ignacio m. pelayo2 18 fv.pdf · ignacio m. pelayo (u.p.c.) neighbor-locating colorings in...

67
Neighbor-Locating Colorings in Pseudotrees 1 Ignacio M. Pelayo 2 2 Universitat Polit` ecnica de Catalunya, Barcelona, Spain 27th Workshop on Cycles and Colourings Hotel Atrium, Nov´ y Smokovec, High Tatras, Slovakia 1 Joint work with Liliana Alcon, Marisa Gutierrez, Carmen Hernando and Merc` e Mora. d Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14

Upload: others

Post on 13-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

Neighbor-Locating Colorings in Pseudotrees 1

Ignacio M. Pelayo2

2Universitat Politecnica de Catalunya, Barcelona, Spain

27th Workshop on Cycles and Colourings

Hotel Atrium, Novy Smokovec, High Tatras, Slovakia

1Joint work with Liliana Alcon, Marisa Gutierrez, Carmen Hernando and Merce Mora.d

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14

Page 2: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B A dominating set S ⊂ V is a neighbor-locating-dominating set 2 if forevery two vertices u, v ∈ V \ S and some vertex w ∈ S,

w ∈ N(u) and w 6∈ N(v)

B The NLD number λ(G) is the cardinality of a λ-code3.

1 2 3

10001

10000 00010

45

λ(G) = 5 ⇒: S = {1, 2, 3, 4, 5} is a λ-code.

2NLD-set for short.3An NLD-set of minimum cardinality.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 2 / 14

Page 3: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B A dominating set S ⊂ V is a neighbor-locating-dominating set 2 if forevery two vertices u, v ∈ V \ S and some vertex w ∈ S,

w ∈ N(u) and w 6∈ N(v)

B The NLD number λ(G) is the cardinality of a λ-code3.

1 2 3

10001

10000 00010

45

λ(G) = 5 ⇒: S = {1, 2, 3, 4, 5} is a λ-code.

2NLD-set for short.3An NLD-set of minimum cardinality.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 2 / 14

Page 4: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B A dominating set S ⊂ V is a neighbor-locating-dominating set 2 if forevery two vertices u, v ∈ V \ S and some vertex w ∈ S,

w ∈ N(u) and w 6∈ N(v)

B The NLD number λ(G) is the cardinality of a λ-code3.

1 2 3

10001

10000 00010

45

λ(G) = 5 ⇒: S = {1, 2, 3, 4, 5} is a λ-code.

2NLD-set for short.3An NLD-set of minimum cardinality.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 2 / 14

Page 5: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B A dominating set S ⊂ V is a neighbor-locating-dominating set 2 if forevery two vertices u, v ∈ V \ S and some vertex w ∈ S,

w ∈ N(u) and w 6∈ N(v)

B The NLD number λ(G) is the cardinality of a λ-code3.

1 2 3

10001

10000 00010

45

λ(G) = 5 ⇒: S = {1, 2, 3, 4, 5} is a λ-code.2NLD-set for short.3An NLD-set of minimum cardinality.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 2 / 14

Page 6: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .B Π is a dominating partition of G if for every i ∈ [k] and every vertex

u ∈ Si,

N(u) ∩ (V \ Si) 6= ∅B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],

every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅B The partition NLD number λp(G) is the minimum cardinality of an

NLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 7: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .B Π is a dominating partition of G if for every i ∈ [k] and every vertex

u ∈ Si,

N(u) ∩ (V \ Si) 6= ∅B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],

every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅B The partition NLD number λp(G) is the minimum cardinality of an

NLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 8: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .

B Π is a dominating partition of G if for every i ∈ [k] and every vertexu ∈ Si,

N(u) ∩ (V \ Si) 6= ∅B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],

every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅B The partition NLD number λp(G) is the minimum cardinality of an

NLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 9: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .B Π is a dominating partition of G if for every i ∈ [k] and every vertex

u ∈ Si,

N(u) ∩ (V \ Si) 6= ∅

B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅B The partition NLD number λp(G) is the minimum cardinality of an

NLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 10: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .B Π is a dominating partition of G if for every i ∈ [k] and every vertex

u ∈ Si,

N(u) ∩ (V \ Si) 6= ∅B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],

every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅

B The partition NLD number λp(G) is the minimum cardinality of anNLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 11: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .B Π is a dominating partition of G if for every i ∈ [k] and every vertex

u ∈ Si,

N(u) ∩ (V \ Si) 6= ∅B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],

every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅B The partition NLD number λp(G) is the minimum cardinality of an

NLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 12: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .B Π is a dominating partition of G if for every i ∈ [k] and every vertex

u ∈ Si,

N(u) ∩ (V \ Si) 6= ∅B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],

every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅B The partition NLD number λp(G) is the minimum cardinality of an

NLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 13: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a partition of V .B Π is a dominating partition of G if for every i ∈ [k] and every vertex

u ∈ Si,

N(u) ∩ (V \ Si) 6= ∅B Π is an NLD-partition of G if it is dominating and for every i ∈ [k],

every pair u, v ∈ Si and some j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅B The partition NLD number λp(G) is the minimum cardinality of an

NLD-partition of G.

λp(G) ≤ λ(G) + 1

⇒ If λ(G) = λ and S = {u1, . . . , uλ} is a λ-code of G , then{{u1}, . . . , {uλ},V \ S} is an NLD-partition of G.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 3 / 14

Page 14: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a dominating partition of V .

B Given a vertex x ∈ V(G), the k-tuple nr(x|Π) = (x1, . . . , xk)is defined as follows:

xi =

0, if x ∈ Si;1, if x ∈ N(Si) \ Si;2, if x /∈ N[Si].

→ (x1, . . . , xk) contains exactly one 0 and at least one 1.

Π is an NLD-partition iff it is dominating and for every u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 4 / 14

Page 15: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a dominating partition of V .

