OOZLOJ

0.03292 f 10.00212, 0.003931

0.04509 f l0.00320. 0.00546)

0.0604d jz 10.00443, O.OObb3J

0.001t.9 t lO.OOb04. 0.00701J

0.11641 f J0.00.564. 3.00587J

0.12052 f lO.00921. 0.0128bJ

O.lb&W f L0.00886. 0.017L3J

0.20480 r L0.01070, 0.022281

0.00790 t IO.00059r 0.000561

0.0105z f ~0.000611 0.00014~

0.01501 f 10.00081. 0.00101J

0.01069 f J0.00099. 5.00122J

0.02345 t 10.00122. 0.00199J

0.03375 f t0.0016b. 0.0024OJ

0.34012 f ~0.00220, 0.0038Il

0.05586 f l0.00298, 0.0047bJ

0.07301 f (0.00382, 0.005801

0.08723 f 10.03453. 0.00935)

0.12421 t lO.O05BU, 1.012ZOJ

0.15671 f 13.00LJ70. 0.01457J

0.19671 f lO.O1521* 0.019blJ

0.23441 f 10.02988~ 0.031681

120

Page 76: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

10.4 GeV 60°

2.000 13.u90 0.1793 O.d17 0.776

2.100 13.543 0.1742 0.79) 0.734

2.200 13.119 O.lb99 0.769 0.731

2.300 12.197 0.1694 0.144 0.758

2.400 12.399 0.1606 0.711 0.683

2.300 11.984 0.1337 U.6YI 0.631

2.bUO 11.332 0.1303 O.bb5 0.631

2.700 Il.103 0.1430 0.634 0.604

Z.YOO IO.637 0.1393 0.604 0.376

2.YOJ 10.134 0.1334 0.514 0.341

3.000 9.633 0.1272 0.343 O.blcl

3.lUO 9.130 0.1208 5.311 0.497

Z.OOU

2.100

Z.LUO

2.300

2.400

2.500

2.600

2.700

Z.YOO

2.905

3.uou

3.AUO

Ll- NXJJ3XON

4.77 t 1 0.31. O.LdJ I.12 t ( 0.36,

6.81 k I 0.59. 0.591 l.YJ f I 0.45,

9.38 t 4 0.501 0.531 3.13 f 1 0.391

12.2Y f 1 5.63. 5.74i 3.94 2 4 0.75.

IS..34 * 1 0.80. l.OLJ 5.05 f 1 5.94,

19.61 f 1 o.e.1 1.42) 5.66 f 1 1.18,

26.43 t 1 J.1t.t l.YYJ 9.23 t 1 1.46,

33.17 k I 1.49, 2.721 12.30 * 1 1.M.

43.82 2 I 2.02. 3.n4t 14.29 f 1 2.49,

36.95 f 1 2.92, 5.38) L1.3.? f 1 3.44.

60.62 f I 4.54. 7.UJJ 24.47 t 1 *.95,

95.90 t 1 9.25. IO.441 5o.dU f 1 9.70,

PJtMW

5.566 t 10.242. 5.1851

4.329 f 10.303. 5.23OJ

6.335 2 15.457, 5.34dJ

Il.826 f 10.323. 0.3531

11.032 t 10.634. 0.6821

L4.77I t to.798. 5.907)

11.645 * 10.918. 1.2461

23.321 t ll.049. 1.671J

30.576 t 11.213, 2.303)

.r7.034 f 11.718, 3.1431

47.307 f 12.438, 4.403)

53.9ZU t 14.701, 6.120)

0.24 I

0.33)

0.49)

0.701

5.99 J

1.41)

2.011

2.771

3.94)

5.531

O.lLl

10.85)

0.01195 f 10.50094, 5.50072J

5.51773 f ~0.001191 0.00098i

5.52316 f ~0.551blr 5.00136J

u.03301 f LO.032Od. 5.052OOJ

0.04533 t lO.OOZbL, CJ.002721

0.03941 * 15.50321. 5.00361)

0.07346 f 15.50372, 0.00303)

0.09393 t 15.00428. O.OOb1)ZJ

0.12365 r 10.00323, 0.009471

0.13399 t 10.53712r 0.01333~

0.19Ukl f 10.01013, 0.010391

0.22713 j. lO.01985, 0.023181

J.01865 f C0.00121, 0.50109l

O.UZbfO f 15.00132, 0.00134J

0.03776 f l0.00199. O.OOZlOl

0.011177 f 10.00231. 5.002931

0.06321 f 15.00319, 0.00407J

0.07891 f lO.UO391. 0.50372~

0.15700 9. 15.00469. 0.50807J

0.14342 f 10.00608, 0.01111)

0.18009 * 10.00131, 5.01377I

5.23573 t J0.01258, 5.52229l

O.LIbbU f 15.51815. 5.53271J

0.38286 f ~5.53896, 0.043981

121

Page 77: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TABLE IV - 4

6.5 GeV 60'

1.073 9.251 0.2838 0.971 0.669

1.100 9.209 0.2827 0.963 0.804

1.123 9.lbb 0.2816 0.960 0.879

1.120 9.122 0.2805 0.934 0.873

1.171 9.07r 0.2794 0.948 U.BbLL

1.200 9.031 5.2702 0.942 O.BbL

l.&?S a.984 5.2770 0.935 0.851

1.230 0.936 0.273b 5.V29 0.851

L.L73 u.ee7 0.2745 0.923 0.843

1.300 6.037 0.2732 0.916 3.b39

1.325 8.786 5.2719 0.909 0.831

1.330 0.734 0.2706 5.v53 o.t121

1.373 8.681 5.2692 0.896 U.&i1

1.450 8.627 0.2670 0.869 0.815

1.425 8.572 0.2664 0.882 0.8Oll

1.430 u.317 0.2649 o.n73 0.802

1.475 a.460 0.2634 O.(Lbl 0.7cz

1.505 8.402 5.2119 O.SbO 0.7UY

1.225 u.343 5.2604 O.l&! 0.782

1.530 8.204 0.2380 0.945 5.775

1.373 8.223 0.2572 0.837 0.766

l.OJO b.162 0.2336 O.b.?P 0.161

l.OL5 b.599 0.2339 0.8&l 0.754

l.bSO 8.036 5.2322 5.814 5.141

1.673 7.971 0.2303 o.mo!l 0.140

1.700 7.956 0.2487 0.797 0.732

l.723 7.839 0.2469 5.769 0.723

1.755 7.772 0.2431 O.lb1 0.117

1.773 7.103 0.2432 5.77L 0.710

1.800 7.634 0.2414 U.764 u.IU.2

1.ac5 7.364 0.2394 0.755 5.494

1.850 7.492 5.2373 0.147 U.bdb

1.873 7.420 0.2355 0.138 O.L79

l .YOO 7.347 0.2335 0.729 0.671

l.Y.25 1.273 0.2314 U.710 0.662

1.950 7.197 0.2294 5.711 0.054

1.973 7.121 0.2272 O.75L O.b4U

Q2 (0.V2)

c x’. x’

PROTON

-O.LlB t 10.206,-5.0001

0.257 t tO.L33. 0.0761

5.342 f (0.248, 0.082)

0.962 t 10.261, 0.0941

0.442 * JO.LOO~ 0.0741

1.354 i 10.277, O.llOJ

1.679 t 10.282, 0.1241

2.068 r (5.287. 5.131)

2.484 t 10.303, 0.1471

3.469 t 15.340, 0.1861

A.000 z 10.322, 0.170)

4.014 t ~0.332. O.ZllJ

4.442 L (O.db2, 0.231J

!&be3 t 10.422, 0.2831

6.4lY f 10.424, 0.3191

b.9b7 f 10.464, 5.343J

9.519 * (0.5651 0.4311

13.247 t JU.644, 0.6OYJ

ld.t)YS f. (0.679, 5.6431

11.633 * 10.620, 0.5591

AU.733 t 10.611. 0.530)

11.903 f 10.638, 0.388J

AL.925 i 15.669, O.bClJ

17.549 * 10.1)09, 5.8471

LA.931 * IO.9441 1.046J

~3.538 f 11.013, 1.216)

24.795 f li.026, I.2021

Z&A50 t 11.084. 1.375)

db.i!&U t 11.579, I.3081

L7.751 f 11.132, 1.396)

dl.4bl t Il.2311 1.385)

3L.lbY t 11.308, 1.6451

36.085 f (1.431. l.BSLJ

31.611 f 11.337, 1.9371

43.bb2 t (1.734. 2.1661

43.12Y f 11.823, 2.3821

5L.U44 f 11.942, 2.738)

