ieee ottawa section | the ieee section for the region of ottawa. - … · 2013. 10. 29. · title:...

86
Omar M. Ramahi University of Waterloo Waterloo, Ontario, Canada © Copyright Omar M. Ramahi, 2010

Upload: others

Post on 17-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Omar M. RamahiUniversity of WaterlooWaterloo, Ontario, Canada

    © Copyright Omar M. Ramahi, 2010

  • © Copyright Omar M. Ramahi, 2010

  • Traditional Material!!

    ElectromagneticWaveWave

    rr με ,

    The only properties an electromagnetic wave sees:1 Electric permittivity ε

    3

    1. Electric permittivity, ε2. Magnetic Permeability, μ

    © Copyright Omar M. Ramahi, 2010

  • Metamaterial and Bandgap Structures!!g p

    if what But0 ,0 <

    orμε 0,0 >< rr με

    or0 ,0 rr με

    if0or,0

    ifeven ≈≈

    orμε

    4

    0or ,0 rr με

    © Copyright Omar M. Ramahi, 2010

  • Negative Index or Double Negative MediaNegative Media

    Positive mediaHE μβ =×Maxwell Equations

    Positive mediaOr Right Handed

    E HH Eεβ

    μβ−=×

    ×

    Negative mediaOr Left HandedE H

    H Eεβ

    μβ=×

    −=×

    Dispersion Relationship:p p

    dii

    media positive ; 222

    222yx

    ββ

    ββεμω +=

    medianegative; 222 yx ββεμω +=5© Copyright Omar M. Ramahi, 2010

  • Index of Refraction:Need Consistent Interpretation with MEp

    2 n2 =ε μ

    mediapositive 1n ;+=

    1n ±=media negative 1n ;−=

    6© Copyright Omar M. Ramahi, 2010

  • The case of μ , ε < 0

    Positive Index Medium Negative Index MediumPositive Index Medium Negative Index Medium

    ε>0μ>0

    ε

  • Flat Lens!(without optical axis!)(without optical axis!)

    Perfect focusingε < 0μ < 0

    gof traveling waves

    I

    Source

    Image

    Image stillIncomplete!

    8© Copyright Omar M. Ramahi, 2010

  • Flat Lens!

    0Perfect focusingof traveling waves ε < 0

    μ < 0of traveling waves

    Image

    Evanescent wave

    Source

    g

    Traveling wave

    To complete the imageneed remaining spectrum,The evanescent part

    Note: If the source is faraway from the NIR media,the evanescent spectrumThe evanescent part the evanescent spectrum will be lost forever.

    9© Copyright Omar M. Ramahi, 2010

  • Time-Domain Simulation

    Right Handed medium Left Handed medium

    Source

    Image

    Source: Zilkowski; Optics Express, April 2002

    10© Copyright Omar M. Ramahi, 2010

  • diµ-ε diagram

    E

    S

    kH

    SE

    K

    S

    H

    EK K

    1111© Copyright Omar M. Ramahi, 2010

  • © Copyright Omar M. Ramahi, 2010

  • Metamaterial!!

    ifh tB0,0

    if what

  • 14© Copyright Omar M. Ramahi, 2010

  • IC subject to Internal and External Noise

    ICIC Package Subject to

    External Noise

    Via 3 (Radiator) (Internal Source of Noise )

    Via 4 (Subject to Noise )

    IC

    DieDieDieMulti Layer Stack up Package Multi Layer Stack up

    PCB

    External Noise

    Via 1 (Radiator) (Source of Noise )

    Via 2 (Subject to Noise )

    15

    (Source of Noise )

    © Copyright Omar M. Ramahi, 2010

  • 16© Copyright Omar M. Ramahi, 2010

  • EBGs Can Take Various Shapes

    SubstratePatch

    SubstratePatch

    Substrate

    t

    Substrate

    t

    (a)Via

    conductor (a)Via

    conductor

    gg

    T=a+g

    d

    T=a+g

    d

    17

    a(b)

    a(b)