B Given a vertex x ∈ V(G), the k-tuple nr(x|Π) = (x1, . . . , xk)is defined as follows:

xi =

0, if x ∈ Si;1, if x ∈ N(Si) \ Si;2, if x /∈ N[Si].

→ (x1, . . . , xk) contains exactly one 0 and at least one 1.

Π is an NLD-partition iff it is dominating and for every u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 4 / 14

Page 16: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a dominating partition of V .

B Given a vertex x ∈ V(G), the k-tuple nr(x|Π) = (x1, . . . , xk)is defined as follows:

xi =

0, if x ∈ Si;1, if x ∈ N(Si) \ Si;2, if x /∈ N[Si].

→ (x1, . . . , xk) contains exactly one 0 and at least one 1.

Π is an NLD-partition iff it is dominating and for every u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 4 / 14

Page 17: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a dominating partition of V .

B Given a vertex x ∈ V(G), the k-tuple nr(x|Π) = (x1, . . . , xk)is defined as follows:

xi =

0, if x ∈ Si;1, if x ∈ N(Si) \ Si;2, if x /∈ N[Si].

→ (x1, . . . , xk) contains exactly one 0 and at least one 1.

Π is an NLD-partition iff it is dominating and for every u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 4 / 14

Page 18: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G = (V,E) is a connected graph.

B Π = {S1, . . . , Sk} is a dominating partition of V .

B Given a vertex x ∈ V(G), the k-tuple nr(x|Π) = (x1, . . . , xk)is defined as follows:

xi =

0, if x ∈ Si;1, if x ∈ N(Si) \ Si;2, if x /∈ N[Si].

→ (x1, . . . , xk) contains exactly one 0 and at least one 1.

Π is an NLD-partition iff it is dominating and for every u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 4 / 14

Page 19: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λ(G) = 5 λp(G) = 4 4 ≤ λp(G) ≤ λ(G) + 1 = 6

A

B C B C

A

D

01220111

2102 1022 1202

B1012

2012 1220

D

C B C

A

A

01211110

2101 2021 2201

B1011

2110 0221

D

B The second NLD-partition is a proper coloring.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 5 / 14

Page 20: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λ(G) = 5 λp(G) = 4 4 ≤ λp(G) ≤ λ(G) + 1 = 6

A

B C B C

A

D

01220111

2102 1022 1202

B1012

2012 1220

D

C B C

A

A

01211110

2101 2021 2201

B1011

2110 0221

D

B The second NLD-partition is a proper coloring.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 5 / 14

Page 21: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λ(G) = 5 λp(G) = 4 4 ≤ λp(G) ≤ λ(G) + 1 = 6

A

B C B C

A

D

01220111

2102 1022 1202

B1012

2012 1220

D

C B C

A

A

01211110

2101 2021 2201

B1011

2110 0221

D

B The second NLD-partition is a proper coloring.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 5 / 14

Page 22: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λ(G) = 5 λp(G) = 4 4 ≤ λp(G) ≤ λ(G) + 1 = 6

A

B C B C

A

D

01220111

2102 1022 1202

B1012

2012 1220

D

C B C

A

A

01211110

2101 2021 2201

B1011

2110 0221

D

B The second NLD-partition is a proper coloring.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 5 / 14

Page 23: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B A partition Π = {S1, . . . , Sk} is a coloring 4 of G, if for everyi ∈ [k], Si is an independent set.

B Π is an NL-coloring of G if for every i ∈ [k], every pair u, v ∈ Si andsome j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅i.e., if for every pair u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

B The neighbor-location chromatic number5 χNL(G) is the minimumcardinality of an NL-coloring of G.

λp(G) ≤ χNL(G)

χ(G) ≤ χNL(G) ≤ χ(G) + λ(G)

4also called stable partition or proper coloring.5NL-chromatic number, for short.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 6 / 14

Page 24: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B A partition Π = {S1, . . . , Sk} is a coloring 4 of G, if for everyi ∈ [k], Si is an independent set.

B Π is an NL-coloring of G if for every i ∈ [k], every pair u, v ∈ Si andsome j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅i.e., if for every pair u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

B The neighbor-location chromatic number5 χNL(G) is the minimumcardinality of an NL-coloring of G.

λp(G) ≤ χNL(G)

χ(G) ≤ χNL(G) ≤ χ(G) + λ(G)

4also called stable partition or proper coloring.5NL-chromatic number, for short.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 6 / 14

Page 25: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B A partition Π = {S1, . . . , Sk} is a coloring 4 of G, if for everyi ∈ [k], Si is an independent set.

B Π is an NL-coloring of G if for every i ∈ [k], every pair u, v ∈ Si andsome j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅i.e., if for every pair u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

B The neighbor-location chromatic number5 χNL(G) is the minimumcardinality of an NL-coloring of G.

λp(G) ≤ χNL(G)

χ(G) ≤ χNL(G) ≤ χ(G) + λ(G)

4also called stable partition or proper coloring.5NL-chromatic number, for short.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 6 / 14

Page 26: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B A partition Π = {S1, . . . , Sk} is a coloring 4 of G, if for everyi ∈ [k], Si is an independent set.

B Π is an NL-coloring of G if for every i ∈ [k], every pair u, v ∈ Si andsome j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅i.e., if for every pair u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

B The neighbor-location chromatic number5 χNL(G) is the minimumcardinality of an NL-coloring of G.

λp(G) ≤ χNL(G)

χ(G) ≤ χNL(G) ≤ χ(G) + λ(G)

4also called stable partition or proper coloring.5NL-chromatic number, for short.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 6 / 14

Page 27: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B A partition Π = {S1, . . . , Sk} is a coloring 4 of G, if for everyi ∈ [k], Si is an independent set.

B Π is an NL-coloring of G if for every i ∈ [k], every pair u, v ∈ Si andsome j ∈ [k],

N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅i.e., if for every pair u, v ∈ V ,

nr(u|Π) 6= nr(v|Π)

B The neighbor-location chromatic number5 χNL(G) is the minimumcardinality of an NL-coloring of G.

