identification of combinatorial drugs that synergistically kill both eribulin-sensitive and...

Upload: peertechz-journals

Post on 07-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    1/9

    Global Journal of Cancer Therapy

    Citation: Rickles RJ, Matsui J, Zhu P, Funahashi Y, Grenier JM, et al. (2015) Identication of Combinatorial Drugs that Synergistically Kill both Eribulin-

    Sensitive and Eribulin-Insensitive Tumor Cells. Glob J Cancer Ther 1(1): 009-017.009

    eertechz

     Abst ract

    Eribulin sensitivity was examined in a panel of twenty-ve human cancer cell lines representing a

    variety of tumor types, with a preponderance of breast and lung cancer cell lines. As expected, the cell

    lines vary in sensitivity to eribulin at clinically relevant concentrations. To identify combination drugs

    capable of increasing anticancer effects in patients already responsive to eribulin, as well as inducing

    de novo anticancer effects in non-responders, we performed a combinatorial high throughput screen

    to identify drugs that combine with eribulin to selectively kill tumor cells. Among other observations, we

    found that inhibitors of ErbB1/ErbB2 (lapatinib, BIBW-2992, erlotinib), MEK (E6201, trametinib), PI3K

    (BKM-120), mTOR (AZD 8055, everolimus), PI3K/mTOR (BEZ 235), and a BCL2 family antagonist

    (ABT-263) show combinatorial activity with eribulin. In addition, antagonistic pairings with other agents,

    such as a topoisomerase I inhibitor (topotecan hydrochloride), an HSP-90 inhibitor (17-DMAG), and

    gemcitabine and cytarabine, were identied. In summary, the preclinical studies described here have

    identied several combination drugs that have the potential to either augment or antagonize eribulin’s

    anticancer activity. Further elucidation of the mechanisms responsible for such interactions may be

    important for identifying valuable therapeutic partners for eribulin.

    o care. Chemotherapeutic drugs are ofen most effective when given

    in combination, in particular when synergistic killing is achieved

    without additive toxicity. o date, potential combination therapies

    or eribulin have been explored with only a limited number o anti-

    cancer agents. We thereore have perormed an in vitro  study o

    eribulin combined with 34 anticancer agents in 25 different tumor cell

    lines o various types, through use o a combination high throughput

    screening (cHS) platorm. Our goals were to identiy drugs that

    might be paired with eribulin to increase clinical efficacy in metastatic

    breast cancer, to identiy drugs that convert eribulin non-responders

    to responders, and to identiy new therapeutic indications or eribulin

    utilization. Several compelling synergy effects with approved and

    emerging drugs were observed. Te preclinical data provides insights

    about uture clinical development strategies.

    Materials and Methods

    Materials

    Cell lines were purchased rom European Collection o Cell

    Cultures o Public Health England (A2780), Japanese Collection o

    Research Bioresouces Cell Bank o the National Institute o Biomedical

    Innovation (SNG-M), German Collection o Microorganisms and

    Cell Cultures (KYSE-410), and American ype Culture Collection

    (all other cell lines). All cell lines are included in the Cancer Cell Line

    Encyclopedia [13]. Cell culture media, etal bovine serum, and cell

    culture supplements were purchased rom Gibco Lie echnologies

    (Termo Scientific). Chemical matter was purchased rom Enzo Lie

    Sciences, Inc., Micro Source Discovery Systems, Sigma-Aldrich Co.

    LLC, Selleck Chemicals, Sequoia Research Products Limited, and

    Introduction

    Eribulin mesylate, a microtubule dynamics inhibitor with a

    mechanism distinct rom most other anti-tubulin therapeutics, isapproved in the United States and many other countries or treatment

    o certain patients with advanced or metastatic breast cancer [1,2].

    Eribulin works by binding to exposed beta-tubulin subunits at the

    plus ends o microtubules, where it acts through end-poisoning

    mechanisms to inhibit microtubule growth and sequester tubulin

    into non-unctional aggregates. In mitosis, this results in G2/M cell

    cycle arrest, irreversible mitotic blockade, and ultimately cell death

    by apoptosis [3].

    Eribulin has broad anticancer activity in a wide variety o

    preclinical cancer models; as a result, numerous clinical trials o its

    effectiveness under monotherapy conditions are ongoing in other

    non-breast tumor types [4-9]. Although eribulin ailed to showmeaningul activities in clinical trials o head and neck, pancreatic

    and advanced non-small cell lung cancer [10,11], improvements in

    overall survival by eribulin were reported in a Phase 3 trial in advanced

    sof tissue sarcoma compared with dacarbazine [12], pointing to

    additional clinical uses or eribulin. Clinical trials are ongoing to

    evaluate eribulin effectiveness or treatment o osteosarcoma, ovarian,

    cervical, urothelium, brain metastasis, metastatic salivary gland and

    pediatric cancers with the promise that additional cancer indications

    will be identified.

    In certain ways, the clinical experience with eribulin has been

    similar to that o other chemotherapies: monotherapy benefits tend

    to be limited and it is ofen difficult to surpass the benefits o standard

    Research Article

    Identification of CombinatorialDrugs that Synergistically Kill both

    Eribulin-Sensitive and Eribulin-

    Insensitive Tumor Cells

    Richard J Rickles1, Junji Matsui3, Ping

    Zhu1, Yasuhiro Funahashi2,3, Jill M

    Grenier1, Janine Steiger1, Nanding

    Zhao2, Bruce A Littlefield2, Kenichi

    Nomoto2,3 and Toshimitsu Uenaka2*

    1Horizon Discovery Inc., MA, Japan2Eisai Inc., MA, Japan3Eisai Co., Ltd., Japan

    Dates: Received: 17 October, 2015; Accepted: 03

    November, 2015; Published: 04 November, 2015

    *Corresponding author: Toshimitsu Uenaka, Ph.D.,

    Executive Director, Production Creation Headquarter,

    Oncology & Antibody Drug Strategy, CINO (Chief

    Innovation Ofcer), E-mail:

    www.peertechz.com

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    2/9

    Citation: Rickles RJ, Matsui J, Zhu P, Funahashi Y, Grenier JM, et al. (2015) Identication of Combinatorial Drugs that Synergistically Kill both Eribulin-

    Sensitive and Eribulin-Insensitive Tumor Cells. Glob J Cancer Ther 1(1): 009-017.

    Rickles, et al. (2015)

    010

    oronto Research Chemicals. Cell prolieration was measured by

    AP Lite 1step Luminescence Assay System (Perkin Elmer).

    MethodsCells were thawed and grown in culture media according to

     vendor’s recommendations. Detailed methods on the combination

    assay were reported in [14]. Combinations were analyzed using

    Synergy Score and Loewe Volume Score, as described in [15,16] using

    Horizon’s proprietary ChaliceM Analyzer sofware.