    © Copyright Omar M. Ramahi, 2010

  • 18

    Source: D. Seivenpiper, High Impedance Electromagnetic Surfaces, PhD Thesis, UCLA, 1999

    © Copyright Omar M. Ramahi, 2010

  • Textured (High Impedance) SurfacesIdeal for EMI/EMC Applications/ pp

    19

    Source: D. Seivenpiper, High Impedance Electromagnetic Surfaces, PhD Thesis, UCLA, 1999

    © Copyright Omar M. Ramahi, 2010

  • Design of EBG structure using S-parameters simulationparameters simulation

    Filt / tFilter/resonator

    20

    Ports

    © Copyright Omar M. Ramahi, 2010

  • EBGs as an EM Wave SuppressorSuppressor

    -20-15-10-50

    s

    -50-45-40-35-30-25

    para

    met

    ers

    0 2 4 6 8 10 12 14 16 18 20-75-70-65-60-55

    S11 S12

    S_p

    0 2 4 6 8 10 12 14 16 18 20

    Frequency (GHz)

    21© Copyright Omar M. Ramahi, 2010

  • Surface Wave Mitigation using EBG Materials

    EBG MaterialsEBG Materials

    BUT ill th b k f t ?22

    BUT… will the above work for any antenna?

    © Copyright Omar M. Ramahi, 2010

  • t a

    g

    1

    W

    LCfres π2

    1=Top view of HIS with square patches

    Surface wave propagation Resonance comes from lumped

    behavior of vias and patches period must be much smaller

    – TM waves at low Freq. – No propagation around fres– TE waves at high Freq

    23

    than wavelength:TE waves at high Freq.

    © Copyright Omar M. Ramahi, 2010

  • a

    M

    aa

    M

    g/2

    g/2g/2

    678

    z] M d 2

    Mode 3fH

    Topview

    www

    345

    uenc

    y [G

    Hz Mode 2

    Light Line

    BAND GAP

    fL

    PEC

    012Fr

    equ

    Mode 1

    BAND GAPsideview

    PEC

    Γ-X M-ΓX-M

    Anal sis of a nit cell pro ides Phase constant β

    24

    Analysis of a unit cell provides eigenmode solutions for Maxwell’s equations

    β

    © Copyright Omar M. Ramahi, 2010

  • Characterization using Dispersion Equations (approximate Analysis)

    In

    ⎤⎡ BA ⎤⎡ ⎤⎡

    In 1+Zs

    Vn⎥⎦⎤

    ⎢⎣

    ⎡DCBA

    ⎥⎦

    ⎤⎢⎣

    ⎡DCBA

    ⎥⎦

    ⎤⎢⎣

    ⎡DCBA

    Vn 1++

    +

    L LVs ZL

    d BA γFloquet’s theorem :

    ⎥⎦

    ⎤⎢⎣

    ⎡⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    +

    +

    1

    1

    n

    n

    n

    n

    IV

    DCBA

    IV 0=

    −−

    d

    d

    eACBeA

    γ

    γ

    In order to have a l ti

    ⎥⎦

    ⎤⎢⎣

    ⎡=⎥

    ⎤⎢⎣

    ⎡ −+

    +

    n

    nd

    n

    n

    IV

    eIV γ

    1

    1

    YZ

    solution

    25

    nn jβαγ += )sin(2)cos()cosh( dYZjdd w ββγ +=

    © Copyright Omar M. Ramahi, 2010

  • Transmission Line and Periodic Structure Theory (TLPS) Modeling

    )sin(2

    )cos()cosh( dYZjdd w ββγ +=

    y ( ) g

    )sin(2

    )cos()sin()sinh()cos()cosh( 1111 dYZjdddjdd w βββαβα +=+

    • For the first cell:

    2

    • Case 1, α1= 0: (outside the gap, wave propagation)