λp(G) ≤ χNL(G)

χ(G) ≤ χNL(G) ≤ χ(G) + λ(G)4also called stable partition or proper coloring.5NL-chromatic number, for short.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 6 / 14

Page 28: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B If G is a non-trivial connected graph of order n with χNL(G) = k, then

n ≤ k · [2k−1 − 1] .

⇒ [1] For every x ∈ V(G), the k-tuple nr(x|Π) has at least one 1.

[2] There are 2k−1 − 1 k-tuples with the i-th component equal to 0 andthe remaining components equal to 1 or 2, but not all them equal to 2.

[3] n = |V(G)| = ∑ki=1 |Si| ≤

∑ki=1(2k−1 − 1) = k (2k−1 − 1).

n ≤ k∆∑

j=1

(k − 1

j

).

⇒ [1]For every x ∈ Si, the i-th component of the k-tuple nr(x|Π) is 0,

[2] the number of components which are 1 is at least 1 and at most ∆.[3] n = |V(G)| = ∑k

i=1 |Si| ≤∑k

i=1∑∆

j=1

(k−1j

)= k

∑∆j=1

(k−1j

).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 7 / 14

Page 29: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B If G is a non-trivial connected graph of order n with χNL(G) = k, then

n ≤ k · [2k−1 − 1] .

⇒ [1] For every x ∈ V(G), the k-tuple nr(x|Π) has at least one 1.

[2] There are 2k−1 − 1 k-tuples with the i-th component equal to 0 andthe remaining components equal to 1 or 2, but not all them equal to 2.

[3] n = |V(G)| = ∑ki=1 |Si| ≤

∑ki=1(2k−1 − 1) = k (2k−1 − 1).

n ≤ k∆∑

j=1

(k − 1

j

).

⇒ [1]For every x ∈ Si, the i-th component of the k-tuple nr(x|Π) is 0,

[2] the number of components which are 1 is at least 1 and at most ∆.[3] n = |V(G)| = ∑k

i=1 |Si| ≤∑k

i=1∑∆

j=1

(k−1j

)= k

∑∆j=1

(k−1j

).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 7 / 14

Page 30: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B If G is a non-trivial connected graph of order n with χNL(G) = k, then

n ≤ k · [2k−1 − 1] .

⇒ [1] For every x ∈ V(G), the k-tuple nr(x|Π) has at least one 1.

[2] There are 2k−1 − 1 k-tuples with the i-th component equal to 0 andthe remaining components equal to 1 or 2, but not all them equal to 2.

[3] n = |V(G)| = ∑ki=1 |Si| ≤

∑ki=1(2k−1 − 1) = k (2k−1 − 1).

n ≤ k∆∑

j=1

(k − 1

j

).

⇒ [1]For every x ∈ Si, the i-th component of the k-tuple nr(x|Π) is 0,

[2] the number of components which are 1 is at least 1 and at most ∆.[3] n = |V(G)| = ∑k

i=1 |Si| ≤∑k

i=1∑∆

j=1

(k−1j

)= k

∑∆j=1

(k−1j

).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 7 / 14

Page 31: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B If G is a non-trivial connected graph of order n with χNL(G) = k, then

n ≤ k · [2k−1 − 1] .

⇒ [1] For every x ∈ V(G), the k-tuple nr(x|Π) has at least one 1.

[2] There are 2k−1 − 1 k-tuples with the i-th component equal to 0 andthe remaining components equal to 1 or 2, but not all them equal to 2.

[3] n = |V(G)| = ∑ki=1 |Si| ≤

∑ki=1(2k−1 − 1) = k (2k−1 − 1).

n ≤ k∆∑

j=1

(k − 1

j

).

⇒ [1]For every x ∈ Si, the i-th component of the k-tuple nr(x|Π) is 0,

[2] the number of components which are 1 is at least 1 and at most ∆.[3] n = |V(G)| = ∑k

i=1 |Si| ≤∑k

i=1∑∆

j=1

(k−1j

)= k

∑∆j=1

(k−1j

).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 7 / 14

Page 32: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B If G is a non-trivial connected graph of order n with χNL(G) = k, then

n ≤ k · [2k−1 − 1] .

⇒ [1] For every x ∈ V(G), the k-tuple nr(x|Π) has at least one 1.

[2] There are 2k−1 − 1 k-tuples with the i-th component equal to 0 andthe remaining components equal to 1 or 2, but not all them equal to 2.

[3] n = |V(G)| = ∑ki=1 |Si| ≤

∑ki=1(2k−1 − 1) = k (2k−1 − 1).

n ≤ k∆∑

j=1

(k − 1

j

).

⇒ [1]For every x ∈ Si, the i-th component of the k-tuple nr(x|Π) is 0,

[2] the number of components which are 1 is at least 1 and at most ∆.[3] n = |V(G)| = ∑k

i=1 |Si| ≤∑k

i=1∑∆

j=1

(k−1j

)= k

∑∆j=1

(k−1j

).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 7 / 14

Page 33: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B If G is a non-trivial connected graph of order n with χNL(G) = k, then

n ≤ k · [2k−1 − 1] .

⇒ [1] For every x ∈ V(G), the k-tuple nr(x|Π) has at least one 1.

[2] There are 2k−1 − 1 k-tuples with the i-th component equal to 0 andthe remaining components equal to 1 or 2, but not all them equal to 2.

[3] n = |V(G)| = ∑ki=1 |Si| ≤

∑ki=1(2k−1 − 1) = k (2k−1 − 1).

n ≤ k∆∑

j=1

(k − 1

j

).

⇒ [1]For every x ∈ Si, the i-th component of the k-tuple nr(x|Π) is 0,

[2] the number of components which are 1 is at least 1 and at most ∆.[3] n = |V(G)| = ∑k

i=1 |Si| ≤∑k

i=1∑∆

j=1

(k−1j

)= k

∑∆j=1

(k−1j

).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 7 / 14

Page 34: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The upperbound n ≤ k · [2k−1 − 1] is tight.