    Combination High-Throughput Screening

    Cells were seeded in 384-well and 1536-well tissue culture treated

    assay plates at cell densities ranging rom 100 to 500 cells per well.

    wenty-our hours afer cell seeding, compounds were added to

    assay plates with multiple replicates. Compounds were added to cells

    using a 6x6 dose matrix, ormed by six treatment points (including

    DMSO control) o Eribulin and each combination partner as single

    agents and twenty-five combination points. Please see reerence 12

    or additional detail. Concentration sampling ranges were selected

    afer review o single agent activity o each molecule across the cell

    line panel. Generally, concentrations between the EC10 and EC90

    were sampled.

    At the time o treatment, a set o assay plates (which do not

    receive treatment) were collected and AP levels were measured

    by adding APLite. Tese Vehicle-zero (V0) plates were measured

    using an EnVision Multilabel Reader (Perkin Elmer). reated assay

    plates were incubated with compound or seventy-two hours. Afer

    seventy-two hours, treated assay plates were developed or endpoint

    analysis using APLite. All data points were collected via automatedprocesses; quality controlled; and analyzed using Horizon’s

    proprietary sofware.

    Horizon utilizes Growth Inhibition (GI) as a measure o cell

     viability. Te cell viability o vehicle is measured at the time o dosing

    (V0) and afer seventy-two hours (V). A GI reading o 0% represents

    no growth inhibition - cells treated with compound () and V vehicle

    signals are matched. A GI 100% represents complete growth inhibition

    - cells treated by compound and V0 vehicle signals are matched. Cell

    numbers have not increased during the treatment period in wells with

    GI 100% and may suggest a cytostatic effect or compounds reaching

    a plateau at this effect level. A GI 200% represents complete death o

    all cells in the culture well. Compounds reaching an activity plateau o

    GI 200% are considered cytotoxic. Horizon calculates GI by applying

    the ollowing test and equation:

    00

    0

    00

    0

    If : :

    If

    100 *(1 )

      100*( : : 1 )

    T V V T 

    T T 

      V V 

    V V 

    −< −

    −≥ −

    Where is the signal measure or a test article, V is the vehicle-treated

    control measure afer seventy-two hours, and Vo is the vehicle control

    measure at time zero.

     Analysi s of combinat ion screening resul ts

    o measure combination effects in excess o Loewe additivity,

    Horizon has devised a scalar measure to characterize the strength o

    synergistic interaction termed the Synergy Score [13,14]. Te Synergy

    Score equation integrates the experimentally-observed activity

     volume at each point in the matrix in excess o a model surace

    numerically derived rom the activity o the component agents using

    the Loewe model or additivity. Additional terms in the SynergyScore equation are used to normalize or various dilution actors used

    or individual agents and to allow or comparison o synergy scores

    across an entire experiment.

    Loewe Volume is an additional combination model score used to

    assess the overall magnitude o the combination interaction in excess

    o the Loewe additivity model. Loewe Volume is particularly useul

    when distinguishing synergistic increases in a phenotypic activity

    (positive Loewe Volume) versus synergistic antagonisms (negative

    Loewe Volume). Please see reerence 13 or more detail.

    Self-cross based combination screening analysis

    In order to objectively establish hit criteria or the combinationscreen analysis, twelve compounds were selected to be sel-crossed

    across the twenty-five cell line panel as a means to empirically

    determine a baseline additive, non-synergistic response. Te identity

    o the twelve sel-cross compounds was determined by selecting

    compounds with a variety o maximum response values and single

    agent dose response steepness. Tose drug combinations which

    yielded effect levels that statistically superseded those baseline

    additivity values were considered synergistic. Te Synergy Score

    measure was used or the sel-cross analysis. Synergy Scores o sel-

    crosses are expected to be additive by definition and, thereore,

    maintain a synergy score o zero. However, while some sel-cross

    Synergy Scores are near zero, many are greater suggesting that

    experimental noise or non-optimal curve fitting o the single agentdose responses are contributing to the slight perturbations in the

    score. Given the potential differences in cell line sensitivity to the

    eribulin combination activities, we chose to use a cell-line centric

    strategy or the sel-cross based combination screen analysis, ocusing

    on sel-cross behavior in individual cell lines versus global review o

    the cell line panel activity. Combinations where the Synergy Score is

    greater than the mean sel-cross plus two standard deviations (2σ’s)

    or three standard deviations (3 σ’s) can be considered candidate

    synergies at the 95% and 99% confidence levels, respectively.

    Results

    Evaluation of eribulin potency using a cell-based

    assayEribulin’s antiprolierative activity was assessed in a panel o

    twenty-five human cancer cells lines representing a variety o tumor

    types using a three-old, ten-point dose titration o drug. Cells were

    incubated with drug or 72 hours. Cellular AP levels were quantified

    as a measurement o effects on prolieration. A measurement was

    perormed at the time o drug addition (time zero, 0) in order to

    calculate a Growth Inhibition percentage, providing inormation

    about cytostatic and cytotoxic activities. Cell lines were designated as

    sensitive to eribulin i the GI50 values were

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    3/9

    Citation: Rickles RJ, Matsui J, Zhu P, Funahashi Y, Grenier JM, et al. (2015) Identication of Combinatorial Drugs that Synergistically Kill both Eribulin-

    Sensitive and Eribulin-Insensitive Tumor Cells. Glob J Cancer Ther 1(1): 009-017.

    Rickles, et al. (2015)

    011

    in Figure 1  were included in the subsequent combination screen,

    with the ollowing rationale: inclusion o eribulin sensitive cell lines

    would provide models to identiy drugs with the potential to increase

    eribulin efficacy, while inclusion o insensitive lines would acilitateidentification o drugs capable o converting eribulin insensitive cells

    to eribulin sensitive cells.

    Receptor tyrosine kinase target-based clusteranalysis

    Te thirty-five compound enhancer library (Supplemental able 

    1) was screened in combination with eribulin in the twenty-five cell

    lines described above in Figure 1. In order to objectively establish hit

    criteria or the combination screen analysis, twelve compounds were

    selected to be sel-crossed across the twenty-five cell line panel as a

    means to empirically determine a baseline additive, non-synergistic

    response. Te identity o the twelve sel-cross compounds was

    determined by selecting compounds with a variety o maximum

    response values and single agent dose response steepness. Tose drug

    combinations which yielded effect levels that statistically superseded

    those baseline additivity values were considered synergistic.

    A summary matrix view heat map o combination drug Synergy

    Scores which exceed the cell line specific sel-cross thresholds at

    2σ’s above the mean is shown in Supplemental Figure 1. Using this

    strategy, 19.7% o the combinations exhibited some synergistic

    activity at the 95% confidence level. Using a more stringent criteria

    o 3σ cutoff (99% confidence), synergy was observed or 12.5% o the

    combinations (Supplemental Figure 2).

    Te 35 compound enhancer library utilized contains some

    redundancy in terms o targets and pathway inhibitors. Whenever

    possible, target inormation was used to cluster similarly annotated

    enhancers across the cell line panel, and the Loewe Excess values

    or Growth Inhibition matrices with high-to-moderate synergy

    scores were individually reviewed to evaluate combination activities.

