osama abumansoor and azzedine boukerche department of information technology and engineering,...

32
A Secure Cooperative Approach for Nonline-of-Sight Location Verification in VANET Osama Abumansoor and Azzedine Boukerche Department of Information Technology and Engineering, University of Ottawa IEEE Transactions on Vehicular Technology, TVT 2012 Wireless & Mobile Network Laboratory (WMNL.) Department of Computer Science and Information Engineering, Tamkang Uni

Upload: lauren-thornton

Post on 29-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

A Secure Cooperative Approach for

Nonline-of-Sight Location Verification

in VANET

Osama Abumansoor and Azzedine BoukercheDepartment of Information Technology and Engineering, University of Ottawa

IEEE Transactions on Vehicular Technology, TVT 2012

Wireless & Mobile Network Laboratory (WMNL.) Department of Computer Science and Information Engineering, Tamkang University

Page: 2WMNL

Outline

Introduction

Multi-Hop Location Verification Protocol (MHLVP)

Performance Evaluation

Conclusion

Page: 3WMNL

• Vehicular networks (VANETs) are experiencing rapid growth and evolution under the increasing demand of vehicular traffic management, driving safety, and comfort of drivers.

Introduction

Page: 4WMNL

Introduction

• Many of these applications require knowledge of neighboring vehicles’ location specifications.

Page: 5WMNL

Introduction

• Improving and maintaining drivers’ neighborhood awareness are important in VANETs.

Page: 6WMNL

Introduction

• NLOS and false location can compromise and disturb the applications’ functionality and may increase the chances of road accidents.

V (Acture)V’(Announced)Obstacle

Page: 7WMNL

Introduction

• NLOS and false location can compromise and disturb the applications’ functionality and may increase the chances of road accidents.

Page: 8WMNL

Goal

• Proposes a novel location verification protocol among cooperative neighboring vehicles for VANETs

– Verifies a vehicle’s announced location.

– Overcome an NLOS condition.

– Increase the vehicles’ rate of neighborhood awareness

– Providing reliable position information for upper level applications.

Page: 9WMNL

Multi-Hop Location Verification Protocol

(MHLVP)

Page: 10WMNL

Network Assumption

• Each vehicle is equipped with

– GPS

– Communication device

– Capability for measuring the RSS

Page: 11WMNL

MHLVP Protocol - Basic Idea

Location Verification

NLOS Condition False location

Page: 12WMNL

MHLVP Protocol - Basic Idea

Location Verification

NLOS Condition False location

A

B

(XA,YA)

(Acture)

dAB(RSS)dAB(Coordinate)

B’ (XB,YB)(Announced)

dAB(RSS)dAB(Coordinate)

Page: 13WMNL

dAB(RSS)dAB(Coordinate) dAB(RSS)dAB(Coordinate)

C(XC,YC)

MHLVP Protocol - Basic Idea

Location Verification

NLOS Condition False location

A

B

(XA,YA)

(Acture)

dAB(RSS)dAB(Coordinate)

B’ (XB,YB)(Announced)

Obstacle

A (XA,YA)

B (XB,YB)dBC(RSS)

dAC(RSS)

θ

dAB(RSS)

Page: 14WMNL

MHLVP Protocol

A(XA,YA)

B(XB,YB)

C(XC,YC)

D(XD,YD)

Neighbor Table

ID Locaion Mobility Vector Time Stamp

A’s Neighbor Table

B (XB,YB) MB TB

C (XC,YC) MC TC

D (XD,YD) MD TD

B’s Neighbor Table

A (XA,YA) MA TA

C (XC,YC) MC TC

D (XD,YD) MD TD

C’s Neighbor Table

A (XA,YA) MA TA

B (XB,YB) MB TB

D (XD,YD) MD TD

D’s Neighbor Table

A (XA,YA) MA TA

B (XB,YB) MB TB

C (XC,YC) MC TC

Maintain the neighbors’ information

Page: 15WMNL

MHLVP Protocol

A(XA,YA)

B(XB,YB)

C(XC,YC)

D(XD,YD)

Neighbor Table

ID Locaion Mobility Vector Time Stamp

A’s Neighbor Table

B (XB,YB) MB TB

C (XC,YC) MC TC

D (XD,YD) MD TD

B’s Neighbor Table

A (XA,YA) MA TA

C (XC,YC) MC TC

D (XD,YD) MD TD

C’s Neighbor Table

A (XA,YA) MA TA

B (XB,YB) MB TB

D (XD,YD) MD TD

D’s Neighbor Table

A (XA,YA) MA TA

B (XB,YB) MB TB

C (XC,YC) MC TC

Location Verification

dAB(RSS)

dAB(Coordinate)

dAD(RSS)dAD(Coordinate)

22ADAD YYXX

YESUpdate the information

NODiscard the information

Page: 16WMNL

MHLVP Protocol

A(XA,YA)

D(XD,YD)

A’s Neighbor Table

B (XB,YB) MB TB

C (XC,YC) MC TC

D (XD,YD) MD TD

Overcome NLOS condition

A’s Neighbor Table

B (XB,YB) MB TB

C (XC,YC) MC TC

D (XD,YD) MD TD!