⇒ For every integer k ≥ 3, Gk = (Vk,Ek) is the graph defined as follows:I Vk is the set of all k-tuples in the alphabet {0, 1, 2} having exactly one 0

and at least one 1.I For every i ∈ [k]}, Wi is the set of k-tuples (x1 . . . xk) ∈ Vk such that

xi = 0, so that {W1, . . . ,Wk} is a coloring of Vk:I For every x, y ∈ Vk, if x = x1 . . . xk ∈ Wi and y = y1 . . . yk ∈ Wj, then

xy ∈ Ek if and only if i 6= j, xj = 1 and yi = 1.

012

011

021

102

101

201

120

110

210

012 011 021W1

102

101

201

W2

110

120

210

W3

⇒ Gk is a connected graph of order nk = k · [2k−1 − 1] and χNL(Gk) = k.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 8 / 14

Page 35: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The upperbound n ≤ k · [2k−1 − 1] is tight.

⇒ For every integer k ≥ 3, Gk = (Vk,Ek) is the graph defined as follows:I Vk is the set of all k-tuples in the alphabet {0, 1, 2} having exactly one 0

and at least one 1.I For every i ∈ [k]}, Wi is the set of k-tuples (x1 . . . xk) ∈ Vk such that

xi = 0, so that {W1, . . . ,Wk} is a coloring of Vk:I For every x, y ∈ Vk, if x = x1 . . . xk ∈ Wi and y = y1 . . . yk ∈ Wj, then

xy ∈ Ek if and only if i 6= j, xj = 1 and yi = 1.

012

011

021

102

101

201

120

110

210

012 011 021W1

102

101

201

W2

110

120

210

W3

⇒ Gk is a connected graph of order nk = k · [2k−1 − 1] and χNL(Gk) = k.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 8 / 14

Page 36: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The upperbound n ≤ k · [2k−1 − 1] is tight.

⇒ For every integer k ≥ 3, Gk = (Vk,Ek) is the graph defined as follows:I Vk is the set of all k-tuples in the alphabet {0, 1, 2} having exactly one 0

and at least one 1.I For every i ∈ [k]}, Wi is the set of k-tuples (x1 . . . xk) ∈ Vk such that

xi = 0, so that {W1, . . . ,Wk} is a coloring of Vk:I For every x, y ∈ Vk, if x = x1 . . . xk ∈ Wi and y = y1 . . . yk ∈ Wj, then

xy ∈ Ek if and only if i 6= j, xj = 1 and yi = 1.

012

011

021

102

101

201

120

110

210

012 011 021W1

102

101

201

W2

110

120

210

W3

⇒ Gk is a connected graph of order nk = k · [2k−1 − 1] and χNL(Gk) = k.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 8 / 14

Page 37: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The upperbound n ≤ k · [2k−1 − 1] is tight.

⇒ For every integer k ≥ 3, Gk = (Vk,Ek) is the graph defined as follows:I Vk is the set of all k-tuples in the alphabet {0, 1, 2} having exactly one 0

and at least one 1.I For every i ∈ [k]}, Wi is the set of k-tuples (x1 . . . xk) ∈ Vk such that

xi = 0, so that {W1, . . . ,Wk} is a coloring of Vk:I For every x, y ∈ Vk, if x = x1 . . . xk ∈ Wi and y = y1 . . . yk ∈ Wj, then

xy ∈ Ek if and only if i 6= j, xj = 1 and yi = 1.

012

011

021

102

101

201

120

110

210

012 011 021W1

102

101

201

W2

110

120

210

W3

⇒ Gk is a connected graph of order nk = k · [2k−1 − 1] and χNL(Gk) = k.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 8 / 14

Page 38: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λp = n: Kn, K1,n−1.

χNL(G) = n iff G is a complete multipartite graph.

λp = n− 1: Kn−2 ∨ K2, K1 ∨ (K1 + Kn−2).

χNL(G) = n− 1 iff G ∈ F ∪ G , where

? G is the set of all graphs G = G∗ ∨ 2K2, the join of 2K2 and a completemultipartite graph G∗ of order n− 4.

? F is the set of all graphs G such that, for some vertex v ∈ G, G− v is acomplete multipartite graph satisfying either

I ai ∈ {0, ni} for every i ∈ [h], and |{i ∈ [h]} | ai = 0}| ≥ 2, orI there is exactly one integer i ∈ [h] such that ai 6∈ {0, ni}, and ai = ni − 1.

where G(V) = V1 ∪ . . . ∪ Vh, ni = |Vi| and ai = |N(v) ∩ Vi|.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 9 / 14

Page 39: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λp = n: Kn, K1,n−1.

χNL(G) = n iff G is a complete multipartite graph.

λp = n− 1: Kn−2 ∨ K2, K1 ∨ (K1 + Kn−2).

χNL(G) = n− 1 iff G ∈ F ∪ G , where

? G is the set of all graphs G = G∗ ∨ 2K2, the join of 2K2 and a completemultipartite graph G∗ of order n− 4.

? F is the set of all graphs G such that, for some vertex v ∈ G, G− v is acomplete multipartite graph satisfying either

I ai ∈ {0, ni} for every i ∈ [h], and |{i ∈ [h]} | ai = 0}| ≥ 2, orI there is exactly one integer i ∈ [h] such that ai 6∈ {0, ni}, and ai = ni − 1.

where G(V) = V1 ∪ . . . ∪ Vh, ni = |Vi| and ai = |N(v) ∩ Vi|.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 9 / 14

Page 40: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λp = n: Kn, K1,n−1.

χNL(G) = n iff G is a complete multipartite graph.

λp = n− 1: Kn−2 ∨ K2, K1 ∨ (K1 + Kn−2).