    Te strategy o using target or pathway cluster profiles with visual

    inspection o matrices provides additional evidence linking a

    particular target with combination activity, and helps to highlight

    subtle synergies that might otherwise be overlooked or insufficientlyrevealed due to steep single agent dose response curves. A Synergy

    Score heat map or select target/pathway clusters is displayed in

    Figure 2, with cell lines clustered first according to eribulin sensitivity/

    insensitivity then urther demarcated based on tumor type.

    As an example o enhancer library mechanistic redundancy,

    the combination screen contained three drugs known to inhibit

    ErbB1/ErbB2 (EGFR/HER2) in cell-based assays: lapatinib, BIBW-

    2992 and erlotinib [18-21]. BIBW-2992 exhibited the best breadth

    o combination activity. Te mechanism o action o BIBW-2992

    (irreversible inhibition) and higher potency or ErbB1 and ErbB2

    may explain the greater breath-o-activity. Alternatively, synergies

    observed with BIBW-2992 but not lapatinib or erlotinib may be

    the result o unique polypharmacy with BIBW-2992 inhibiting

    secondary targets not affected by the other ErbB1/ErbB2 inhibitors.

    Representative Growth Inhibition and Loewe Excess dose matrices

    or some o the lapatinib combinations are shown in Figure 3 with

    examples o erlotinib and BIBW-2992 combination activities shown

    in Supplemental Figures 3, 4. Low micromolar concentrations o

    lapatinib and erlotinib have been observed in pharmacokinetic

    studies [18,19] suggesting the potential or reproducing the observed

    preclinical synergy here in a clinical setting.

    PI3K pathway inhibi tors

    Dysregulation o the PI3K pathway can transorm cells by virtue

    o constitutive activation and ultimately, stimulation o cellular

    prolieration and suppression o pro-apoptotic signaling. Four PI3K

    pathway inhibitors were included in the screen. AZD8055 is a potent,

    selective, and orally bioavailable AP-competitive mOR kinase

    inhibitor (ORC1 and ORC2); everolimus, an allosteric mOR

    (ORC1) inhibitor; BEZ235, a dual pan-PI3K/mOR inhibitor; and

       M   C   F   7

       M   D   A  -   M   B  -   2   3   1

       M   D   A  -   M   B  -   4   3   6

       M   D   A  -   M   B  -   4   6   8

       S   K  -   B   R  -   3

       T   4   7   D

       A   5   4   9

       N   C   I  -   H   1   6   5   0

       N   C   I  -   H   4   6   0

       N   C   I  -   H   5   2   2

       N   C   I  -   H   5   2   6

       N   C   I  -   H   6   9

       A   2   7   8   0

       S   K  -   O   V  -   3

       S   N   G  -   M

       H  e  p

       G   2

       K   Y   S   E  -   4   1   0

       F  a   D  u

       7   8   6  -   0

       T   2   4

       M   I   A   P  a   C  a  -   2

       P   C  -   3

       A   3   7   5

       H   T  -   1   0   8   0

       K   A   T   O    I

       I   I0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    5.0015.0025.00

    35.00

       E  r   i   b  u   l   i  n   G   I   5   0

       (  n   M

       )

       B  r  e  a  s   t

       L  u  n  g

       O  v  a  r   i  a  n

       E  n   d  o  m  e   t  r   i  a   l

       L   i  v  e  r

       E  s  o  p   h  a  g  e  a   l

       H  e  a   d   +   N  e  c   k

       K   i   d  n  e  y

       B   l  a   d   d  e  r

       P  a  n  c  r  e  a  s

       P  r  o  s   t  a   t  e

       M  e   l  a  n  o  m  a

       F   i   b  r  o  s  a  r  c  o  m  a

       S   t  o  m  a  c   h

       H  e  p

       G   2

       T   2   4

       M   D   A  -   M   B  -   2   3   1

       N   C   I  -   H   4   6   0

       7   8   6  -   0

       T   4   7   D

       A   3   7   5

       A   2   7   8   0

       K   A   T   O   I   I   I

       F  a   D  u

       N   C   I  -   H   1   6   5   0

       A   5   4   9

       M   C   F   7

       N   C   I  -   H   5   2   6

       S   N   G  -   M

       N   C   I  -   H   5   2   2

       N   C   I  -   H   6   9

       M   D   A  -   M   B  -   4   3   6

       K   Y   S   E  -   4   1   0

       P   C  -   3

       M   I   A   P  a   C  a  -   2

       H   T  -   1   0   8   0

       S   K  -   B   R  -   3

       S   K  -   O   V  -   3

       M   D   A  -   M   B  -   4   6   8

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    5.0015.0025.00

    35.00

       E  r   i   b  u   l   i  n   G   I   5   0

       (  n   M

       )

    Figure 1: Assessment of eribulin activity in twenty-ve cell lines. Bar graph display of GI50 values based on relative sensitivity (Waterfall plot, left) or after

    clustering cell lines based on tumor type (right). Cells were exposed to eribulin for 72 hours. The assay endpoint was measurement of ATP (as a surrogate for effects

    on proliferation). The median GI50 for the twenty-ve cell line panel is 0.51 nM.

    http://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rarhttp://www.peertechz.com/Cancer-Therapy/pdf/GJCT-1-s104.rar

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    4/9

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    5/9

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    6/9

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    7/9

    Citation: Rickles RJ, Matsui J, Zhu P, Funahashi Y, Grenier JM, et al. (2015) Identication of Combinatorial Drugs that Synergistically Kill both Eribulin-

    Sensitive and Eribulin-Insensitive Tumor Cells. Glob J Cancer Ther 1(1): 009-017.

    Rickles, et al. (2015)

    015

     vemuraenib (BRAF inhibitor), demonstrated 48% anti-tumor

    response and extended PFS to 5.3 months in V600E melanomapatients in the BRIM3 study [21], in a first-line BRAF mutated

    melanoma therapy. However, the treatment o vemuraenib caused

    resistance in some patients through its 2-18 months post treatment

    [22]. Recently, our articles reported five resistance mechanisms

    or vemuraenib [23-27]. Tose authors attributed their resistance

    mechanisms to the overexpression o PDGFR-β tyrosine kinase [23],

    and/or Q61K NRAS [24], CO kinase [25], IGF-1R [26], C121S

    MEK [27], in melanoma cells. Selective inhibitors against those

    molecules may be appropriate combination partners to prohibit these

    resistant mechanisms in V600E melanoma patients. Comprehensive

    combination analysis by using comprehensive compounds on several

    cancer cells harboring different molecular mutation are very useul to

    find out appropriate combination partners.

    In this study, we describe the identification o approved and

    emerging drugs that synergize when combined with eribulin, with

    good breadth o combination activity observed in the twenty five cell

    line panel used or screening. Synergy is observed in both eribulin-

    sensitive and insensitive cell lines, suggesting potential clinical benefit

    or both responders and non-responders o eribulin monotherapy.