    )sin(2

    )cos()cos( 1 dYZ

    jdd w βββ +=

    • Case 2, α1 ≠ 0 and β1 = 0 or π: (inside the gap, amplitude decay)

    )i ()()()h( dYZddd βββ

    26

    )sin(2

    )cos()cos()cosh( 11 dYZjddd w βββα +=

    © Copyright Omar M. Ramahi, 2010

  • EBGs for Switching Noise Suppression

    27© Copyright Omar M. Ramahi, 2010

  • EBGs for Switching Noise Suppression

    Vss

    Driver

    VssVdd

    Vdd

    LoadPowersupply

    Vss

    Switching noise sourceg

    28© Copyright Omar M. Ramahi, 2010

  • Switching and switching noise

    Vss

    Driver

    Vdd

    Vdd

    LoadPowersupply

    Vss

    Switching noise source

    29© Copyright Omar M. Ramahi, 2010

  • Switching noise: Propagation point of viewpoint of view

    Signal passing through the power planes

    Device subject to noiseNoise-generating device

    Power planes radiate like patch antennas

    power planes

    P b lSignal layers Power bus layersSignal layers

    30© Copyright Omar M. Ramahi, 2010

  • Model for Power Plane Analysisy

    LoadMetallic planes Cavity resonances

    oss

    [dB]

    Model for noise source

    εr

    nser

    tion

    LoIn

    Frequency [GHz]

    31© Copyright Omar M. Ramahi, 2010

  • 10 cm10 cm

    10 cm10 cm -20

    -10

    0

    10 cm

    Port 2

    10 cm

    Port 2 -40

    -30

    -20

    S12(

    dB)

    Port 1Port 1

    -70

    -60

    -50

    experimental data with decaps from [5]simulation with decapssimulation without decaps

    0 0.5 1 1.5 2 2.5 3 3.5 4Frequency (GHz)

    1

    32

    LjRCj

    Zcap ωω++=

    1

    © Copyright Omar M. Ramahi, 2010

  • Noise mitigation with decoupling capacitors around noise sourcep

    Surface Current on Ground Plane (No Capacitors)

    33

    Surface Current on Ground Plane (99 Capacitors)

    © Copyright Omar M. Ramahi, 2010

  • RC dissipative edge termination

    Separation of Vdd planeStops parallel-plate

    Mitigates low frequencyDoes not address

    ll l l

    Stops parallel plate propagation to and from sensitive deviceslocalized solution

    parallel-plate resonance

    Embedded capacitanceDoes not remove parallel-plate resonanceWorsens reliability of b d (f l )

    34

    board (fragile)

    © Copyright Omar M. Ramahi, 2010

  • Switching noise suppression in the presence of EEBG structuresp

    Power Bus

    Buried via EBG PatchBuried via EBG Patch

    35© Copyright Omar M. Ramahi, 2010

  • gVdd Pl

    g

    t

    d

    Vdd Plane

    a

    g

    36

    w a

    © Copyright Omar M. Ramahi, 2010

  • What is the result of using them?

    v

    g

    vd

    wh2

    h1

    -10

    0

    dB)

    d

    40

    -30

    -20

    de o

    f S21

    (d

    w

    2hr2

    -60

    -50

    -40

    Mag

    nitu

    dd

    2

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    Frequency (GHz)

    37© Copyright Omar M. Ramahi, 2010

  • Experimental setup

    38© Copyright Omar M. Ramahi, 2010

  • Wide Band Noise Mitigation

    -10

    0

    B)

    Without EEBG

    -40

    -30

    -20

    e of

    S21

    (dB

    80

    -70

    -60

    -50

    Mag

    nitu

    de

    With EEBG

    0 1 2 3 4 5 6 7 8 9 10

    -80

    Frequency (GHz)

    39© Copyright Omar M. Ramahi, 2010

  • EMI suppression

    Power planes edge di tiradiation

    40© Copyright Omar M. Ramahi, 2010

  • EMI reduction: Experiment setup

    Board under test (6.5 cm x 10 cm) fabricated on commercial FR4.