χNL(G) = n− 1 iff G ∈ F ∪ G , where

? G is the set of all graphs G = G∗ ∨ 2K2, the join of 2K2 and a completemultipartite graph G∗ of order n− 4.

? F is the set of all graphs G such that, for some vertex v ∈ G, G− v is acomplete multipartite graph satisfying either

I ai ∈ {0, ni} for every i ∈ [h], and |{i ∈ [h]} | ai = 0}| ≥ 2, orI there is exactly one integer i ∈ [h] such that ai 6∈ {0, ni}, and ai = ni − 1.

where G(V) = V1 ∪ . . . ∪ Vh, ni = |Vi| and ai = |N(v) ∩ Vi|.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 9 / 14

Page 41: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λp = n: Kn, K1,n−1.

χNL(G) = n iff G is a complete multipartite graph.

λp = n− 1: Kn−2 ∨ K2, K1 ∨ (K1 + Kn−2).

χNL(G) = n− 1 iff G ∈ F ∪ G , where

? G is the set of all graphs G = G∗ ∨ 2K2, the join of 2K2 and a completemultipartite graph G∗ of order n− 4.

? F is the set of all graphs G such that, for some vertex v ∈ G, G− v is acomplete multipartite graph satisfying either

I ai ∈ {0, ni} for every i ∈ [h], and |{i ∈ [h]} | ai = 0}| ≥ 2, orI there is exactly one integer i ∈ [h] such that ai 6∈ {0, ni}, and ai = ni − 1.

where G(V) = V1 ∪ . . . ∪ Vh, ni = |Vi| and ai = |N(v) ∩ Vi|.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 9 / 14

Page 42: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

λp = n: Kn, K1,n−1.

χNL(G) = n iff G is a complete multipartite graph.

λp = n− 1: Kn−2 ∨ K2, K1 ∨ (K1 + Kn−2).

χNL(G) = n− 1 iff G ∈ F ∪ G , where

? G is the set of all graphs G = G∗ ∨ 2K2, the join of 2K2 and a completemultipartite graph G∗ of order n− 4.

? F is the set of all graphs G such that, for some vertex v ∈ G, G− v is acomplete multipartite graph satisfying either

I ai ∈ {0, ni} for every i ∈ [h], and |{i ∈ [h]} | ai = 0}| ≥ 2, orI there is exactly one integer i ∈ [h] such that ai 6∈ {0, ni}, and ai = ni − 1.

where G(V) = V1 ∪ . . . ∪ Vh, ni = |Vi| and ai = |N(v) ∩ Vi|.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 9 / 14

Page 43: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G is a pseudotree, i.e., a connected graph of order n and size m such that

n− 1 ≤ m ≤ n .

If n ≥ 2 and χNL(G) = k, then n ≤ k3 + k2 − 2k2

.

⇒ n1 leaves , n2 vertices of degree 2 and n≥3 vertices of degree at least 3:

[1] n1 ≤ k(k−1

1

), n2 ≤ k

(k−12

),

[2] n1 + 2 n2 +∑

deg(u)≥3 (.u) = 2|E(G)| ≤ 2 n = 2(n1 + n2 + n≥3),

[3] n1 ≥∑

deg(u)≥3 (deg(u)− 2) ≥ n≥3 ,

[4] n = n1 + n2 + n≥3 ≤ 2n1 + n2 ≤ 2k(k−1

1

)+ k(k−1

2

)=

k3 + k2 − 2k2

.

If n ≥ 2, m = n− 1 and χNL(G) = k, then n ≤ k3 + k2 − 2k − 42

.

⇒ Same proof, but in this case: n1 ≥ n≥3 + 2.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 10 / 14

Page 44: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G is a pseudotree, i.e., a connected graph of order n and size m such that

n− 1 ≤ m ≤ n .

If n ≥ 2 and χNL(G) = k, then n ≤ k3 + k2 − 2k2

.

⇒ n1 leaves , n2 vertices of degree 2 and n≥3 vertices of degree at least 3:

[1] n1 ≤ k(k−1

1

), n2 ≤ k

(k−12

),

[2] n1 + 2 n2 +∑

deg(u)≥3 (.u) = 2|E(G)| ≤ 2 n = 2(n1 + n2 + n≥3),

[3] n1 ≥∑

deg(u)≥3 (deg(u)− 2) ≥ n≥3 ,

[4] n = n1 + n2 + n≥3 ≤ 2n1 + n2 ≤ 2k(k−1

1

)+ k(k−1

2

)=

k3 + k2 − 2k2

.

If n ≥ 2, m = n− 1 and χNL(G) = k, then n ≤ k3 + k2 − 2k − 42

.

⇒ Same proof, but in this case: n1 ≥ n≥3 + 2.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 10 / 14

Page 45: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G is a pseudotree, i.e., a connected graph of order n and size m such that

n− 1 ≤ m ≤ n .

If n ≥ 2 and χNL(G) = k, then n ≤ k3 + k2 − 2k2

.

⇒ n1 leaves , n2 vertices of degree 2 and n≥3 vertices of degree at least 3:

[1] n1 ≤ k(k−1

1

), n2 ≤ k

(k−12

),

[2] n1 + 2 n2 +∑

deg(u)≥3 (.u) = 2|E(G)| ≤ 2 n = 2(n1 + n2 + n≥3),

[3] n1 ≥∑

deg(u)≥3 (deg(u)− 2) ≥ n≥3 ,

[4] n = n1 + n2 + n≥3 ≤ 2n1 + n2 ≤ 2k(k−1

1

)+ k(k−1

2

)=

k3 + k2 − 2k2

.

If n ≥ 2, m = n− 1 and χNL(G) = k, then n ≤ k3 + k2 − 2k − 42

.

⇒ Same proof, but in this case: n1 ≥ n≥3 + 2.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 10 / 14

Page 46: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G is a pseudotree, i.e., a connected graph of order n and size m such that

n− 1 ≤ m ≤ n .