    In addition to approved drugs that target EGFR/HER2 (erlotinib,

    lapatinib, BIBW2992/aatinib), mOR (everolimus), and MEK

    (trametinib), we show that emerging drugs such as BEZ235 (pan-

    PI3K/mOR), BKM-120 (PI3Kα), and AB-263 (BCL-2 amily

    inhibitor) strongly synergize with eribulin in certain cell lines.

    Furthermore, the use o both target-specific (EGFR/HER2, MEK)

    and pathway-specific (PI3K), mechanistically redundant compounds

    in our studies validates the identified target specificities as being

    important or synergy. By evaluating a wide concentration rangeor these molecules, we can interrogate combination activities and

    evaluate target selectivity; in addition, where pharmacokinetic data

    are available, we can obtain initial insights as to whether such effects

    could occur at clinically relevant concentrations. Looking at the

    eribulin’s concentrations which showed synergy effects combined

    with these approval drugs, we ound that they seem to be relatively

    wide-range. Not only at the highest concentration but also at the

    lower concentrations, eribulin could synergize with several drugs.

    One challenge with the evaluation o in vitro drug activities is that

    patterns o drug exposure may not match what can be achieved in

    vivo. Limited drug exposure (pulse dosing) could be used to compare

    in vitro  results with exposure in a clinical setting. In addition,tumor bearing animals could be treated with both drugs to validate

    combination activities to examine combination drug toxicities. o

    this end, in vivo  animal studies are currently in progress; to date,

    eribulin combination activities with erlotinib, everolimus, and BKM-

    120 have been reproduced in human tumor xenograf models in

    mice, with these combinations showing acceptable toxicity profiles

    (manuscript in preparation).

    An important goal or any monotherapy or drug combination is

    the identification o predictors o response so that clinicians can select

    the patient population most likely to benefit rom treatment. Te

    screen described here represents the discovery phase o such a project

    and additional work is required to identiy predictors o response with

    a certainty that can drive patient selection. For instance, the kinetics

    Dose Matrix | None | 100 | MDA -MB-436 | ATP Lite | 72h

       C  y   t  a  r  a   b   i  n  e   (  u   M   )

       0

     .   0   1   4 .   0

       4   1

     .   1   2

     .   3   7

       1 .   1

    Eribulin(E7389) (uM)

    0 1.4e-44.1e-4 .0012 .0037 .011

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308936

    -

    -9

    -7

    13

    36

    69

    7

    9

    11

    24

    60

    59

    43

    29

    25

    28

    41

    69

    74

    56

    62

    42

    64

    72

    115

    113

    89

    63

    63

    68

    120

    104

    108

    63

    63

    64

    Dose Matrix | None | 100 | HT -1080 | ATP Lite | 72h

       C  y   t  a  r  a   b   i  n  e   (  u   M   )

       0

     .   0   1   4 .   0

       4   1

     .   1   2

     .   3   7

       1 .   1

    Eribulin(E7389) (uM)

    0 4.6e-51.4e-4 4.1e-4 .0012 .0037

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308937

    -

    -8

    14

    52

    78

    101

    22

    5

    20

    49

    81

    111

    57

    35

    42

    63

    90

    111

    96

    82

    75

    76

    91

    116

    151

    139

    110

    87

    95

    128

    180

    180

    156

    116

    111

    136

    Dose Matrix | None | 500 | SK-BR-3 | ATP Lite | 72h

       C  y   t  a  r  a   b   i  n  e   (  u   M   )

       0

     .   0   1   4 .   0

       4   1

     .   1   2

     .   3   7

       1 .   1

    Eribulin(E7389) (uM)

    0 4.6e-51.4e-4 4.1e-4 .0012 .0037

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308938

    -

    35

    74

    90

    96

    98

    40

    50

    80

    91

    89

    101

    92

    95

    90

    98

    102

    94

    144

    119

    98

    99

    98

    105

    152

    129

    107

    111

    106

    119

    155

    131

    109

    111

    113

    125

    Dose Matrix | None | 100 | KY SE-410 | ATP Lite | 72h

       C  y   t  a  r  a   b   i  n  e   (  u   M   )

       0

     .   1   2

     .   3   7

       1 .   1

       3 .   3

       9 .   9

    Eribulin(E7389) (uM)

    0 4.6e-51.4e-4 4.1e-4 .0012 .0037

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   1  -   2

    DT-1308939

    -

    30

    44

    40

    39

    51

    -5

    47

    35

    44

    46

    55

    43

    15

    43

    44

    52

    44

    79

    31

    49

    44

    53

    56

    87

    54

    42

    50

    55

    56

    99

    65

    59

    50

    44

    54

    Dose Matrix | None | 500 |KATOIII | ATP Lite | 72h

       C  y   t  a  r  a   b   i  n  e   (  u   M   )

       0

     .   1   2

     .   3   7

       1 .   1

       3 .   3

       9 .   9

    Eribulin(E7389) (uM)

    0 1.4e-44.1e-4 .0012 .0037 .011

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308940

    -

    -32

    -44

    -29

    -16

    13

    35

    6

    4

    -28

    1

    18

    47

    29

    20

    -8

    8

    10

    52

    36

    7

    -22

    -4

    13

    56

    46

    20

    -11

    -10

    12

    63

    53

    25

    3

    -3

    5

    Dose Matrix | None | 100 | MDA -MB-468 | ATP Lite | 72h

       C  y   t  a  r  a   b   i  n  e   (  u   M   )

       0

     .   1   2

     .   3   7

       1 .   1

       3 .   3

       9 .   9

    Eribulin(E7389) (uM)

    0 4.6e-51.4e-4 4.1e-4 .0012 .0037

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2  -   3

    DT-1308941

    -

    5

    23

    34

    47

    69

    53

    32

    17

    53

    62

    86

    64

    47

    44

    50

    58

    77

    106

    86

    73

    60

    78

    86

    136

    108

    82

    52

    64

    89

    150

    122

    70

    62

    78

    91

    Dose MatrixNone | 100 | A2780

    | ATP Lite | 72h |

       T  o  p  o   t  e  c  a  n   H  y   d  r  o  c   h   l  o  r   i   d  e

       (  u   M   )

       0

     .   0   0   1   5 .   0

       0   4   6

     .   0   1   4 .   0

       4   1

     .   1   2

    Eribulin(E7389) (uM)0 .0012.0037 . 01 1 . 0 33 . 1

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308942

    -

    7

    26

    74

    92

    96

    89

    89

    91

    93

    97

    96

    108

    110

    111

    101

    97

    102

    115

    117

    121

    112

    105

    97

    133

    125

    126

    103

    102

    104

    159

    152

    145

    113

    107

    118

    Dose MatrixNone | 100 | NCI-

    H1650 | ATP Lite | 72h |

       T  o  p  o   t  e  c  a  n   H  y   d  r  o  c   h   l  o  r   i   d  e

       (  u   M   )