Request for verification

!!

B(XB,YB)

C(XC,YC)

Page: 17WMNL

C(XC,YC)

B(XB,YB)

MHLVP Protocol

A(XA,YA)

D(XD,YD)

Overcome NLOS condition

YES Reply Request

NO Forward RequestDirect LOS with D

Page: 18WMNL

MHLVP Protocol

A(XA,YA)

D(XD,YD)

C(XC,YC)

dBD(RSS)

Overcome NLOS condition

{dBD(RSS), D(XD,YD)}

B(XB,YB)

Page: 19WMNL

MHLVP Protocol

A(XA,YA)

D(XD,YD)

B(XB,YB)

dBD(RSS)

Overcome NLOS condition

dAB(RSS)

C(XC,YC)

θ

)(arcos BDBA

cos222BDABBDABAD ddddd

dAD(RSS)

dAD(RSS)dAD(Coordinate)

YESUpdate the information

NOIgnore and delete the record

Page: 20WMNL

C(XC,YC)

B(XB,YB)

MHLVP Protocol

A(XA,YA)

D(XD,YD)

Overcome NLOS condition

YES Reply Request

NO Forward RequestDirect LOS with D

Request for verification

Page: 21WMNL

C(XC,YC)

B(XB,YB)

MHLVP Protocol

A(XA,YA)

D(XD,YD)

Overcome NLOS condition

Request for verification !

Page: 22WMNL

C(XC,YC)

B(XB,YB)

MHLVP Protocol

A(XA,YA)

D(XD,YD)

Overcome NLOS condition

{dCD(RSS), D(XD

,YD)}

Direct LOS with D

Page: 23WMNL

C(XC,YC)

B(XB,YB)

MHLVP Protocol

A(XA,YA)

D(XD,YD)

Overcome NLOS condition

dBD(RSS)

θBCD

dCD(RSS)

dBC(RSS)

dBD(RSS)dBD(Coordinate)

Page: 24WMNL

C(XC,YC)

B(XB,YB)

MHLVP Protocol

A(XA,YA)

D(XD,YD)

Overcome NLOS condition

dBD(RSS)

{dBD(RSS), D(XD,YD)}

Page: 25WMNL

C(XC,YC)

B(XB,YB)

MHLVP Protocol

A(XA,YA)

D(XD,YD)

Overcome NLOS condition

dBD(RSS)

θABD

dAB(RSS)

dAD(RSS)

dAD(RSS)dAD(Coordinate)

Page: 26WMNL

Performance Evaluation

Simulation ParametersSimulator ns-2 ver 2.34

Simulation Time 15~30 minutes

Number of Vehicles 100~1000

Simulation Area 20 km (Highway 417 in Ottawa)

Communication Range 300 m

Radio Propagation Two-ray ground

Antenna Type Omni antenna

MAC Layer 802.11p

Beacon Frequency 1 Hz

Max Hop 4

Data Rate 6 Mbps

Packet Payload 152 Byte

Speed Limits 0~100 km/h

Obstacle Length 10~15 m

Page: 27WMNL

Performance EvaluationObstacle Model

LOS (Line-of-Sight) NLOS (None-Line-of-Sight)

Page: 28WMNL

Performance EvaluationNeighborhood Awareness and Location Verification

200 Vehicles with 25% obstacle Different vehicle densities with 25% obstacle

Page: 29WMNL

Performance EvaluationChannel Capacity Utilization

6 Mb/s、 packet size 152Bytes、 with 25% obstacle

Page: 30WMNL

Performance Evaluation

Message Delivery Success Rate

Obstacle

Page: 31WMNL

Conclusion

• This paper proposes a novel location verification protocol among cooperative neighboring vehicles for VANETs

– Verifies a vehicle’s announced location.

– Overcome an NLOS condition.

– Increase the vehicles’ rate of neighborhood awareness

– Improve the message delivery success rate

– Providing reliable position information for upper level applications.

Page: 32WMNL

Thanks~~~Thanks~~~Thanks~~~