If n ≥ 2 and χNL(G) = k, then n ≤ k3 + k2 − 2k2

.

⇒ n1 leaves , n2 vertices of degree 2 and n≥3 vertices of degree at least 3:

[1] n1 ≤ k(k−1

1

), n2 ≤ k

(k−12

),

[2] n1 + 2 n2 +∑

deg(u)≥3 (.u) = 2|E(G)| ≤ 2 n = 2(n1 + n2 + n≥3),

[3] n1 ≥∑

deg(u)≥3 (deg(u)− 2) ≥ n≥3 ,

[4] n = n1 + n2 + n≥3 ≤ 2n1 + n2 ≤ 2k(k−1

1

)+ k(k−1

2

)=

k3 + k2 − 2k2

.

If n ≥ 2, m = n− 1 and χNL(G) = k, then n ≤ k3 + k2 − 2k − 42

.

⇒ Same proof, but in this case: n1 ≥ n≥3 + 2.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 10 / 14

Page 47: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G is a pseudotree, i.e., a connected graph of order n and size m such that

n− 1 ≤ m ≤ n .

If n ≥ 2 and χNL(G) = k, then n ≤ k3 + k2 − 2k2

.

⇒ n1 leaves , n2 vertices of degree 2 and n≥3 vertices of degree at least 3:

[1] n1 ≤ k(k−1

1

), n2 ≤ k

(k−12

),

[2] n1 + 2 n2 +∑

deg(u)≥3 (.u) = 2|E(G)| ≤ 2 n = 2(n1 + n2 + n≥3),

[3] n1 ≥∑

deg(u)≥3 (deg(u)− 2) ≥ n≥3 ,

[4] n = n1 + n2 + n≥3 ≤ 2n1 + n2 ≤ 2k(k−1

1

)+ k(k−1

2

)=

k3 + k2 − 2k2

.

If n ≥ 2, m = n− 1 and χNL(G) = k, then n ≤ k3 + k2 − 2k − 42

.

⇒ Same proof, but in this case: n1 ≥ n≥3 + 2.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 10 / 14

Page 48: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

B G is a pseudotree, i.e., a connected graph of order n and size m such that

n− 1 ≤ m ≤ n .

If n ≥ 2 and χNL(G) = k, then n ≤ k3 + k2 − 2k2

.

⇒ n1 leaves , n2 vertices of degree 2 and n≥3 vertices of degree at least 3:

[1] n1 ≤ k(k−1

1

), n2 ≤ k

(k−12

),

[2] n1 + 2 n2 +∑

deg(u)≥3 (.u) = 2|E(G)| ≤ 2 n = 2(n1 + n2 + n≥3),

[3] n1 ≥∑

deg(u)≥3 (deg(u)− 2) ≥ n≥3 ,

[4] n = n1 + n2 + n≥3 ≤ 2n1 + n2 ≤ 2k(k−1

1

)+ k(k−1

2

)=

k3 + k2 − 2k2

.

If n ≥ 2, m = n− 1 and χNL(G) = k, then n ≤ k3 + k2 − 2k − 42

.

⇒ Same proof, but in this case: n1 ≥ n≥3 + 2.

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 10 / 14

Page 49: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k2

is tight for unicyclic graphs and k ≥ 5.

⇒ a(k) = k(k−1

1

), b(k) = k

(k−12

):

[1] The comb Ba(x) has order 2a(x) and χNL(Ba(x)) = k.[2] The cycle Cb(x) has order b(x) and χNL(Cb(x)) = k.

[3] U(k) is the unyciclic graph of order 2a(x) + b(x) = k3+k2−2k2

obtained from Ba(x) and Cb(x) as shown in the Figure (for k = 6).

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6

5 5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 2 23 26 6 6 6 6 1

C60

B30

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

yx

y′x′

[4] There is a k-NL-coloring of Ba(x) and a k-NL-coloring of Cb(x), suchthat the corresponding k-coloring is also a k-NL-coloring of U(k).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 11 / 14

Page 50: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k2

is tight for unicyclic graphs and k ≥ 5.

⇒ a(k) = k(k−1

1

), b(k) = k

(k−12

):

[1] The comb Ba(x) has order 2a(x) and χNL(Ba(x)) = k.[2] The cycle Cb(x) has order b(x) and χNL(Cb(x)) = k.

[3] U(k) is the unyciclic graph of order 2a(x) + b(x) = k3+k2−2k2

obtained from Ba(x) and Cb(x) as shown in the Figure (for k = 6).

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6

5 5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 2 23 26 6 6 6 6 1

C60

B30

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

yx

y′x′

[4] There is a k-NL-coloring of Ba(x) and a k-NL-coloring of Cb(x), suchthat the corresponding k-coloring is also a k-NL-coloring of U(k).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 11 / 14

Page 51: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k2

is tight for unicyclic graphs and k ≥ 5.

⇒ a(k) = k(k−1

1

), b(k) = k

(k−12

):

[1] The comb Ba(x) has order 2a(x) and χNL(Ba(x)) = k.[2] The cycle Cb(x) has order b(x) and χNL(Cb(x)) = k.

[3] U(k) is the unyciclic graph of order 2a(x) + b(x) = k3+k2−2k2

obtained from Ba(x) and Cb(x) as shown in the Figure (for k = 6).

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6

5 5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 2 23 26 6 6 6 6 1

C60

B30

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

yx

y′x′

[4] There is a k-NL-coloring of Ba(x) and a k-NL-coloring of Cb(x), suchthat the corresponding k-coloring is also a k-NL-coloring of U(k).

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 11 / 14

Page 52: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k − 42

is tight for trees and k ≥ 6 .