       0

     .   0   1   4 .   0

       4   1

     .   1   2

     .   3   7

       1 .   1

    Eribulin(E7389) (uM)0 1.4e-44.1e-4 .0012 .0037 .011

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   1  -   2

    DT-1308943

    -

    23

    28

    54

    109

    162

    12

    16

    30

    54

    103

    154

    24

    37

    27

    67

    124

    157

    61

    51

    34

    76

    115

    153

    82

    82

    41

    71

    111

    154

    84

    80

    63

    59

    117

    158

    Dose MatrixNone | 100 | HT-

    1080 | ATP Lite | 72h |

       T  o  p  o   t  e  c  a  n   H  y   d  r  o  c   h   l  o  r   i   d  e

       (  u   M   )

       0

     .   1   2

     .   3   7

       1 .   1

       3 .   3

       9 .   9

    Eribulin(E7389) (uM)0   4.6e-5 1.4e-4 4.1e-4 .0012 .0037

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308944

    -

    59

    88

    115

    144

    190

    22

    71

    88

    117

    152

    186

    57

    74

    91

    118

    158

    191

    96

    78

    92

    125

    166

    190

    151

    84

    95

    129

    156

    194

    180

    90

    108

    145

    168

    193

    Dose MatrixNone | 100 | KYSE-

    410 | ATP Lite | 72h |

       T  o  p  o   t  e  c  a  n   H  y   d  r  o  c   h   l  o  r   i   d  e

       (  u   M   )

       0

     .   0   1   4 .   0

       4   1

     .   1   2

     .   3   7

       1 .   1

    Eribulin(E7389) (uM)0   4.6e-5 1.4e-4 4.1e-4 .0012 .0037

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308945

    -

    5

    25

    48

    76

    118

    -5

    -5

    26

    39

    73

    111

    43

    27

    28

    46

    72

    109

    79

    64

    40

    44

    70

    111

    87

    89

    37

    55

    75

    108

    99

    92

    53

    50

    78

    120

    Dose MatrixNone | 100 | MDA-

    MB-468 | ATP Lite | 72h |

       T  o  p  o   t  e  c  a  n   H  y   d  r  o  c   h   l  o  r   i   d  e

       (  u   M   )

       0

     .   0   1   4 .   0

       4   1

     .   1   2

     .   3   7

       1 .   1

    Eribulin(E7389) (uM)0 4.6e-51.4e-4 4.1e-4 .0012 .0037

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2  -   3

    DT-1308946

    -

    31

    53

    113

    160

    176

    53

    65

    63

    130

    160

    177

    64

    68

    71

    109

    156

    181

    106

    93

    69

    113

    164

    183

    136

    111

    73

    113

    167

    183

    150

    139

    82

    105

    172

    179

    Dose MatrixNone | 500 | NCI-H69 | ATP Lite | 72h |

       T  o  p  o   t  e  c  a  n   H  y   d  r  o  c   h   l  o  r   i   d  e

       (  u   M   )

       0

     .   0   1   4 .   0

       4   1

     .   1   2

     .   3   7

       1 .   1

    Eribulin(E7389) (uM)0   1.4e-4 4.1e-4 .0012 .0037 .011

       G  r  o  w   t   h   I  n   h   i   b   i   t   i  o  n   (   %   )

       N  =   2

    DT-1308947

    -

    53

    73

    92

    123

    146

    20

    56

    67

    90

    119

    143

    63

    51

    66

    102

    122

    141

    121

    90

    82

    93

    136

    149

    130

    100

    91

    106

    127

    148

    130

    100

    98

    118

    136

    154

    MDA-MB-436 MDA-MB-468 SK-BR-3 KYSE-410 HT-1080 KATOIII

    MDA-MB-468 NCI-H1650 NCI-H69 A2780 KYSE-410 HT-1080

    Cytarabine

    Topotecan

    Eribulin-Sensitve Cell Lines Eribulin-Insensitve Cell Lines

    Eribulin +   M   C   F

       7

       M   D   A

      -   M   B  -   4   3   6

       M   D   A

      -   M   B  -   4   6   8

       S   K  -   B

       R  -   3

       A   5   4   9

       N   C   I  -   H   1   6   5   0

       N   C   I  -   H   5   2   2

       N   C   I  -   H   5   2   6

       N   C   I  -   H   6   9

       A   2   7   8

       0

       S   K  -   O

       V  -   3

       S   N   G  -   M

       K   Y   S   E

      -   4   1   0

       F   a   D   u

       M   I   A

       P   a   C   a  -   2

       P   C  -   3

       H   T  -   1

       0   8   0

       K   A   T   O   I   I   I

       M   D   A

      -   M   B  -   2   3   1

       T   4   7   D

       N   C   I  -   H   4   6   0

       H   e   p

       G   2

       7   8   6  -   0

       T   2   4

       A   3   7   5

    17-DMAG   -3.35   0.10   -5.07 -5.95   -2.30 0.84 2.01 -0 .56 1.18 1.83 0.94 -1.44 1.47 1.10 0.09 -0.93 -1.5 2 -1.94 3.05 3.44 1.94 2.11 0.74 1.05 1.22

    Cytarabine   -3.92 -5.39 -8.73 -5.94   -1.32   -2.97 -8.20   -0.48   -4.03 -5.42   -2.15   -2.43 -6.28   1.09 -2.28   -5.81 -5.53 -10.65   -2.28   -7.96   0.32 -0. 05 -0. 69 0.35 -1. 21

    Topotecan -1.48 -0.59   -3.14 -4.16   -0.17 -1.87   -5.33   -1.87   -3.47 -4.55   -1.79   -3.49 -5.15   1.19 -1. 76 -1. 68   -4.50 -11.00   -0.39   -2.89   - 0.1 7 1 .1 4 0 .3 1 - 0.8 8 - 0.6 8

    Gemcitabine   -4.28 -3.41 -4.49 -4.48   -0.02 -0.88   -5.23   -0. 11 -1. 72 -2. 30 -0. 24 -1. 85   -3.07   0. 65 -2. 00 -2. 19 -2. 99   -13.86   -0.73   -8.03   -0.23 0.86 1.09 -1. 43 -2. 55

    Figure 7: Loewe Volume heat map of select compoun ds screened in combination wi th eribulin. Loewe Volume scores are shown with potential synergies in

    pink/red and potential antagonisms in aqua/blue.  Also shown are Growth Inhibition dose matrices for eribulin x cytarabine and eribulin x topotecan in the cell lines

    MDA-MB-436, MDA-MB-468, SK-BR-3, KYSE-410, HT-1080 and Kato III.

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    8/9

    Citation: Rickles RJ, Matsui J, Zhu P, Funahashi Y, Grenier JM, et al. (2015) Identication of Combinatorial Drugs that Synergistically Kill both Eribulin-

    Sensitive and Eribulin-Insensitive Tumor Cells. Glob J Cancer Ther 1(1): 009-017.