-0.05028 f J5.50027.-O.OOUOOJ

0.00027 t IO.000301 O.OUOlOJ

0.00571 t (0.05032. O.OOOllJ

0.00126 A (5.00034. 0.000121

0.00058 f 10.00026, 5.000101

U.55198 2 10.50036. 5.050141

0.00241 f ~0.05037. 5.055161

5.00273 f ~0.05038t 0.00017~

0.003211 f 15.00040. 0.00019J

0.50462 f 10.500431 0.50025J

0.053Yd f 10.00543. 5.000LPJ

0.50534 * 10.055471 0.0002e~

0.00596 t (O.OOUCB, U.OOO31J

0.50759 t 15.00036, 0.000381

0.05867 f J0.00037, O.OOMIJ

0.05935 t IO.OOObZ, 0.500461

0.01280 f 10.05073r 0.000611

O.OL78d f J0.50087. 5.00582J

0.01877 f 10.00092. 0.000871

0.01575 f 15.00084, 0.5007bJ

0.51457 f 10.05083, 0.00572)

0.01625 t l5.05089, 0.000801

0.017bS f 10.00091. 0.00587l

0.32433 f 13.30111, 0.00116J

O.J35#7 f ~0.00129, 5.50143)

0.03511 + J5.00139, 0.00167J

0.03418 f (0.00141, O.OOlbbJ

0.03Yl9 t 10.05133. 0.05190l

0.03bQQ t IO.00150, 0.051811

0.53858 L J0.0515lr 0.001941

0.94363 t 13.00172. 0.002211

0.54490 t lO.O51t)31 0.05230J

0.05060 t lO.UO203, O.OOZbOJ

0.03290 f J0.50219, 5.002751

5.06145 t lO.ODZCS, 0.0032OJ

5.0638S f 13.33258. 5.00337)

0.57359 t 15.50276~ 5.003891

122

Page 78: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

(CL,

2.000

2.150

2.200

2.300

2.4OU

2.3UP

L.bJU

2.U00

2.100

2.250

2.350

2.400

2.305

2.600

Q2 (G.V2)

7.044 0.2231 0.69J 0.63U

6.726 0.2161 O.b3b 0.654

6.392 0.2066 O.blU 0.569

6.043 0.1965 0.37a 0.533

Lb79 0.18511 0.530 U.496

3.29a 0.1744 0.497 0.439

4.903 0.1625 0.*35 0.420

TABLE IV - 4

6.5 GeV 60'

x- x’

DRUZERON NWIRON

77.44 f I 1.74. 4.901 25.7d 9. I 3.47. 4.97)

103.32 f 1 &Ode 1.251 Al.97 * ( 4.141 7.44)

140.00 f t 3.30. 9.11OJ 47.06 f ( 5.94, 10.14)

195.14 f I 6.14. 14.391 68.91 * 1 8.73. 14.96)

244.67 f ( 7.42, 25.411 89.53 L 110.92, 21.29J

311.06 2 I 7.42, 25.401 114.83 t JlZ.Sb. 26.501

391.62 f I 1.42, 3L.331 446.16 i (14.69, 32.68)

& (a 1 dGd2’ Cd’-8r

PWTON

IS.29 t 1 1.07. 3.32)

75.04 f I 1.16, 4.631

97.71 f 1 1.43, 6.381

120.22 t I 2.77, 9.291

157.98 t L 7.13, 13.631

~0L.57 t Ill.401 21.27)

dud.77 t 116.48, 25.331

0.01813 f 10.00132. r).OO473J

O.lOU25 f lO.OOlblr Q.OObb9J

5.l4291 f I0.00213. 0.009631

U.19522: i 10.00412r 0.0137OJ

0.23798 f (0.01077. 0.02033J

U.31501 f (0.0174S. 0.0325fi

O.C492I f l3.02563r 0.039421

O.l lOA5 f J3.55248. 0.50698J

5.14903 f 10.00293~ 0.01046J

0.20392 f ~0.05512. 0.01434J

0.282ia f ~0.00911. 0.52133J

0.36837 t tO.Olll~r 0.030738

0.47bOk f lO.O113b, 0.039881

3.60930 f ~5.01155~ 0.54177)

123

Page 79: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

CHAPTER IV - REFERENCES INTRODUCTION

1. L. S. Rochester et al.(to be published).

2. G. Miller, Ph.D. Thesis, Stanford University, SLAC Report No. 129

The measured cross sections at 50° and 60' cover a wide range of

kinematics and give new information about the nucleons for both elastic

and inelastic electron scattering. A general form of the cross section 2 2 2 (1969); also

(1971).

3. L. W. MO and Y. S. Tsai, Rev. Mod. Phys. 41, 205

Y. S. Tsai, "Radiative Corrections to Electron SC

SLAC-PUB-848 (1971).

attering,"

4. S. Stein et al., SLAC=PUB-1528 (1975).

5. W. B. Atwood and G. B. West, Phys. Rev. Dl, 773 (1973).

6. R. V. Reid, Jr., Ann. Phys. (N.Y.) 2, 411 (1968).

7. J. I. Friedman et al., SLAC-PUB-707 (1971).

a. R. L. A. Cottrell et al. (to be published).

E. Allton, private communication.

CHAPTER V - RESULTS AND CONCLUSIONS

(5.1) a = e anaEr I,E 2 sin40/2

0 tan2U/2 )

indicates that for small angles and energy loss the measurements will

be dominated by the behavior of W2. W2 has been carefully measured

in previous experiments (Ref. V-l). For the measurements reported

here at large angles and energy losses the contribution of Wl to the

cross section is much larger than that of W 2’

In a composite model of the proton (with spin l/2 and spin 0

constituents) W 1

is determined by the scattering from the particles

with spin l/2, but for W2 particles of both spin 0 and spin l/2 can

contribute. Thus in a simple quark model Wl directly measures scatter-

ing off the quarks, where W2 might contain contributions from spin 0

"glue" particles.

The measurements at 50' and 60° were carried out in a region where

the total mass of the recoiling hadronic state is small compared with

the momentum transferred to it. (This region is referred to as the

"threshold region"). Because of kinematics, the fragments all travel

away from the collision with small relative momentum compared to the

total momentum given to the hadronic system by the incident electron.

For the large values of momentum transfer covered in this experimer

124 125

Page 80: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

the interaction is occurring over very short distances compared with

typical nucleon dimensions (for Q2=20 GeV2 we are probing distances

of approximately l/20 of a nucleon diameter). Thus a very small

fraction of the total volume of the proton is "hit." In a simple

picture, the large momentum transfer must be absorbed by a small part

of the nucleon. Nevertheless in the threshold region the whole nucleon

and any other particles produced must share this momentum in order to

recoil in a state of small mass. The cross section is therefore sup-

pressed in this region.

Elastic scattering is the extreme case: a single recoiling par-

ticle carrying away all of the momentum transferred. If the proton is

a composite particle, it is difficult for all the parts to stay together

in high energy collisions. This is particularly true if all the momentum

transfer is to a single constituent. We therefore expect small elastic

cross sections.

The range of the interaction for inelastic scattering is also

small. The large inelastic cross sections support the thesis that the

nucleon can be described by small charged constituents rather than a

smooth charge distribution. In the simple quark model the neutron and

the proton have different quark constituents which naturally leads to

a difference in the total scattering strength of these two systems.

Electroproduction experiments have demonstrated that the two nucleons

do have different scattering strengths and this difference is largest

in the threshold region (Ref. V-2) (w<q ). One of the goals of the

the present experiment was a measurement of the N/P ratio in this

region.

This chapter proceeds as follows: Elastic scattering is discussed

first and a comparison to previous data is made. The behavior of the

Wl structure function of the proton is detailed next. The extension of

previous parameterizations of older data does not agree with the present

data and alternate solutions are studied. The chapter concludes with

the neutron to proton ratio. In the analysis only the statistical count-

ing errors are used when plotting and when fitting functions to the new

data (except where noted for elastic scattering).

ELASTIC SCATTERING

Elastic scattering from protons was measured for incident energies

of 6.5 GeV, 13.3 GeV and 19.5 GeV at a scattering angle of 60'. Some

lower Q2 elastic peaks were measured at 50' and 60' with incident ener-

gies ranging from 1.5 GeV to 4.5 GeV during the experimental "check out"

periods.