⇒ Case k = 6:

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6

5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 23 26 6 6 6 6 1v

(x) (y)

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

u

5

2

B A tree T1 of order 28 and χNL(T1) = 4 (the general bound is 28):

3

4

1

2

42

3

3

1 23

2

4

3 4

1

3 4

24 32

421 1

1 1

B A tree T2 of order 66 and χNL(T2) = 5 (the bound is 68):

3 2 45

44 1323

5

1235245145135

444

4

4

5533331 1 1 2 2 2 2

1

2 5 1 3 5 1 4 5 2 3 5 2 4 5 3 4 5 1 2 3 1 2 1

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 12 / 14

Page 53: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k − 42

is tight for trees and k ≥ 6 .

⇒ Case k = 6:

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6

5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 23 26 6 6 6 6 1v

(x) (y)

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

u

5

2

B A tree T1 of order 28 and χNL(T1) = 4 (the general bound is 28):

3

4

1

2

42

3

3

1 23

2

4

3 4

1

3 4

24 32

421 1

1 1

B A tree T2 of order 66 and χNL(T2) = 5 (the bound is 68):

3 2 45

44 1323

5

1235245145135

444

4

4

5533331 1 1 2 2 2 2

1

2 5 1 3 5 1 4 5 2 3 5 2 4 5 3 4 5 1 2 3 1 2 1

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 12 / 14

Page 54: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k − 42

is tight for trees and k ≥ 6 .

⇒ Case k = 6:

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6

5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 23 26 6 6 6 6 1v

(x) (y)

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

u

5

2

B A tree T1 of order 28 and χNL(T1) = 4 (the general bound is 28):

3

4

1

2

42

3

3

1 23

2

4

3 4

1

3 4

24 32

421 1

1 1

B A tree T2 of order 66 and χNL(T2) = 5 (the bound is 68):

3 2 45

44 1323

5

1235245145135

444

4

4

5533331 1 1 2 2 2 2

1

2 5 1 3 5 1 4 5 2 3 5 2 4 5 3 4 5 1 2 3 1 2 1

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 12 / 14

Page 55: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k − 42

is tight for trees and k ≥ 6 .

⇒ Case k = 6:

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6

5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 23 26 6 6 6 6 1v

(x) (y)

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

u

5

2

B A tree T1 of order 28 and χNL(T1) = 4 (the general bound is 28):

3

4

1

2

42

3

3

1 23

2

4

3 4

1

3 4

24 32

421 1

1 1

B A tree T2 of order 66 and χNL(T2) = 5 (the bound is 68):

3 2 45

44 1323

5

1235245145135

444

4

4

5533331 1 1 2 2 2 2

1

2 5 1 3 5 1 4 5 2 3 5 2 4 5 3 4 5 1 2 3 1 2 1

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 12 / 14

Page 56: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

The bound n ≤ k3 + k2 − 2k − 42

is tight for trees and k ≥ 6 .

⇒ Case k = 6:

1 2 4 1 2 5 1 2 6 1 2 3 6 2 3 5 6 3 5 2 6 5 2 3 4 6 3 4 5 6

1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 6

5 5 5 51 1 1 14 4 4 4 43 3 3 32 2 23 26 6 6 6 6 1v

(x) (y)

3 4 1 5 4 16 31 4 65 5 11 3 36 1 2 2 64 5 4 4 2 5 42

u

5

2

B A tree T1 of order 28 and χNL(T1) = 4 (the general bound is 28):

3

4

1

2

42

3

3

1 23

2

4

3 4

1

3 4

24 32

421 1

1 1

B A tree T2 of order 66 and χNL(T2) = 5 (the bound is 68):

3 2 45

44 1323

5

1235245145135

444

4

4

5533331 1 1 2 2 2 2

1

2 5 1 3 5 1 4 5 2 3 5 2 4 5 3 4 5 1 2 3 1 2 1

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 12 / 14

Page 57: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

If ∆ = 2 and χNL(G) = k, then

n ≤ `(k) = k[(k − 1

1

)+

(k − 1

2

)]=

k3 − k2

2.

Let k ≥ 4 and `(k − 1) < n ≤ `(k). Then,

n 6= `(k)− 1⇒ χNL(Pn) = χNL(Cn) = k.

n = `(k)− 1⇒ χNL(Pn) = k, χNL(Cn) = k + 1.

⇒ [1] If k ≥ 3, then χNL(C`(k)−1) = k + 1.

[2] For every k ≥ 4, there is a k-NL-coloring of P`(k)−1.

[3] For every k ≥ 3, there is a 1-paired6 k-NL-coloring of C`(k).

[4] If there is a 1-paired (k − 1)-NL-coloring of C`(k−1), then there is a1-paired k-NL-coloring of Cn whenever `(k − 1) < n ≤ `(k)− 2.

[5] If there is a 1-paired k-NL-coloring of Cn, then there is ak-NL-coloring of Pn.

6every vertex of color-degree 1 has a neighbor of color-degree 1.Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 13 / 14

Page 58: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

If ∆ = 2 and χNL(G) = k, then

n ≤ `(k) = k[(k − 1

1

)+

(k − 1

2

)]=

k3 − k2

2.

Let k ≥ 4 and `(k − 1) < n ≤ `(k). Then,

n 6= `(k)− 1⇒ χNL(Pn) = χNL(Cn) = k.

n = `(k)− 1⇒ χNL(Pn) = k, χNL(Cn) = k + 1.

⇒ [1] If k ≥ 3, then χNL(C`(k)−1) = k + 1.

[2] For every k ≥ 4, there is a k-NL-coloring of P`(k)−1.

[3] For every k ≥ 3, there is a 1-paired6 k-NL-coloring of C`(k).

[4] If there is a 1-paired (k − 1)-NL-coloring of C`(k−1), then there is a1-paired k-NL-coloring of Cn whenever `(k − 1) < n ≤ `(k)− 2.

[5] If there is a 1-paired k-NL-coloring of Cn, then there is ak-NL-coloring of Pn.

6every vertex of color-degree 1 has a neighbor of color-degree 1.Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 13 / 14

Page 59: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

If ∆ = 2 and χNL(G) = k, then

n ≤ `(k) = k[(k − 1

1

)+

(k − 1

2

)]=

k3 − k2

2.