    Rickles, et al. (2015)

    016

    o the appearance o combination activity should be explored, and the

    relationships, i any, o synergy/non-synergy to intrinsic or acquired

    resistance should be urther defined. o power such analyses,

    additional cell lines could be screened to generate a larger data set

    or more detailed genetic characterization. Additional analyses using

    larger data sets with sufficient breadth o known genetic profiles will

    be required to generate a ully vetted understanding o response

    prediction.

    In addition to identiying drug synergies, we have also identified

    antagonistic combinations. For example, low concentrations o

    cytarabine or topotecan have little effect on prolieration as single

    agents, but can dramatically antagonize eribulin activity under

    combination conditions. Indeed, this is not without precedent:

    antagonism has been observed or a variety o cancer drug

    combinations in preclinical studies, prompting ollow up analyses

    to investigate both the mechanisms o the synergies as well as the

    effects o drug combination sequencing [28-35]. For instance, in

    one extensively studied example, the anthracycline doxorubicin

    antagonized activity o the vinca alkaloid vincristine in 83% (15/18)

    o hematopoietic cell lines tested. Tis antagonism was reproduced

    in vivo in a xenograf model and was also observed in 34% (12/35) o

    childhood leukemia cells simultaneously treated with both drugs ex

    vivo [35]. Moreover, combination activity was shown to be sequence

    dependent: i cells are exposed to the anthracycline first, antagonism

    is observed, but i exposure to vinca alkaloid precedes anthracycline,

    the combination result is beneficial. A p53-dependent mechanism or

    this antagonism was proposed, where anthracycline effects stabilize

    anti-apoptotic BCL2 amily members, thus reducing cytotoxic effectso the vinca alkaloid. With respect to our current study, the eribulin

    antagonisms observed with 17-DMAG, cytarabine, topotecan and

    gemcitabine do not necessarily require that p53 be unctional as was

    the case in the preceding example, but urther study will be required to

    determine this. Indeed, the mechanisms by which these compounds

    antagonize eribulin may overlap or be entirely unrelated.

    In conclusion, we have identified promising preclinical in

    vitro  synergy combination partners with eribulin, with compound

    mechanistic redundancy helping to validate particular targets and

    pathways as important or selective, synergistic tumor cell killing.

    In order to utilize the current results with the goal o clinical

    implementation, urther studies, including sequencing o drugsand both in vivo efficacy and toxicology studies will be needed. Our

    results suggest that urther investigation is merited to assess whether

    additional patient benefit with eribulin, in some patient populations,

    may be achieved when eribulin is administered in the clinic as part o

    a combination drug regimen in patients in the context o controlled

    clinical trials.

    References

    1. Donoghue M, Lemery SJ, Yuan W, He K, Sridhara R, et al. (2012) Eribulin 

    Mesylate for the Treatment of Patients with Refractory Metastatic Breast 

    Cancer: Use of a “Physician’s Choice” Control Arm in a Randomized Approval 

    Trial. Clin Cancer Res 18: 1496-505.

    2. Shetty N, Gupta S (2014) Eribulin drug review. South Asian J Cancer 3: 57-

    59.

    3. Smith JA, Wilson L, Azarenko O, Zhu X, Lewis BM, et al. (2010) Eribulin binds 

    at microtubule ends to a single site on tubulin to suppress dynamic instability. 

    Biochemistry 49:1331–1337.

    4. Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, et al. (2001)In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogs of  

    Halichondrin B. Cancer Res 61: 1013-1021.

    5. Schöffski P, Ray-Coquard IL, Ciof A, Bui NB, Bauer S, et al. (2011) Activity 

    of eribulin mesylate in patients with soft-tissue sarcoma: a phase 2 study in  

    four independent histological subtypes. Lancet Oncol 12: 1045-1052.

    6. Swami U, Chaudhary I, Ghalib MH, Goel S. (2012) Eribulin--A review of  

    preclinical and clinical studies. Crit Rev Oncol Hemat 81:163–184.

    7. Towle MJ, Nomoto K, Asano M, Kishi Y, Yu MJ, et al. (2012) Broad Spectrum 

    Preclinical Antitumor Activity of Eribulin (Halaven®): Optimal Effectiveness 

    under Intermittent Dosing Conditions. Anticancer Research 32: 1611-1620. 

    8. Funahashi Y, Okamoto K, Nomoto K, ODA Y, et al. (2014) Eribulin mesylate 

    reduces tumor microenvironment abnormality by vascular remodeling in 

    preclinical human breast cancer models. Cancer Sci 105:1334-1342.

    9. Polastro L, Aftimos PG, Awada A (2014) Eribulin mesylate in the management 

    of metastatic breast cancer and other solid cancers: a drug review. Expert 

    Rev Anticancer Ther 14: 649-665.

    10. Scarpace SL (2012) Eribulin mesylate (E7389): review of efcacy and 

    tolerability in breast, pancreatic, head and neck, and non-small cell lung 

    cancer. Clin Ther 34: 1467-1473.

    11. Waller CF, Vynnychenko I, Bondarenko I, Shparyk Y, Hodge JP, et al. (2015) 

     An Open-Label, Multicenter, Randomized Phase Ib/II Study of Eribulin 

    Mesylate Administered in Combination With Pemetrexed Versus Pemetrexed 

     Alone as Second-Line Therapy in Patients With Advanced Nonsquamous 

    Non-Small-Cell Lung Cancer. Clin Lung Cancer 16: 92-99.

    12. Schöffski P, Maki RG, Italiano A, Gelderblom H, Grignani G, et al. (2015) 

    Randomized, open-label, multicenter, phase III study of eribulin versus 

    dacarbazine in patients (pts) with leiomyosarcoma (LMS) and adipocytic 

    sarcoma (ADI). J Clin Oncol 33: LBA10502.

    13. Barrentina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, et al. 

    (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of  

    anticancer drug sensitivity. Nature 483: 603-607.

    14. Saiki AY, Caenepeel S, Yu D, Lofgren JA, Osgood T, et al. (2014) MDM2 

    antagonists synergize broadly and robustly with compounds targeting 

    fundamental oncogenic signaling pathways. Oncotarget 5: 2030-2043.

    15. Lehar J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JY, et al. (2007) 

    Chemical combination effects predict connectivity in biological systems. Mol 

    Syst Biol 3:80

    16. Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, et al. (2009) 

    Synergistic drug combinations tend to improve therapeutically relevant 

    selectivity. Nat Biotechnol 27: 659-666.

    17. Jimeno A (2009) Eribulin: Rediscovering tubulin as an anticancer agent. Clin 

    Cancer Res 15: 3903-3905.

    18. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor  

    receptor mutations in lung cancer. Nat Rev Cancer 7: 169-181.