These low Q2 elastic peaks are high statistics runs and clearly

show the elastic radiative tail between the proton mass and one pion

threshold. Empty target contributions were measured for each point and

subtracted from the data. An unfolding technique was employed (Ref. V-3) ^

to account for the radiation processes. Of the higher QL data only the

measurement made at Eo=6.5 GeV had sufficient statistical accuracy to

allow use of the unfolding methods.

The measured data for the two highest Q2 points are shown in

127 126

Page 81: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

Fig. V-l. Also shown in this figure are the measured empty target

contributions. The empty target cross sections were measured to be

"flat" in the elastic peak region and all the empty target data for

Wc1.075 GeV were combined to reduce the error introduced by this

correction. 8

The radiative corrections were made using the formula given by

Tsai (Ref. V-4). An energy resolution equal to the missing energy

between the elastic peak and one pion threshold, AE'=E'(elastic)-E'(M+Mm)

was used. The final values of elastic scattering cross sections are

given in Table V-l.

6

The elastic cross section can be written in terms of the two form

factors GE and GM as

(5.2) au = - uNS (G~~+TG~~ f 2-r tan2012 GM') an 1+ =

2 uNS =Cl

4E 2 -0 sin4012 cos20/2 1 ; and T= Q2/4M2

1+2E,(sin 2- 0/2)/M

At high Q2 and large scattering angles the GM contribution to the

cross section dominates. The assumption of form factor scaling, i.e.

G =G /u E M p' is often made although there is some indication that GE falls

faster than this (Ref. V-5). Form factor scaling predicts that by a

Q2 of 5 GeV 2 and 6=60°, GE contributes only 3.3% to the cross section.

Thus, measurements at large angles are insensitive to GE, if GE is not

S2 larger than predicted by form factor scaling. GM is given in Table V-l

along with the measured cross sections, where G s2 M is defined by

(5.3) do -= dCl

uNS (G:)~ (11 p2 + T + 2T tan2e/2) l+T

IO

0.8

0.4

0

l Full Target Data o Emty Target Data (MT) I I I I I I I I

Eo= 13.3 GeV 8=60°

E’ = 1.645 GeV Q2= 21.88 GeV2

$+I) = 0.179+0.048x iO-4

- ~(MT)=0.057+0.0lI XIO-4

Ea= 19.5 GeV 6=60”

E’ = I.712 GeV Q2 = 33.38 GeV2

-0.08 -0.04 0 0.04 0.08 MISSING ENERGY CGA’)

FIG. V - 1

The measured elastic peak cross sections qff hydroge and the empt target cross sections for Q = 21.8 GeV 9

and 33.4 GeV 3 .

29

128

Page 82: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

'Z-A '%Td UT aU?T PJTOS E SE PaJJoTd

ST 31 'TTafi XTqo"oseaJ zAa3 v'EE>zb >ZAa3 Tc' 203 erlep paxnseaur aq3

aJnpold= saop 2nq asuesy3ruays Tesrsdqd xaqao ou SET alo3 ~79~ '0 tzb

se T 30 anTe* aq3 pue Zb a%lET me ciorneqaq ,blT pahlasqo aqz a*r?q 02

pa2sncpo SEA ‘uoy~ozyza~amsxed zoq pa "e ‘~seT aqL *Z-A aTqeL "r uaAr%

ale WY3 snoTleA 103 s, Xpue ‘szaqamolod Ls~xo3 Tsuogz"n3 aqL Z

*laJJaq dTqorxapysuo3

s1: Wep JqJ 30 qxnm 30 dmmssa Tasy2sy2exs aq2 qanoq~ uaaa rs*zT

aq 02 pasn s"orr)aas ssox3 pamsEam aqa 30 due u;r loxa rnnru~"~~ aq3 Jas

an ‘IT3 sl"awTxadxa a"ala33Tp aqa uaawaq dem aJswyxozddo UE UT slozua

slc2erua2sds apnTs"r 0~ *Ze

rt/ t3) 02 s’lr3 snorxen pay12 a*eq afi

-113 avdrp aw 2noqe ,,aLWETTCT3SO,, e~ep aq2 30

asn=J 32 s? loweqaq ,b/T aqrl qxacf aTodrp aq3 PUE e~ep aq2 qs:qbi 2~

saaez aqJ UT amaxa33:p aqJ *oTnnuo3 aTodyp aq3 "eq2 xaasE3 xorneqaq

,b/r s?~o~dmCse aqjrr qseal 02 maas e~ep aq& ',(TL'I~~+T)I~~ :?b saw

eTnuLIo3 ,,aTodrp,, aq3 sy (au:T paqsep) amar srq') "o paJ>oId OSTV

.z~o~sa3 111x03 aqa 103 ?b/T 30 lo:heqaq

syJoJdrm(se "e q2T-M 2srT3"or, UT JO" ale e~ep aqd '(L-A *3ax p==

E-A '3aa) z-A mara UT ezep 3ms snoyAaxd pue e~ep Ino 103 d’l/ $I ?b

JoTd aM ‘(9-A '3aa) lella~ pue I(ySpOlg 30 seapr aqll %qJdOpg

Page 83: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

Q4 G

; /p,

(~ev

~)

P 0

0 0

- P

l 0

Iv

CA

b b

b-l

'18T

OO

' =

'3

(E3z

3/T3

-T)

= V

68TO

O'

+ 26

LOO

' =

'3

ETO

' T

LT‘E

' =

'3

L-60

' 7

TS9.

T =

'3

%+,

b vb

SZIZ

’EE

9ZlS

’9L

EOO

’ T

ZO’I’

= Tc

3 tr+

&,

,ba-

T)

(Z3,

zb-a

-T)

L3

(ST*

EZ

= '3

/T)

TLTO

' T

ZEfO

' =

%I

(OEL

' =

z3/T

c)

'?SO

O'

7 66

9E'T

=

'3

f000

' T

ETO

O'T

=

T3

(TTL

' =

Tz/T

)

TEO

O'

'7

Z9O

tl.T

= '3

z(Zb

E3+T

) z

(,bz,

+T)

'3

- T

+ '3

,(,bT

3+T)

T

-

z -

A 3W

VL

Page 84: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

0 b 0 b

x ;: A N

. 2

0 A

2MW

I

0 I -

IllI/

I I

llllll~

I

I Ill

l1l~

I

IllIf

- -

3 /

so go

I II

I1 I I

1111

111

I I

I111

111

I llll

l

0 0

-IT

IL

Page 85: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

2MW

I

- L

%

0 0

b bl

0 j

0000

00

jb-h

inbb

X.

0

u1

0 cn

O

cnO

~Ocn

6 a

Page 86: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

EZT GT

TZT -- OET

ZZT EO(

TIT ITZ

ZZT TE9T

2x

~90' 7 SOt/'T =;Ii L61’ 7 STL’- -‘IX

911' rF 66S'E -t= EZT - OET

LSOOO 7 LB900'=(,VIT) Z9L’E 7 09Z’E =9w

9'1E'+/ T WE’L- =%

E9S'T 7 9LL.9 =‘I?

ZLI' T TZT' -QJ TIT m

L90'E T T9O'Z-- =9e 89t'E T ZES'-=s, EZZ'T + O'/E'V= 9 =

ZET' T E90'=Etf ZZT 28z

SLOOO- 7 TZZO.=(,V/K) 61-L + ‘IZ’t -9,

S IZ’8 + lL’6- - e

$76’1 T IZ’S =‘= E TZT -

SE' + OS'Z = = iE

ST’9 7 19-v -9,

IS”1 7 LZ’OT- -5, -

ZS’T + L9’f = 9 8

91’ T If’ -f= g+

Z’/O’ 7 89E.T =g Z'IO' + EL'I'T -*w

161’ 7 968’- =%J f EZT

681’ T 6OS’- I 8

tTT' + E+/S'E ='* LZT 9 III’ + 61’7.C = s

9SOOO’ 7 OE900’ =(,V/T) 66000’ T SLLOO’ =(zV/T)

‘rT8’E 7 998’t-9a 90S’E + Of& -9,

ZSO’f + fZZ’9-- S 8 t LSV’T + 161’9 - B

091’ 7 BIT--c, TZT GE

f06.Z + 9ZZ’Z- =9w

681-t 7 9X’- -% ‘I Z9T.T + T60.f I 8

921’ T 990’ -Ee ZZT iz

tL000’ T ‘1120’ =(zv/I) 9 OL’9 7 S9.E = a S S9’L 7 SO-G- = =

tf’z T 00’S =‘lJ III

9 116.E + TO-9 = = S 8Z”/ + 6’?‘6- = =

W'T T TZ’L =‘a

fT’r.9 + 19Z’f-- S 8

h6S.T T 8E8.9 -‘*

6fT’ + 6CT’ = E 8 -

6EO’E + 1116-Z-= 9 =

Ltll’E 7 6LZ’=‘,

ZKZ’T T 711.*9-‘e

IET’ 7 SLO’ =f=

fL00crTE&Z0’ =(zv/T) 9 62’! + 09’7= 8

‘zE’8 i 8,*OI-=s~

66’Z T m’s -t,

SE’ T LS’Z =%

1-c-9 T zs.‘1-9w.