    Four Rows of 5mm EEBG

    Excitation Point

    Monopole AntennaBoard under testVector network analyzerVector network analyzer

    41SMA connector © Copyright Omar M. Ramahi, 2010

  • EMI reduction: Experiment results

    • EMI suppression is omni-directional

    Without EEBG

    • Results at different test points are similar

    -40

    -30

    -20

    -70

    -60

    -50

    de o

    f S21

    (dB

    )5cm

    3.25cm

    Board Under Test

    -100

    -90

    -80

    Mag

    nitu

    d

    5cm

    5cm TP With EEBG

    42

    0 1 2 3 4 5 6 7 8 9 10-110

    Frequency (GHz)© Copyright Omar M. Ramahi, 2010

  • Ultra Wide-Band EMI Reduction

    -30

    -20

    Four Rows of 5 mm HIS

    Four Rows of 10 HIS

    Without EEBG

    -60

    -50

    -40

    of S

    21(d

    B)5 mm HIS 10 mm HIS

    -90

    -80

    -70

    Mag

    nitu

    de o

    Excitation Point

    0 1 2 3 4 5 6 7 8 9 10

    -100MFrequency (GHz)

    Point

    With EEBG

    43© Copyright Omar M. Ramahi, 2010

  • 44© Copyright Omar M. Ramahi, 2010

  • The Challenge of Modeling

    C

    L

    )(21

    21 CCLfres +

    45

    21 ωω

    LCjLZ LC −

    =

    © Copyright Omar M. Ramahi, 2010

  • 2D Model based on new unit cellModel based on TEM-transmission-line model combined with the LIS model

    RsVs

    RL

    )/(cosh)(2 102163 gdwC rr −−

    +=

    πεεε

    46

    hL2

    063

    μ=−

    © Copyright Omar M. Ramahi, 2010

  • 2D Model based on new unit cell

    0HFSSTM simulation

    -50

    -25

    S21(

    dB)

    -100

    -75

    nitu

    de o

    f S

    -150

    -125Mag Circuit model

    using Agilent ADSTM

    1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

    Frequency (GHz)

    47

    Accuracy limited to low frequencies© Copyright Omar M. Ramahi, 2010

  • Modeling Complex EBG Structures!

    -20

    -10

    0

    50

    -40

    -30

    20

    ude

    of S

    21(d

    B)

    -70

    -60

    -50

    S21 Short Spiral S21 Long Spiral S21 PatchS No Spiral

    Mag

    nitu

    1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

    -80 S21 No Spiral

    Frequency (GHz)

    48© Copyright Omar M. Ramahi, 2010

  • Planar EBG Structures

    Patches of different shapes without vias!

    49© Copyright Omar M. Ramahi, 2010

  • L-bridge Lb

    30mmCg

    Lb: bridge inductance

    unit cell Cg: gap capacitance

    50

    T. L. Wu, C. C. Yang, Y. H. Lin, et al. “A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits” IEEE Microwave and Wireless Components Letters, Vol. 15 No.3, pp. 174-176, 2005

    © Copyright Omar M. Ramahi, 2010

  • 2mm

    Unit Cell

    Top View

    30mm

    26mm

    Top View

    Port 1 Port 2

    90mm

    1.54mm

    150mm

    FR4

    51© Copyright Omar M. Ramahi, 2010

  • Physical size of board: 3x5 unit cells ( 90x150mm)

    LPKF ProtoMat C100/HF circuit plotter

    52© Copyright Omar M. Ramahi, 2010

  • -20

    0

    (dB)

    -40

    de o

    f S21

    -80

    -60

    Ref Exp Mag

    nitu

    d

    VNA measurement

    0 1 2 3 4 5 6 7 8 9 10 11 12-100

    -80 p Ref Sim Meander-L Exp Meander-L Sim

    53

    Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • Structure B:

    Port 1

    Port 2Structure A:

    Signal Port 1

    ViaEBG

    Port 1 Port 2trace

    FR4 1.54mmPort 2

    54

    Side view

    © Copyright Omar M. Ramahi, 2010

  • 1200Input (test signal)1200

    400

    600

    800

    1000

    Volta

    ge (m

    V)

    pu ( es s g a )

    600

    800

    1000

    ge (m

    V)

    0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4-200

    0

    200

    V

    time (ns)

    Output (structure B)

    200

    0

    200

    400

    Volta

    g

    600

    800

    1000

    1200

    (mV

    )

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0-200

    time (ns)

    0

    200

    400

    Vol

    tage

    55

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0-200

    time (ns)

    © Copyright Omar M. Ramahi, 2010

  • 1000

    1200

    V1

    V2 3

    w=2mm

    400

    600

    800

    olta

    ge (m

    V)

    V2 3mm

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0-200

    0

    200

    Vti ( )time (ns)

    56© Copyright Omar M. Ramahi, 2010

  • V1 w=2mm

    V2 3mm

    57© Copyright Omar M. Ramahi, 2010

  • Different Varieties ofDifferent Varieties of Metamaterials

    Complementary Structures!Structures!

    © Copyright Omar M. Ramahi, 2010

  • Split-Ring Resonator andComplementary Split Ring ResonComplementary Split Ring Reson.

    aa

    E

    Hk

    rin

    b

    gH

    rout

    (a) (b)

    CuSRR CSRR

    Cu

    © Copyright Omar M. Ramahi, 2010

  • Excellent very small filter!

    Falcone et al IEEE MWCL June 2004Falcone et al., IEEE MWCL, June 2004

    © Copyright Omar M. Ramahi, 2010

  • Design of PCBs usingSplit-Ring Resonators (Negative media)Split Ring Resonators (Negative media)

    © Copyright Omar M. Ramahi, 2010

  • Experiment with Rogers Board

    0

    -20-10

    0

    0-40-30

    2| (d

    B)

    -70-60-50

    |S12

    .solid board

    0 1 2 3 4 5 6 7 8 9 10-8070

    Frequency (GHz)

    solid board

    Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • Split-Ring Resonator andComplementary Split Ring ResonComplementary Split Ring Reson.

    14mm Port 2

    w=1.19mm14mm

    41mmPort 1

    h

    © Copyright Omar M. Ramahi, 2010

  • Experiment with FR4

    -20-10

    0

    50-40-3020

    dB)

    -70-60-50

    |S12

    | (d

    Solid (measured)

    0 1 2 3 4 5 6 7 8 9 10 11 12-90-80

    Solid (measured) Solid (simulated) CSRRs (measured) CSRRs (simulated)

    Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • Next challenges:

    © Copyright Omar M. Ramahi, 2010

  • EBG or ?

    © Copyright Omar M. Ramahi, 2010

  • Dispersion Diagram..How important?How important?

    ( 1st 2nd 3rd and 4th) propagating modes

    6

    7

    8

    R i X

    ( 1 , 2 , 3 , and 4 ) propagating modes

    2

    3

    4

    5

    Region: Γ −−−> X

    g (M

    m/s

    )

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

    0

    1

    2v g

    Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • Suppression Bandwidth

    20 dB Suppression Band

    20

    0

    20

    B)

    -60

    -40

    -20

    f S21

    (dB

    -120

    -100

    -80

    nitu

    de o

    0 2 4 6 8 10 12 14-160

    -140

    120

    Without EBG Pattern (Reference) With EBG PatternM

    agn

    0 2 4 6 8 10 12 14

    Frequency (GHz)© Copyright Omar M. Ramahi, 2010

  • Suppression Bandwidth

    8

    ( 1st, 2nd, 3rd, and 4th) propagating modes

    Port 1Port 2

    5

    6

    7

    8

    Region: Γ −−−> X

    s)