    19. Lapatinib product insert:

    20. Schaefer G, Shao L, Totpal K, Akita RW (2007) Erlotinib directly inhibits 

    HER2 kinase activation and downstream signaling events in intact cells 

    lacking epidermal growth factor receptor expression. Cancer Res 67: 1228-

    1238.

    21. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, et al. (2008) 

    BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical 

    lung cancer models Oncogene 27: 4702–4711.

    22. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. (2011) 

    Improved survival with vemurafenib in melanoma with BRAF V600E mutation. 

    N Engl J Med 364: 2507-2516.

    http://www.ncbi.nlm.nih.gov/pubmed/22282463http://www.ncbi.nlm.nih.gov/pubmed/22282463http://www.ncbi.nlm.nih.gov/pubmed/22282463http://www.ncbi.nlm.nih.gov/pubmed/22282463http://www.ncbi.nlm.nih.gov/pubmed/24665449http://www.ncbi.nlm.nih.gov/pubmed/24665449http://www.ncbi.nlm.nih.gov/pubmed/20030375http://www.ncbi.nlm.nih.gov/pubmed/20030375http://www.ncbi.nlm.nih.gov/pubmed/20030375http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/21937277http://www.ncbi.nlm.nih.gov/pubmed/21937277http://www.ncbi.nlm.nih.gov/pubmed/21937277http://www.ncbi.nlm.nih.gov/pubmed/21493087http://www.ncbi.nlm.nih.gov/pubmed/21493087http://www.ncbi.nlm.nih.gov/pubmed/22593439http://www.ncbi.nlm.nih.gov/pubmed/22593439http://www.ncbi.nlm.nih.gov/pubmed/22593439http://www.ncbi.nlm.nih.gov/pubmed/25060424http://www.ncbi.nlm.nih.gov/pubmed/25060424http://www.ncbi.nlm.nih.gov/pubmed/25060424http://www.ncbi.nlm.nih.gov/pubmed/24852360http://www.ncbi.nlm.nih.gov/pubmed/24852360http://www.ncbi.nlm.nih.gov/pubmed/24852360http://www.ncbi.nlm.nih.gov/pubmed/22739019http://www.ncbi.nlm.nih.gov/pubmed/22739019http://www.ncbi.nlm.nih.gov/pubmed/22739019http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://www.ncbi.nlm.nih.gov/pubmed/22460905http://www.ncbi.nlm.nih.gov/pubmed/22460905http://www.ncbi.nlm.nih.gov/pubmed/22460905http://www.ncbi.nlm.nih.gov/pubmed/24810962http://www.ncbi.nlm.nih.gov/pubmed/24810962http://www.ncbi.nlm.nih.gov/pubmed/24810962http://www.ncbi.nlm.nih.gov/pubmed/17332758http://www.ncbi.nlm.nih.gov/pubmed/17332758http://www.ncbi.nlm.nih.gov/pubmed/17332758http://www.ncbi.nlm.nih.gov/pubmed/19581876http://www.ncbi.nlm.nih.gov/pubmed/19581876http://www.ncbi.nlm.nih.gov/pubmed/19581876http://www.ncbi.nlm.nih.gov/pubmed/19509144http://www.ncbi.nlm.nih.gov/pubmed/19509144http://www.ncbi.nlm.nih.gov/pubmed/17318210http://www.ncbi.nlm.nih.gov/pubmed/17318210http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/18408761http:/www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18408761http://www.ncbi.nlm.nih.gov/pubmed/18408761http:/www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18408761http://www.ncbi.nlm.nih.gov/pubmed/18408761http:/www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18408761http://www.ncbi.nlm.nih.gov/pubmed/21639808http://www.ncbi.nlm.nih.gov/pubmed/21639808http://www.ncbi.nlm.nih.gov/pubmed/21639808http://www.ncbi.nlm.nih.gov/pubmed/21639808http://www.ncbi.nlm.nih.gov/pubmed/21639808http://www.ncbi.nlm.nih.gov/pubmed/21639808http://www.ncbi.nlm.nih.gov/pubmed/18408761http:/www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18408761http://www.ncbi.nlm.nih.gov/pubmed/18408761http:/www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18408761http://www.ncbi.nlm.nih.gov/pubmed/18408761http:/www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18408761http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/17283159http://www.ncbi.nlm.nih.gov/pubmed/17318210http://www.ncbi.nlm.nih.gov/pubmed/17318210http://www.ncbi.nlm.nih.gov/pubmed/19509144http://www.ncbi.nlm.nih.gov/pubmed/19509144http://www.ncbi.nlm.nih.gov/pubmed/19581876http://www.ncbi.nlm.nih.gov/pubmed/19581876http://www.ncbi.nlm.nih.gov/pubmed/19581876http://www.ncbi.nlm.nih.gov/pubmed/17332758http://www.ncbi.nlm.nih.gov/pubmed/17332758http://www.ncbi.nlm.nih.gov/pubmed/17332758http://www.ncbi.nlm.nih.gov/pubmed/24810962http://www.ncbi.nlm.nih.gov/pubmed/24810962http://www.ncbi.nlm.nih.gov/pubmed/24810962http://www.ncbi.nlm.nih.gov/pubmed/22460905http://www.ncbi.nlm.nih.gov/pubmed/22460905http://www.ncbi.nlm.nih.gov/pubmed/22460905http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://hwmaint.meeting.ascopubs.org/cgi/content/abstract/33/18_suppl/LBA10502http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/25458558http://www.ncbi.nlm.nih.gov/pubmed/22739019http://www.ncbi.nlm.nih.gov/pubmed/22739019http://www.ncbi.nlm.nih.gov/pubmed/22739019http://www.ncbi.nlm.nih.gov/pubmed/24852360http://www.ncbi.nlm.nih.gov/pubmed/24852360http://www.ncbi.nlm.nih.gov/pubmed/24852360http://www.ncbi.nlm.nih.gov/pubmed/25060424http://www.ncbi.nlm.nih.gov/pubmed/25060424http://www.ncbi.nlm.nih.gov/pubmed/25060424http://www.ncbi.nlm.nih.gov/pubmed/22593439http://www.ncbi.nlm.nih.gov/pubmed/22593439http://www.ncbi.nlm.nih.gov/pubmed/22593439http://www.ncbi.nlm.nih.gov/pubmed/21493087http://www.ncbi.nlm.nih.gov/pubmed/21493087http://www.ncbi.nlm.nih.gov/pubmed/21937277http://www.ncbi.nlm.nih.gov/pubmed/21937277http://www.ncbi.nlm.nih.gov/pubmed/21937277http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/11221827http://www.ncbi.nlm.nih.gov/pubmed/20030375http://www.ncbi.nlm.nih.gov/pubmed/20030375http://www.ncbi.nlm.nih.gov/pubmed/20030375http://www.ncbi.nlm.nih.gov/pubmed/24665449http://www.ncbi.nlm.nih.gov/pubmed/24665449http://www.ncbi.nlm.nih.gov/pubmed/22282463http://www.ncbi.nlm.nih.gov/pubmed/22282463http://www.ncbi.nlm.nih.gov/pubmed/22282463http://www.ncbi.nlm.nih.gov/pubmed/22282463

  • 8/19/2019 Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin- Insensitive Tumor …

    9/9

    Citation: Rickles RJ, Matsui J, Zhu P, Funahashi Y, Grenier JM, et al. (2015) Identication of Combinatorial Drugs that Synergistically Kill both Eribulin-

    Sensitive and Eribulin-Insensitive Tumor Cells. Glob J Cancer Ther 1(1): 009-017.