L’I”I 7 6Z’OI- =‘EJ

TS'T + 69.L-‘e

91. ? OE’ -Gf

z” + z0 -$i- nwz =*x I s-0 83

,('X-T)"* 3 x S

f-U n(,x-T)n* 3 IX

S

NOLO'dd 'dlU d0 NOICXUld iMI-LL3flXS

c - A awvr

Page 87: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

I X .

A -

h

- -o

-

-

.-e-

I I

I

Page 88: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

wno3 aw mol3) ,blr se wu p*e M pax~3 103 gb/r SB 11e3 p-rnoqs

la?pald PInoh (11-h ‘3ax) uoyqelal rlsaM-uex--r-yala aql pue Es 30 ctoraeqaq

,blr au ‘paasadxa SEM laq& 111013 luazca33rp ST MEI lanod s?qL

-aq~ yoo~ pInot+ lamed

ql3TJ aq2 puE pzi$ql aqrl 2eqfi moqs 99-A *%TJ UT sahxn5 aqA *‘X snsran

99-h ‘%Td u1: pue ,b snsrtaA eg-A *S~J uy ++sx-r)/‘~ wz palm@ afeq JM

aauapuadap MEI lamod aqq a~a.IJsn~~~ 01 *itanod q33r3 aq3 30 Junome 1~~s

e %u:pnI3uT Xq paurelqo alad s, X Jsaq aq2 pue 1~e le palFnbal lou sy Z

lamed plrql aqL “I 6-n 4 ~03 paqunosae KT~SOUI aq 03 pun03 sy 1 fi ‘fi

pax?3 103 zb qBrq Je suoTlsun3 a2nlancIJs aql 30 330 ~1~3 aq2 sauymciaqap

a~ ~03 Jsalaluy 30 ST (Sx-r) 20 (,X-I) 30 lamed Buypea~ aqL

. (apew alaM sJz3 aqa qsrqfi 0~ Blep aql UT pasn uaaq aiwq scioccia BuyJunoa

~esylsyle~s Xxuo leqa reenact) mopaal3 30 aaz8ap lad auo 01) aso~r, Xzcaa

Page 89: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

2MW

,/(

I -x4

4 0-

NrU-

PPCn

2M

W,/(

I -

x5)4

0

- Iv

cr

l P

0 b 0 b

I I

b)

2MW

l/(l-x

I4

pl

otte

d ve

rsus

x

. Th

e lin

esSi

ndic

ated

wh

at

the

@bi

rd

(sol

id

line)

an

d th

e fif

th

powe

rs

(das

hedl

ine)

wo

uld

look

lik

e.

a)

2Mw1

/(l-x

s)

4 pl

otte

d ag

ains

t Q

2.

Page 90: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

6 6

I ?

6 ?

0 0

0 0

0 O

N -

0 -

i 0

-

-r

I I

I

? 10

0 tr

a20

Inh/

GPV

- sr

j

Page 91: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

‘810113 Burlearns pue say3uyeJciazwn aa%mj

apnImr slolza aywmaJsds aqL '009 P”e 005 103 SOyl)al d/N amSSauI aqJ

E9T' Tr5z* 890' TILZ’

fS0’ +V8Z*

LSO’ T09E.

Z90' T60f'

6'70' 7 6'7C'

SSO’ T SSfr’

Vt/O’ ToEv-

8&O' TsEtl’

9&O' TVI+7’

OEO’ +06'7'

TEO’ TOLV’

‘150’ T90s.

6'70' rir ZfS’

090' 7 ESS’

660' T ZO9'

790' T 86s'

650' + 209'

EZ-C’ T66S'

t/SO’ ‘TSOS*

00’1. + 909 -

580' r;r SZS’

d/N

00’1 - ‘IL’

00’1 - EL’

66' - -if’

S6' - 69’

16' - L9'

88' - 19'

58' - E9'

18' - 19'

8L' - 09'

SL’ - 8s'

‘CL * - 9s’

89' - PS’

59' - ZS’

Z9’ - 05’

65' - 89'

95' - 9V'

ES’ - Et’

OS’ - 19’

99' - 6E'

t/S’ - LE’

IV - SE’

SE’ - -rE’

%uF.zeamS 30 a%uea ,x

5L8-

058'

528'

008'

SLL’

OSL *

SZL’

OOL’

SL9'

059'

SZ9'

009'

SLS’

OSS -

SZE -

005 -

SL’I’

OS?’

szfr *

007 -

SLE’

SZE -

ix

f

Page 92: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

OS1 6'71

'IX SnslaA pallao1d oy>ax d/N ayL

6 - A '3~

‘S~uaruamseam snoraald qJJM ~uay3ysuo3 sl: oJl81 d/N aqL

*punol%yasq aql 02 a~qe~edmo~ uremax suoy%az axxauosax pxrq3 pm puosas

I I I I I I I

Page 93: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

ZSl 151

(panuguoa) S33N3X3tIiTkl - A 'd3LdVH3

Page 94: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

'ISI

'68-3 ur pasn xaquno3 hoyuaxa3 se% pIoqsaxq2 auerlnqosr aqrl 30 2nol;s-r v

1-v ‘3IB

EST

*saTysnquml aqa 8uTsn IOIL~UJ aq2 Buydlm Kq apem alah s~uam~sn[pe

as=LT. *"ztazltzd "O~JET~ECL rrq%rT noyualas aqa azaTnmrs 02 cua~~~ds suaT

sseI%TxaId -[ezg~o~ 8 %uysn payaaqa pus pazT"Tado alaM JOJIQI aq2

30 saraladozd Bursmo3 aq& -bases ImTJdo gyms e Bu:sn zaaunos

aoyualaz aq2 ur pau%rIe SBM lorcirru aqa se TIabi se XTqwasse srqJ

.sapoq2eJo2oqd aq2 OYIUO 2qSy~ AoyualaD aqr, ~sal3a~ 03 padlaq ccoz>aIToS

J@TT paz:uFumTr? TSJ~"OJ aTqnop V *apTs Kq ap;cs pasaId SlJ:Td~zTnUI

-oaoqd d*Ha 85 xaladq OLW 30 pa~srsuos K-[qmasse aqnaozoqd aqJ,

.sse@yxald aqJ aprsur pasnpold I)qBrT hoyuaza3 do23 0~ umu?mnTs

qllrl9 paJeos SEM lOll~Ul aq3 30 ap-Fsy2eq aq& -"o~~ep;cxo ~0x3 mnurmn-[S

aqq zzar)old 02 paJ:sodap SEM umu:mnTt, aq2 laJ3e KTaJeTpaunu: izoc~~yrn

aqr, 30 ase3ccns ~11023 aql "o paqysodap SBM ZJQ 30 Z'uyJeoz-lano g 00~ V

‘8 oosz 3 o ssauyc)rqll s 03 umuyunI8 EiuFarsodap lodeA Kq pa~!sos SEM

r~ocup aq3 ‘,,gz x,,9z 03 y=qq aq3 W22nr, 2aJ3v '~2 gc1 30 snrpex

8 ql?M PTO", "Oql'SJ Tearlaqds e "0 papTO" dUInTS sa@yxaTd 30 Jaaqs &

e ~013 paw103 set4 yut2Tq J.OCIJ~U aqA *uorJanpold uola=ala uo-ysouy

a3npal 03 aIq?ssod se "FqJ ss ap8lu alafi smopu~m lneaq aq,I -aIins

-oI="a se8 aq3 paw03 ams23 aq2 02 paqse22e sT~sm mnu~wnTS ,,gT/T pue

~~03 cunurmnT8 ,l-(o()' JO snopuy4 wzaq orn~ osaqnxoaoqd pus KTqwasss

JOICQUI aqll paqloddns ameci3 mn"ymnTe ue ‘1-V '8~6 IIT uMoqs SV

*~uamr~adxa aq2 UT Buruor~

-sun3 SJT pue "FiTsap sxy Jnoqe s~re~ap 273rsads sJuasald xrpuadde

S?YL 'la3unoz Aoyualas seS pToqsalq2 ‘acmJxade a%eT e SEA mazsbs

uoFqaa[al uord/uoyJzaAap uolrlsaTa aq~ 30 Juauodmo:, lo[elu V

lT3LNn03 hOXN3lI33 3H.I - V XIClN3ddV

Page 95: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

951

ZO-3

9E8’

;‘t.l

LOG

'SO

Z 2S

9'z

EtlY

'G

zo-3

Iozz

’o

068'

601

z3E9

'L

ELV'

51

20-3

3322

'0

LIZ'

091

trIO

'L

U91'

11

ZO-3

96tl1

’3

CflE

'III

trIY'

L '7

8S'E

T.

co-3

ZtlS

3’0

Z80'

+79

S!lL

'tl

Ct19

'LI

zo-3

LY91

’0

tlS6'

8OZ

629'

5 KL

L'G

zo

-3O

SSK’

O

f‘[3'

G6I

86

9.-Z

1G

ti.G

ZO

-3ZG

ZI’O

O

LL'IE

Z 9O

S'Z

GLZ

'G

so-3

SEZG

’O

GG

!z'O

tlI

GIZ

'l G

IG-I.