    1

    2

    3

    4

    v g (M

    m/s

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

    0

    1

    Frequency (GHz)Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • Suppression Bandwidthvs Bandgap

    1.0

    vs. Bandgap

    0 70.80.9 EBG Patterned Parallel Planes

    Solid Parallel Planes

    0.50.60.7

    on L

    oss

    0.20.30.4

    Rad

    iati

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150.00.1

    Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • IC subject to Internal and External Noise

    ICIC Package Subject to

    External Noise

    Via 3 (Radiator) (Internal Source of Noise )

    Via 4 (Subject to Noise )

    IC

    DieDieDieMulti Layer Stack up Package Multi Layer Stack up

    PCB

    External Noise

    Via 1 (Radiator) (Source of Noise )

    Via 2 (Subject to Noise )

    71

    (Source of Noise )

    © Copyright Omar M. Ramahi, 2010

  • Reduction of Coupling between Patch antennas

    © Copyright Omar M. Ramahi, 2010

  • Reduction of Coupling between Patch antennasantennas

    Patch AntennaPatch Antenna

    hSubstrate

    © Copyright Omar M. Ramahi, 2010

  • Reduction of Coupling between Patch antennas

    Patch AntennaPatch Antenna

    antennas

    Substrate

    S fSurfaceWaves

    E

    © Copyright Omar M. Ramahi, 2010

  • Complementary Split Ring Resonator

    SRR CSRR

    H EH E

    © Copyright Omar M. Ramahi, 2010

  • Design of PCBs usingComplementary Split-Ring ResonatorsComplementary Split Ring Resonators

    Patch AntennaPatch Antenna SCSRR structure

    © Copyright Omar M. Ramahi, 2010

  • 6

    7

    8 Bandgap

    4

    5

    6

    y (G

    Hz)

    2

    3

    4

    requ

    ency

    mode1

    00

    1

    Γ X

    Fr mode1 mode 2

    © Copyright Omar M. Ramahi, 2010

    Γ−X

  • 8

    6

    7

    Hz)

    4

    5

    ncy

    (GH

    Bandgap zone

    2

    3

    requ

    en

    Mode 1

    0

    1Fr

    Mode 2

    © Copyright Omar M. Ramahi, 2010

    Γ−X

  • SCSRR

    SCSRR structure

    © Copyright Omar M. Ramahi, 2010

  • Surface Currents on Ground Plane

    P h Patch antennas

    yy

    xx© Copyright Omar M. Ramahi, 2010

  • Surface Currents on Ground Plane

    P t h tPatch antennas

    yy

    x© Copyright Omar M. Ramahi, 2010

  • Performance of SCSRR

    10

    -20

    -15

    -10 without SCSRRs with SCSRRs

    -35

    -30

    -25

    S12

    | (dB

    )

    50

    -45

    -40

    |

    4.0 4.5 5.0 5.5 6.0-50

    Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • Antennas MatchingPractically not affected!

    0

    Practically not affected!

    -5

    0

    -15

    -10

    i| (d

    B)

    Air (S11)

    -25

    -20|Si ( 11)

    Air (S22) SCSRRs (S11)SCSRRs (S22)

    4.0 4.5 5.0 5.5 6.0-30

    Frequency (GHz)

    SCSRRs (S22)

    Frequency (GHz)

    © Copyright Omar M. Ramahi, 2010

  • Radiation Patterns

    510

    030330

    510

    030330

    20-15-10

    -50

    60

    90270

    300

    20

    -15-10

    -505

    60300

    -20 90

    120240

    270-20-15-10

    -50

    without SCSRRs with SCSRRs

    -20 90

    120240

    270-20-15-10

    -50

    without SCSRRswith SCSRRs

    150180

    2105

    10

    150180

    210

    05

    10

    with SCSRRs

    H-plane E-plane© Copyright Omar M. Ramahi, 2010

  • EBGs…EBGs…Perhaps has the mostp

    important application in the field of EMI/EMC!!.

    © Copyright Omar M. Ramahi, 2010