    Rickles, et al. (2015)

    017

    23. Smalley KS, Sondak VK. (2010) Melanoma--an unlikely poster child for  

    personalized cancer therapy. N Engl J Med 363: 876-878.

    24. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, et al. (2010) Melanomas 

    acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468: 973-977.

    25. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, et al. 

    (2010)COT drives resistance to RAF inhibition through MAP kinase pathway 

    reactivation. Nature 468: 968-972.

    26. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, et  

    al. ( 2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase 

    switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. 

    Cancer Cell 18: 683-695.

    27. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, et al. (2011) Dissecting 

    Therapeutic Resistance to RAF Inhibition in Melanoma by Tumor Genomic 

    Proling. J Clin Oncol 29: 3085-3096.

    28. Faivre S, Raymond E, Woynarowski JM, Cvitkovic E (1999) Supraadditive 

    effect of 2’,2’-diuorodeoxycytidine (gemcitabine) in combination with 

    oxaliplatin in human cancer cell lines. Cancer Chemotherapy and Pharmacology 44: 117-123.

    29. Distefano M, Ferlini C, De Vincenzo R, Gaggini C, Mancuso S, et al. (2000) 

     Antagonistic effect of the combination gemcitabine/topotecan in ovarian 

    cancer cells. Oncol Res 12: 355-359.

    30. Akutsu M, Furukawa Y, Tsunoda S, Izumi T, Ohmine K, et al. (2002) 

    Schedule-dependent synergism and antagonism between methotrexate and 

    cytarabine against leukemia cell lines in vitro. Leukemia 16: 1808-1817.

    31. Budman DR, Calabro A, Kreis W (2002) synergistic and antagonistic  combinations of drugs in human prostate cancer cell lines in vitro. Anticancer  

    Drugs 13: 1011-1016.

    32. Li T, Ling YH, Goldman ID, Perez-Soler R (2007) Schedule-dependent 

    cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung 

    cancer cells. Clin Cancer Res 13: 3413-3422.

    33. Barone C, Landriscina M, Quirino M, Basso M, Pozzo C, et al. (2007)  

    Schedule-dependent activity of 5-uorouracil and irinotecan combination in 

    the treatment of human colorectal cancer: in vitro evidence and a phase I 

    dose-escalating clinical trial. Br J Cancer 96: 21-28.

    34. Ikeda H, Taira N, Nogami T, Shien K, Okada M, et al. (2011) Combination 

    treatment with fulvestrant and various cytotoxic agents (doxorubicin, 

    paclitaxel, docetaxel, vinorelbine, and 5-uorouracil) has a synergistic effect 

    in estrogen receptor-positive breast cancer. Cancer Science 102: 2038-2042.

    35. Ehrhardt H, Schrembs D, Moritz C, Wachter F, Haldar S, et al. (2011) Optimized anti-tumor effects of anthracyclines plus Vinca alkaloids using a 

    novel, mechanism-based application schedule. Blood 118: 6123-6131.

    Copyright: © 2015 Rickles RJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits

    unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    http://www.ncbi.nlm.nih.gov/pubmed/20818849http://www.ncbi.nlm.nih.gov/pubmed/20818849http://www.ncbi.nlm.nih.gov/pubmed/21107323http://www.ncbi.nlm.nih.gov/pubmed/21107323http://www.ncbi.nlm.nih.gov/pubmed/21107323http://www.ncbi.nlm.nih.gov/pubmed/21107320http://www.ncbi.nlm.nih.gov/pubmed/21107320http://www.ncbi.nlm.nih.gov/pubmed/21107320http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21383288http://www.ncbi.nlm.nih.gov/pubmed/21383288http://www.ncbi.nlm.nih.gov/pubmed/21383288http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/11697814http://www.ncbi.nlm.nih.gov/pubmed/11697814http://www.ncbi.nlm.nih.gov/pubmed/11697814http://www.ncbi.nlm.nih.gov/pubmed/12200697http://www.ncbi.nlm.nih.gov/pubmed/12200697http://www.ncbi.nlm.nih.gov/pubmed/12200697http://www.ncbi.nlm.nih.gov/pubmed/12439335http://www.ncbi.nlm.nih.gov/pubmed/12439335http://www.ncbi.nlm.nih.gov/pubmed/12439335http://www.ncbi.nlm.nih.gov/pubmed/17545550http://www.ncbi.nlm.nih.gov/pubmed/17545550http://www.ncbi.nlm.nih.gov/pubmed/17545550http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/21926351http://www.ncbi.nlm.nih.gov/pubmed/21926351http://www.ncbi.nlm.nih.gov/pubmed/21926351http://www.ncbi.nlm.nih.gov/pubmed/21926351http://www.ncbi.nlm.nih.gov/pubmed/21926351http://www.ncbi.nlm.nih.gov/pubmed/21926351http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/21801281http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/17164761http://www.ncbi.nlm.nih.gov/pubmed/17545550http://www.ncbi.nlm.nih.gov/pubmed/17545550http://www.ncbi.nlm.nih.gov/pubmed/17545550http://www.ncbi.nlm.nih.gov/pubmed/12439335http://www.ncbi.nlm.nih.gov/pubmed/12439335http://www.ncbi.nlm.nih.gov/pubmed/12439335http://www.ncbi.nlm.nih.gov/pubmed/12200697http://www.ncbi.nlm.nih.gov/pubmed/12200697http://www.ncbi.nlm.nih.gov/pubmed/12200697http://www.ncbi.nlm.nih.gov/pubmed/11697814http://www.ncbi.nlm.nih.gov/pubmed/11697814http://www.ncbi.nlm.nih.gov/pubmed/11697814http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/10412945http://www.ncbi.nlm.nih.gov/pubmed/21383288http://www.ncbi.nlm.nih.gov/pubmed/21383288http://www.ncbi.nlm.nih.gov/pubmed/21383288http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21156289http://www.ncbi.nlm.nih.gov/pubmed/21107320http://www.ncbi.nlm.nih.gov/pubmed/21107320http://www.ncbi.nlm.nih.gov/pubmed/21107320http://www.ncbi.nlm.nih.gov/pubmed/21107323http://www.ncbi.nlm.nih.gov/pubmed/21107323http://www.ncbi.nlm.nih.gov/pubmed/21107323http://www.ncbi.nlm.nih.gov/pubmed/20818849http://www.ncbi.nlm.nih.gov/pubmed/20818849