1 LO

-311

LY9’

0 Zt

rG'Z

I'I

03S.

E G

GZ'

EI

so-3

ftrljI

’O

IEZ'

Itr

IfiG

'S

366'

12

‘SUO

-yso

uy)

IJ

9Z’b

I 9c

L’9Z

trS

’IZ

GI’9

2 ES

’+lS

ZI

’tiI

SS’G

I 91

’91

ZC’L

Z ‘T

U'SZ

SU

’Etl

trOS'

E1

OO

Z'L

OUS

'UI

96Z'

L 96

-t.V

OO

L'SI

EO

I'!iI

ZUZ'

Sl

COZ'

G

IOtl'

L G

G9'

Z

,OT

X (T

-U)

IfI

zx

Ytrl

Of

GZI

3s

trG

1 O

S 83

zt

r 85

$2

3s

flL

us

92

flf

l 97

1 of

i zz

VI

I!

Pi

2

AaH

ZZ'Z

Kl

=T

NO-8

30NX

S3

AI3

AaH

O'O

OST

JO

PUl

LN3l

4OA

NOId

S13L

Nll0

3 AO

BN31

I33

WlO

HS38

HL

NI

(13S

i-l S

3SV3

JO

S3

ILL8

3dO

ZId

W3I

STHd

T -

V 31

8VJ.

Page 96: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 97: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 98: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 99: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

Some physical properties of various commerc lead glasses.

.a1

Page 100: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

TRAN

SMIS

SIO

N (%

I

I I

I I

I I.\

1

---_

U

I I

I I

I I

I I

03

0 5

53

TV

TV

QU

ANTU

M E

FFIC

IENC

Y to

A)

Num

ber

of

phot

oele

ctro

ns

expe

cted

fo

r a

Num

ber

of

phot

ons

prod

uced

fro

m

a 1

GeV

1

GeV

sho

wer

for

vario

us

glas

s ty

pes.

N

O

elec

tron

show

er

and

trans

mitt

ed

thro

ugh

light

co

llect

ion

effic

ienc

y ha

s be

en

incl

uded

a

16

x0

long

co

unte

r. in

-the

calc

ulat

ion.

PH

OTO

ELEC

TRO

NS

Page 101: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

0005 pas* 3-q a~ *laaunos snrpe2 OX f e Kq OX ZZ e 103 Ktixaua

sns2aA uor~nTosa~ cca~uno3 paq~~n3p~ aqa moqs afi ‘q-g -3rd us

*(qv-8 *EQa aas) saseaxsur K%~aua aq3 se sn~pex aq~ uo

auapuadap ssaT amoaaq 02 spua~ pus ~y~erne~p SS~T ST azrs Terpal 01

Kayay3rsuas uoyJnTosa2 aq;l ‘AW OZ 103 Ox 9Z Pus Aafl 0-T Jo3 OX 8T

1-a m”mT”ym E 8u~qJeacl KTTeuy3 ‘KTTeguauodxa KTa~euIyxoxdde aAocidtuT

I UT suo~~enlsn~~ x3moqs sm aqa aeq> SMOqS -29-g ‘3rd *snTpel pus ‘L

qadap qaoq 02 xaJamexad aarlrsuas al0111 e ST uoylnTosax xamoqs

*asuodsal K8xaua xzauyT e aaeq z!ou TTTA Ox 81 ueq1 x31cLoqs

KTqeyxxdda sxa3uno3 ‘a%uax Aag oZ-T aqa UT sar%aua x03 (Z ‘PUB :KJT

-.~eauyT aqa 2sa33e Lou saop snq2 pue KEhaua ~uaprsur 02 a~~~~suasuy sy

~U~IIlU~S~UO3 Terpel aq’l (1 :a18 S”OJS”T3dOJ aqJ, *Kx~~moa% ZeqJ 103

sasuodsax K%x~ua xoau?T-uou sa~wrpur say8xaua aua1a33rp 203 paxaoTd

saurT aq’l UT peactds v .paJJoTd ST xa~unor, aq2 30 snype~ aqa pue

ql%uaT aq2 snsxaa paure~uor, zamoqs aqa 30 uo~~se23 aq3 ‘c-g *%?J UT

*saTqoJ qxs ~013 pazJoTd aq Ketu sarllrrruanb Buy~saxa~uy TexaAaS

*suox23aTa 2uaprzur *a3 0Z pue 5 ‘T 203 suo~2eTnru~s ~ahoqs oTxz3 aJuoK

q~ns 30 sqpsal aq3 luasaxd a~ ‘aZ-8 q8noxqq “Z-g saTqeL us

-2~ uo pazaJuar, pue ase32ns ~~023 aqa 0~ Tauuou axaM

saTs:Jled IuapyxxJ aq~ *qrlPTfi OX T 30 surq Teuypnzy8uoT pue Ts~pel

u;c pauurq SBM JuatudoTaaap cfamoqs aql *sarwamoa8 laaunor, (8uoT)

OX T+I 4 (*s;cp) ’ X 0, UT padoTanap s~anoqs aqL - (suo3~sap 103

6EL’ =zg) K%xaua 30 AaH 0-T ueql ssaT peq saT3rJled T~2un panoTTo

alaM STyel xanoqs aqL *ssq% zd aaoqss UT pun03 s2uauraTa 30

axn~xrlu aqq 02 papuodsaxoa pa~slaua8 axaM sxanoqs qsrqh u: lunrpaln

aT3rrlzedpa%xeqr, pus IuamdoTaaap Teyasds uT suer JsnzJnT3 IanoqS

.aFixeT 002 5 30 IOJ,SE?J B sdoqlad ala~

‘ases ;mo UT ‘pus ‘KctJamoa8 xeTna?axed aqq uo puadap TTTM Ksuar3~33a

-UT uaaq seq Ksuay~733a "oylaa~~o~ 2q8TT ON *szamoqs *a3 ()‘T 103

qZ-g *FATS UT woqs sy qz8uaT xaJuno2 snsxa* suoxxsaTaoJoqd 30 xaqmnu

pa~eTn5Te3 aq2 pue :TeyTeyq dAa B 30 asuodsal aPoqJsswoqd aq~

~su@e papTo uaqr) SEM mnzasads laqumu uorloqd sFqiL *suoseal anoqe

aq2 JO qloq 203 suolloqd 30 xaqmnu wa%xeT aqJ sah?8 (OX rlsa%uoT)

sseT8 asuap JssaT aq.L *add3 SSET8 zeTns:axed aqa 30 sayJxadoxd

uoyssymsue~~ aqx Kq pauymxar)ap SF 33ozt-c q~BuaTa~om Jxoqs aqll aT?qm

urnxl>ads aqz 30 pua pal aq2 UT sanlns aqL -aTx’lled 8ur1a~ua aq~

IJIOCLTJ ~aqunor, aqa 30 pua aJ?soddo aqa 2s pa1~3oT saPoqJaDoloqd aW

Page 102: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

0000

0000

,*.

...a.

96

9966

.09

9999

6966

ul

wulc

nwu7

ww

wwww

wwww

p*

p***

**

t::::t

tt PP

PPPP

PP

0000

C000

CC

Crrrr

r ww

wwww

ww

rrrrrr

rr

c000

3000

cc0

p~p~

ocoo

po .

. .

. .

Page 103: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

bSOG'O-+ZS966'0 6SOG’O-+E9’766’0 bSOO’O-+ZS966’0 6400 ‘0 -+E91rb6 ‘0 bSOO’O-+24966’0 6SOO’G-+E9C66’0 bSOO'O-+X966-0 6SOO'O-+E9+bb'O bSOO’O-+24966’0 64GO’G-+E9’rbb’O bSOO’O-+25%6 ‘0 6400 ‘0-+f9t66’0 6S00’0-+2S966’0 6SGO ‘0-+E9C66’G bSOO’O-+25966’0 6500 ‘0-+E9fbb’O 6SOO’O-+24966-O bSOO’O-+E9f66’0 bSOO’O-424966’0 bSOO’O-+E9fbb’G 6400’0-+249bb’O bSOO’O-+E9f6b’O bSGO’O-+2696b’G 6SOO’O-+E9C66-0 6500-O-+bt966’0 0900’0-+GYC66’0 bSOU’O-+L*966’0 0900’0-+64’766’0 0900’0-+ 2C966 ‘0 0900’0-*f5’166’0 0900’0-+8 2966’0 0900’0 -+O+Ab6 ‘0 1900’0-+LO 966 ‘0 2900’0-+OZfbb’O 2900’0-ib946b’0 29uO’O-iCBE66’0 L900’0-+OLSbb’O f900’0-+SCE66 ‘0 9900’0-+E8+#6b’O s 900 ‘0 4so C66 ‘0 6900’0-+llfb6’0 6900’0-+LE266’0 BLOO’O-+98 266’0 flLOO’O-+Eil66’0 CbOO’O-+96066’0 C600 ‘O-+tt6(tb’G SI IO-O-+O+Wb’O 9110’0-+98986-O 8’110’0-+SL Cbb l O bClO'O-+lEEflb'O GG20’G-4L98Lb.O 0020’0-+62lL6’0 BtZG’O-+CtOL6 ‘0 8’/20’0-+01696’0 8Ec0’0-i21646’0 LEEO’O-+CbL4b’O 89+10’0-+L~C~6’G L9f0’0-+OS2’~6’0 8190’0-+BSL16’0 Ll90’0-+6991b’O 19LO’O-+86SW l O 09L0 ‘o-*Y2s8~‘o S960’0-+9b if8’0 f960'0-+BEifY'O 5021’0-*1E28L’0 f021*0-+9818L'0 9Lft’O-+LCSOL’o 9L~l’O-+toSOl’O 6LLl’O-+90609’0 6LL1’0-+8L869’0 SSIZ’O-+29Sbt’O t412’0-+1f~6’r’0 0992-O-+5649C’O 8992’0-+6A59E’O 292E’0-+986CZ’G C92E ‘0-+SL6EZ’O 068C’O-+SZOEI’O EbEE’O-+3lOEl’O 29Sf’O-+84lSO*O 89Sf’O-+‘IS ISO’0 8915’0-+19110’0 98iS’O-+bSllO’O

O’O-+ 0’0 o-o-+ 0’0

L 9

SM3CIOHS L11 ’ ‘1 ‘Y S8’8CZ =HAE)N31 HlVd ‘XVW 33VY3hP ‘SMU13313 A33 0

S900*0-+9El b6-0 S900’0-+9E16b’O S900’0-+9El bb’0 4900’6-+9El bb’0 S900’0-+9E166’0 S900’0-+9El bb’0 S900’0-+9ETbb*O 5900*0-+9Elbb’O S900’0-+9Ci 66’0 4900’0-+9Elb6’0 S900’0-+9E I bb’0 S900’049Elb6’0 4900’0-+SE166’0 4900*O-+EEI bb’0 9960’O-+OEl66’0 9900’0-+91166’0 8900’0-+96066-O 8900’0-+49066’0 OLOO’O-+OCObb’O OLOO’O-+C6696’0 ELOO~O-+ZC686’0 l860’0-+Ll886’0 LbOU’O-+OSY86’G L110’0-+60686’0 8~lo’o-+oL086’o 6bIO’O-+EEfL6’0 4’?20’0-+lBY96’0 SECO’O-+98556’0 49fO’O-+USOC6’0 5190-O-+11516’0 &SLO’O-+26EEB’O 29bO’O-+lCOfB’D E021’0-+S0lbL’0 ‘ILfI’O-+f’lfOL’C~ BLLl’O-+SEBGY’O SSIZ’O-+f1~6t’O U992’0-+0959E’O 292E*O-+S9bEZ’O 268E'O-+OlOEl'O 895+/‘0-+15140’0 E@15'0-+8411~'0

o-o-+ 0'0

S

tLOO’O-+SLS8b’O 1LOO’O-+SLS86’0 tLOO’O-+SLS86’0 1100'0-•SL~Eb'O iLOO=O-+SLSB6g0 1LOO’6-+4LS86*0 tLOO’O-2SLS86.0 ILOO’O-+SLSB6’0 lLOG’O-+SlSQb’O lL0G’o-+SLS86’0 lLOO’O-+SL586’0 tLOO’O’+LLS86’O iLOO’O-+fLSCdb’O ZL00’6-+fLSB6’0 lLGO’O-+b9586’0 ZLOO’O-+LSS86’0 ELOO’O-+8ES86’0 CLOO’O-+LOSBb’O f.! OO’O-+SL386*0 ELoO’O-+C~~86’0 lLG0’0-+06E86’0 MOO’O-+98286’0 8600’0-+ZE186’0 81 IO-O-+106L6’0 L’?lO’O-4CBSL6.0 Ybl0’6-+YZOLb’O ECZO’O-+CS296’0 ZEt0*o-+f61S6’U E9fO’O-+ZOLE6’0 2190’0-+fOZi 6’0 SSLO’O-+82188’0 6560’0-+~1 BE@‘0 OO.?I’O-+S+?bLf‘O 21471 ‘o-+oE~oL ‘0 9LLl’O-+tSL09’0 ZSIZ’O-+bSEb+‘O 9992-O-+02S9E’O 192E’O-+8*6EZ’O E6BE’O-t66bZl’O CYSf’o-+5~l50’0 061S’O-+LS IIO’O

o-o-+ 0’0

c

0800’0-+bf’?L6’0 0800’0-+6f~L6’0 0800’0-+6CfL6’0 G800’0-+63fL6 ‘0 0800’0-+6ffLb’O 0800-O-+6’hLb’0 0800*0-+b+rfLb’O OBOO’O-+6ffLb’O 0800’0-+bC’?Lb’O 0800-O-+6’hL 6 ‘0 OEOO’O-+8f+Lb’O 0800’0-+dVfLb’O 0800’0-+9f$fb’o 080b’O-t9ESf.6‘0 08UC~‘O-+~Z‘~f6’0 6LOO’U-+96EL6’0 0800’0-+OLEJ.6’0 0800’0-+S*tL6’U KQOO’O-+66216’0 snuo’o-+~l2lo’o @600’0-iSLOLb.0 91 IO-O-+SYftY6’0 bf10’0-+L9S96’0 ~610’@-+00196’0 IfZiJ’O-+ZLESb’O 62co’O-+sSL~6’0 09VO’O-tSE626’0 bOYO’O-+82506’0 ZSLO’O-+29SL8’0 ‘?SbO’O-+19EEb’O 8611-O-+lbSLL’O uLtll’0-+9LoOL’O +JLLl’O-+f85OY’O IS Iz’o-+SSz6~‘0 LY9L’O-+L9C5E’O 092E’O-+126tZ’U

-266E’O-+88621-O *9s’I-o-+ 1flSO’lJ tblf’O-+SSllO’O

a-o-+ 0’0

EllO’U-+290Sb’O EllO’O-+29OSb’U EllO’O-+290Sb’O E110’0-+29USb’O EIlO’O-+ZQUSb’O El10’0-+Z9056’0 EIIO’O-+29056’0 EIIO’O-+29046’0 EllO’0--*29@S6’0 EIlO*O-+2YOS6’0 EIIO’O-+LYOSb’O tIIU’o-+Z90S6’(r ElIO’O-+l905b’O ETIO‘U-+19056’0 ZIIU’O-+09OSb’O ZlIO’O-itSUSb.0 ZllO’O-+C’/O46’0 IIlO’O-+IZOSb’O llIO’U-+UOUSb*O

LIIO’O-+bda?b‘D IJ l1O’O-+1Lf fb’0 ZCIO’O-tf0936.0 fSIO’O-+2bEbb’O 9610-U-+ObbEb’O dEZU’O-+;SECb‘U 22EO’O-+L‘G426’0 2GfO’O-+EBI15”U bbSO’O-+lL>88”0 ZfLO’O-+0129@‘u SfbO’O-+ISZZB‘O 1611’0-+lE:YL’O

k9’?1’0-+b5?63’0 ILL 1’0-+9Ll09’0 6‘71 Z’O-+ZUfJbS’U C992’0-iLbC9t’0 G9zE’O-+85i3CZ’O 06tiE ‘0-+E)bZl’O 2943-O-+*EISO’b 9815’0-+Es110’0

o-o-+ 0’0

6LIO’O-+lOBLB’O bLlO’O-+IOEtLB’O 6L10’0-+lOtlL8’0 bL IO-U-+lU81e’O bL10’0-*lOBLn’O 5LIO’U-+lOBLb’O bLIU’O-+IUBLB’O bLIU’O-+108L8’0 jLlP’O-*lOBLO’ 51 IO’O-+lOEL8’0 bLtO'U-+i~6L8'0

bLlO’V-+tUBLQ’D bLlO'O-+lOOLB'O SLlS’O-+IOBLB’O bL IO-O-+lOftLd’lJ 08tO’U-ibbLLG.0 6L I O-O-+YbLLfi’O 6LiO’6-+bl+LL6’U 6Ll0’0-+ZBLLV’O bLlO’U-+klLLLB’O bL10’0-+09L18’0 UtilO’U-+HILLa’c) c~1u’O-+HfQfl3-O tiEiIO’O-+f9sLH*O IUZO’O-+L7~L6’O

f22U’O-+681LB’o 6fZO’O-+S8L98’U Llta’c-*0s1Yn’lJ Q’,S’J*@-tL!)Z~ti”3 zn5o’r~-+Ylssn’o 6(~0’0-+Otrtltl-0 LlbU’O-+1S08L’O 6YI I’U-+YZCCL’O 6fbl’0-+LBbY9’0 SslL l’O-+Lt*dS’U CZIZ’O-+IC~L~‘~ 5fYZ’O-+YU85C’U BtiZC’O-+‘iC9tZ’i! 18bE’O-+00621-O U9~f‘o-+CZ1!l0’0 761s’o-+1511u’o

0-0-t 0’0

it U’I bt n-2 LC Yt LE fE EE 2E IE CIE b2 8Z i2 92 SL fZ EL 22 12 v,L bl ttl LI 91 51 f I El 21 1 I Ul 0 0 L Y L t E 2

ti

rlAd3U

Page 104: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

UZOG’G-+E6966’0 BZ@O’O-tLnS6b.O EE00*0-+5.3156*0 LEOO*O-+O29H6’0 OfOG'G-tEL3Lb‘0 SSOO’O-+LC6’Hi’@ BZOO’O-+Eb966’0 BZOO’O-+LOS66 l O SE00’0-+58166’0 LEOO*O-+OZYdb’@ Gfofi’O-+EL$Lb’O ;4OO’e-+Lf6t6’0 8200’0-+Eb966’0 BZOO’G-tLGS66’0 EEOI)‘O-+Sa166’0 L~GG’@-+O2986’0 GtGO’O-4 CL’IL6’@ c400’0-41~6f6-n 8200-G-+E6966’0 BZOO’O-+LOS66’0 CEOO’G-+SBi6b’C LEOO’O-+02986-O OfPO’@-4E1?15’0 ESO0’O-+L+?b$6’l OZOO'O-+E6966'0 BZOO’O-tLOS6b’O E~OO’o~SBl6b’O LEOO*O-+0298b’G OIICO’O-4 SL’?L b’l) iSf”(“O-tLC6bb’l~ ti200’0-+EbYb6’0 BZOO’O-tLOS6b’O EEOO’o45B1bb’O LtO@‘G-+GZYdb’O GfCl~‘O-+cLCLo’4l t 40o’~?-+L%h’r* BZOO’O-+E6Yb6’0 UZOO’G-+lOS60’0 LcOO’O-+sa1tlb’O LSOO’O-+02986’0 0+100-O-4 EL’IL6’C-J i4clO~u-+LCbZ4’O BZOO’O-tE696b.O BZOO’O-+LOSbo’O EEOO’O-+SBl66’0 LEOO’C-+o2Y 86’0 OfPO’O-+~LfL4’n ESuO~V-+Ldbbb~U B2oo’G-tE6966’0 6200’0-+L0566*0 ~E00’0-+Sa166’0 LEOO’F-+@ZY 86’0 OCGO’O-+ELfL6*ll ~tA’~‘~-tf~bf6’O 8200’0-tEb966’0 BZOO’O-tLOS66.0 EE@O’O-+S8lbb’G LEOO’G--*OZ9Bb’0 @+,(rr)-c-4 ;LtrLb’lq ESQO’fi-+LJbfb’F BZOG’G-+cbY66’0 8200’0-tLOSb6’6 L~oO'O-+SeIs6'O LEOO'O-402966'0 t’!‘?OP’O-+ ELfL6’0 iS@O’O-+Lftfo’n 8209’0-tE696.5’0 BZOO’O-tLOS66.0 EEOO'O-+sn15L.J'O LEOO'O-+029ktb'O o*on*o-4 EL *IA 6-n t 5l~O’t?-tf*m7b ‘0 BZOO’O-+26966-O bZOO’@-+Y@Sbb’O CEOO’O-+CBl66~O Li00’0-+6~Y86’n b:OG’O-+ZLfLo’P ~i404~‘fl-+f+b’76’t? TEGG’G-4189bb’0 BZGO’O-+Y6fbb’O SEOO’O-+SL166’f’ LEGO'G-+ilY db’0 0’i.n0’0-+69’zL 6’0 ~SoG.l-!-+f’>63b l O lcOO’O-409966’0 LZOO’O-tLLf66.0 9EOO’O-+LS 16~3’0 BtOO'O-+3bS'U6'0 IfOO’G-+LSCLb’O ‘7500-C!-+Sfb%‘O EEOG’O-+f29bb’O ZEOO’O-+1~fbb’O BEOO’O-+EZIbb’O LE!?C'C-+SYSBb'O tr’~f’D’C-+B:bLb’l? ~Cf’0*C-+i;6+,b’F I _ SEOG’O-+26466’@ ItnO’@-+Glfbb’o lj+ol~‘,,-+55%b’o LfOO’0-+If4Bb’U hfOn’n-+sQfL 5-o 9SC!“*P-+SCbfb’P IbOG’O-460S66’0 ZfOO'O-+Gifbb'O L+OO’O-+91066’0 WOO'@-+f%Ub'O YSOC’O-46EEL6.0 TYOO’l-‘-iB58fb.C ZSOO’O-+ZZfbb’C b%OO’G-+8’?266’0 2400-O-+ofbXb’O YSl?O’O-+CbEBb’O f.Y0n’G-+lBZLb’O 9fclC~C-+~Ihfb’C L9GG’G-+lbZb6’0 L9GO*G-480166'0 5900’0-450886’0 11 GP’G-4212 Bb.0 BL 00’0-4 EL IL b’T, nLo@‘C-+1 cl ?,b’O 0600’0-tSE06b’O 8800’0-+99BBb’G lbOO’O-+b?Sab’O ibOl?O-+L+OB6’0 LbGiJ’O-+@LbYb’O YbG0'f'-+9LSIlb'O ZZIO’O-+09LBb’L IZlO’o-tdbS8b’O EZIO’O-+ZlEBb’n c2ie’n-+4bLLb’D bZlO’O-tLELY6.O s iIf.**n-+nt,ccs ‘11 OLlO’G-+lbZBb’G 6910’0-*@CT85 l O iL1O’O-+89dL 5-G OLTO’n-+sL~Lb‘0 5LlO*O-+bfEYb’O oYIcJ’O-+IL03b’0 LZZO’O-+12916’0 YZZU’G-+ZBfLb’O GZZO’O-+$ZZL6’6 3220-F+29LYb’0 fE2G’D-+SLLSb’G iZZr*l~-+CLS Ib.lJ 80E0’0-+9SL96’0 BO~G’G-+619Y6’0 bOCO*O-tSLE9b.o BllEO’O-tOEbS6.0 01E9’0-466bSo’O ZOEO’~-+E~bLo’O *I%O’O-tBkISSb.0 ElCO’O-+bSfSb’O Sl!JO’O-+2E2S~‘O +/t?O’O-+fibfb’O YlfO'O-t15bE6'0 LO’?O’O-+5ELIb’O YESO’O-+ZiG~b’O 9E40’0-4668Eb’C YESO’G-+L69Eb’G 9Esn*c-++2~~6-0 BEss'G-+klfs20'c 1;Sl?‘l~-+FhYUb*O 9190~0-+fE616’0 SL90’0-+Z+Llb’O bLYn’O-+9SsI b-0 tL90’O-ift21b’O CLY0.Wtsf465’0 6‘J9(~‘~-+ZlBr:a’I, IEBO’O-+L06Bkl’O 1~80’0-+CEB88’0 1Eao*o-+tL9BB*c, OEnr~‘O-+ZOSBn’O OEbO’G-+OOBLti’k’ i(;d)C’r-+(!~Z+Jlj’Q 0860’0-tSEGS8’0 0860’0-+sLbfB’O CBo(!‘Q-+Y~B’?b’F bL6~~~‘ll-+Bf~9fU’I-l i%bc’C-451 I9d.D BL6V.C-4~IBZB’f’ 1111’0-+9$108’P 1111’0-+SbOOB’O 1111’0-+t18551’O 0111’0-t0086L’O 1I11’0-4’l2%L’0 bt?ii’n-+btE8L’O Z’IZI- O-t99bEL.C ZtZT’O-+SZbEL’C Z+7ZI’o-+iEBEL’n 2~2l’0-+T6YEL’D ZfZI’G-t6bFiL.O n L2 1 -u-+Lts$ iL ‘0 SBEI’O-411294’0 +78E 1’0-+8L199’0 StlEl’O-+bOi99’0 s6~t*0-+LoOY9~0 SBt1’0-+tbL49’Q bLEt’o-+YLISY’G iE9l’O-+2EB9s’o lE91’0-490a9S’O IEYI’O-4LSL95’0 ik91’0-+EBYYs’0 OE91’0-tdbS94.0 Y?91’0-+l’~l’/d’O 2961’0-+9@19+‘C ZYbl’0-to6tiYf.Q F96T’P-+6509C’O i96-f’G-t1109?‘O “Ybl’G-+O’?bSt’O t9tl1 ‘V-+tQY4b’O ZECZ’O-+9$+%-O ZLPZ'O-+LiffE'O ZEf2.0 -+BlC~&‘O ZEfZ’O-+IbEfE’O CE~Z’O-+lktfC’~ ~$*12’1?-+~5I%t’O 6BbZ’ti-+fBBZZ’O 06bZ’O-+~LBZZ’O ObbZ’O-+49dZZ’O Obbd’O-404BZL’O ZbbZ’O-+%tb2L’@ 36bZ’U-+tifL z2.0 SLSf'0-+S10E1'0 SLSE’O-+ZIOE1’O SLSE’O-+9ont1-d SLS’?O-tBb67”O -* 415E’O-+b&bZt’0 YLSE’0-+bVbZI’O SZZf’O-+16096’0 YZZf’G-+b0oYo’o LZZS’O-+CBO90’0 ELZb*O-41809n’O LZZf’O-+ELFYG’O Bt2f’o-+0909Q’c LOZS’O-+St6 10’0 012S’0-+‘~f610’0 +JTZS’O-+OfblO~O ST?!a'G-+PEblG'C 9125’@-+YEblF’fl 8’25’0-4256 If”0 6LSS’0-466200’0 065 5 ‘C-+BbZOO’O YBSb’O-+36200’0 C09S’O-tSb200’O 2IY4’0-+t62rJo’O tL9S’l?-+~btnC,‘~

n-o-4 n-c 0’0-4 0’0 0.0-t 0’0 0’0-4 0’0 0’0-4 0’0 o-o-4 0’0

L 9 4 f

SM3l4OHS 02 ’ ‘1 ‘li ‘SNCtilS313 A33 c

LLOO’G-4CLSLU’O LLIXJ’O-4fLSLd.O LLO~‘0-+~lSLd’~ LLPO’o-+tiLSLd’O LL~~O’0-+vLSLd’n LLOO’c-+fLSLEB’~-~ LLOO’O-+fLsLd’:’ LL~c-D-+~LSL~~*~ LLOO’F-+fLSLd’O 11 nrJ’r-++7LSLn’~ 11 OO’~~-+~LSLkl’~~ LL (10 ‘Il-+vL w. s-0 LL~‘C’*-+fL5L~‘n LLPO’~-+iLSLd’O LLCG’(r-+lL5Ltid’0 LLcn’f-*~44Ld’l! l~lY)*(:-•+ti(Jt;Ld-” bLOC’@-+OZ5LB’~~ &!l~i’C-+1b~L~“! L~f!O’D-+LtfL6’n Ybi’lc ‘1‘-+2I:tLd’!: t1I~‘O-+LFiLY’O df 10 ‘@-+bBbYki’(l

,I; 37 t:

3

2 1 0

tild3ti

Page 105: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

RMS

7 (%

) RM

S “T

(Oh)

0 -

- 0

8 01

,

Illllll

I

I II1

1111

I

Illll-

P

EL

4”

I 3s

0

s

Page 106: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

RMS

RESO

LUTI

ON

(Oh)

0

- -

Iv

Iv

p-J

$JJ

P ;p

.P

0

b-l

l o in

‘0

in

0

cn

b cn

0

P 03

: 0 4 cx

,

r 0 z cl i. 0 2 0 3 u

I II

I I

I I

I I

I I

Page 107: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

F (X0

) /*z

0 0

0 0

0 I -

1.

0 -

N w

Page 108: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 109: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 110: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 111: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

e b

N

,a N

n w

b N

Page 112: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

L81

Z-3 ‘3Id

0

0'1

0'2

0-2

O'tr I I I I 1 I I I 1

m o’t7 0’s 0’2 0’1 0

O-2 8’1 9’1 b-1 2’1 0’ 0

s-z

,“3 O'S

S’L

l-0

2’2 0’2 8-l 9’1 b’l Z’l 0’1 0

- 0'2

(4) / I=$

- Z=,D.~ - O'E

- ZE=,O /e-8=$

, I I I I I I O'P

S’I

0-E

“.I S’tJ

o-9

--uOJ aq3 30 a2J.s pus fi UT a8uez aq7 moqs saLlns asaq,I 'fl S"SlJlz

,b - n~z + zl"i = ;M ssrrm %urssrm Jndu? aqz 30 san-[e~ snor~en ~03

(MGTM ‘ ,b) '1 MZ = MJ

saTqo?leh SSEU Burssrlu 30 suma

u;c passactdxa uo~')sun3 uo:~"~o~uo~aqrr noqs a~ ‘c-3 '87~ UI

'(PZ P"e 3Z ‘97-3 '8TJ aas) m UT saop 27 ueqzl

(Mm ‘m ‘ ,b) 5 zb = "J (6-3)

Page 113: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

2 s ‘8T’ = D/ 0 = a pue

Z M+zb m

Zb = L--=,x

T

'MC? (,n/,b + 1) y ='M HZ

(,(,x - T) ~'lt'z - (,x - T) Z06.T + W79')c(,X - T) = 'MA

(Sd’zb’h) sdJ 'dP ; = (,b‘n) $4 m

881

2. I

~;

1-01 MJ

00’

(0) I =$ lOI

I I I I I I I 20’

Page 114: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 115: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 116: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 117: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2
Page 118: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

I T-7

= Od/(d -Od) = 9

Page 119: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

NNr.3

‘4

iv

w

cn

c N

Page 120: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

N N

N

w N

P

. .

.

N 2:

E w w

w w

L-,

m

c CL

) N

s-

Page 121: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

COUN

TS/O

.1

%

N P

,o

0 0

8

COUN

TS/O

.4

cm

N 0-

l al

IO

0

ts

0 0

P

I’:

rk

40

-I P

P

ti

07 1

c7

cn

-a

m

it+

is

Z 1

COUN

TS I

O.2

cm

CO

UNTS

/O.3

3 m

rad

P

TRIA

LS/O

.1

%

TRIA

LS/l

mra

d

TRIA

LS/O

.25

mra

d

Page 122: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

LOZ 9oz

(zsoo.- > 9 > ~900’- SBM p 30 a9uel 32)

Page 123: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2

pot

(GeV

)

Xi (

cm)

3 r-

L -. -.

-+

1 3

P L -.

0

Page 124: I- · saae= asaq2 pue ‘ hy~e~od puo ,a uo ... pa)eadaa sen Z ssed *sysbTeue T ssed aq2 pa23a33e z ssed mol3 y3eqpaa3 uoy2 -euuo3uy se Sam?2