Let k ≥ 4 and `(k − 1) < n ≤ `(k). Then,

n 6= `(k)− 1⇒ χNL(Pn) = χNL(Cn) = k.

n = `(k)− 1⇒ χNL(Pn) = k, χNL(Cn) = k + 1.

⇒ [1] If k ≥ 3, then χNL(C`(k)−1) = k + 1.

[2] For every k ≥ 4, there is a k-NL-coloring of P`(k)−1.

[3] For every k ≥ 3, there is a 1-paired6 k-NL-coloring of C`(k).

[4] If there is a 1-paired (k − 1)-NL-coloring of C`(k−1), then there is a1-paired k-NL-coloring of Cn whenever `(k − 1) < n ≤ `(k)− 2.

[5] If there is a 1-paired k-NL-coloring of Cn, then there is ak-NL-coloring of Pn.

6every vertex of color-degree 1 has a neighbor of color-degree 1.Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 13 / 14

Page 60: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

If ∆ = 2 and χNL(G) = k, then

n ≤ `(k) = k[(k − 1

1

)+

(k − 1

2

)]=

k3 − k2

2.

Let k ≥ 4 and `(k − 1) < n ≤ `(k). Then,

n 6= `(k)− 1⇒ χNL(Pn) = χNL(Cn) = k.

n = `(k)− 1⇒ χNL(Pn) = k, χNL(Cn) = k + 1.

⇒ [1] If k ≥ 3, then χNL(C`(k)−1) = k + 1.

[2] For every k ≥ 4, there is a k-NL-coloring of P`(k)−1.

[3] For every k ≥ 3, there is a 1-paired6 k-NL-coloring of C`(k).

[4] If there is a 1-paired (k − 1)-NL-coloring of C`(k−1), then there is a1-paired k-NL-coloring of Cn whenever `(k − 1) < n ≤ `(k)− 2.

[5] If there is a 1-paired k-NL-coloring of Cn, then there is ak-NL-coloring of Pn.

6every vertex of color-degree 1 has a neighbor of color-degree 1.Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 13 / 14

Page 61: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

TWO CONJECTURES

I n ≤ Γ(k) =k3 + k2 − 2k − 4

2is tight for k ≥ 6, where k = χNL(T).

Γ(5) = 68.

There is a tree T of order 66 and χNL(T) = 5.

There is a tree T of order at least 67 and χNL(T) = 5.

II If k ≥ 4, `(k) = k3−k2

2 and `(k − 1) < n ≤ `(k), then χNL(Pn) = k.

If diam(G) = d, then χNL(G) ≥ χNL(Pd+1)

Google: arxiv pelayo locating

THANKS

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 14 / 14

Page 62: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

TWO CONJECTURES

I n ≤ Γ(k) =k3 + k2 − 2k − 4

2is tight for k ≥ 6, where k = χNL(T).

Γ(5) = 68.

There is a tree T of order 66 and χNL(T) = 5.

There is a tree T of order at least 67 and χNL(T) = 5.

II If k ≥ 4, `(k) = k3−k2

2 and `(k − 1) < n ≤ `(k), then χNL(Pn) = k.

If diam(G) = d, then χNL(G) ≥ χNL(Pd+1)

Google: arxiv pelayo locating

THANKS

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 14 / 14

Page 63: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

TWO CONJECTURES

I n ≤ Γ(k) =k3 + k2 − 2k − 4

2is tight for k ≥ 6, where k = χNL(T).

Γ(5) = 68.

There is a tree T of order 66 and χNL(T) = 5.

There is a tree T of order at least 67 and χNL(T) = 5.

II If k ≥ 4, `(k) = k3−k2

2 and `(k − 1) < n ≤ `(k), then χNL(Pn) = k.

If diam(G) = d, then χNL(G) ≥ χNL(Pd+1)

Google: arxiv pelayo locating

THANKS

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 14 / 14

Page 64: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

TWO CONJECTURES

I n ≤ Γ(k) =k3 + k2 − 2k − 4

2is tight for k ≥ 6, where k = χNL(T).

Γ(5) = 68.

There is a tree T of order 66 and χNL(T) = 5.

There is a tree T of order at least 67 and χNL(T) = 5.

II If k ≥ 4, `(k) = k3−k2

2 and `(k − 1) < n ≤ `(k), then χNL(Pn) = k.

If diam(G) = d, then χNL(G) ≥ χNL(Pd+1)

Google: arxiv pelayo locating

THANKS

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 14 / 14

Page 65: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

TWO CONJECTURES

I n ≤ Γ(k) =k3 + k2 − 2k − 4

2is tight for k ≥ 6, where k = χNL(T).

Γ(5) = 68.

There is a tree T of order 66 and χNL(T) = 5.

There is a tree T of order at least 67 and χNL(T) = 5.

II If k ≥ 4, `(k) = k3−k2

2 and `(k − 1) < n ≤ `(k), then χNL(Pn) = k.

If diam(G) = d, then χNL(G) ≥ χNL(Pd+1)

Google: arxiv pelayo locating

THANKS

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 14 / 14

Page 66: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

TWO CONJECTURES

I n ≤ Γ(k) =k3 + k2 − 2k − 4

2is tight for k ≥ 6, where k = χNL(T).

Γ(5) = 68.

There is a tree T of order 66 and χNL(T) = 5.

There is a tree T of order at least 67 and χNL(T) = 5.

II If k ≥ 4, `(k) = k3−k2

2 and `(k − 1) < n ≤ `(k), then χNL(Pn) = k.

If diam(G) = d, then χNL(G) ≥ χNL(Pd+1)

Google: arxiv pelayo locating

THANKS

Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 14 / 14

Page 67: Ignacio M. Pelayo2 18 fv.pdf · Ignacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 1 / 14. B G = (V;E) is a connected graph. B A dominating set

TWO CONJECTURES

I n ≤ Γ(k) =k3 + k2 − 2k − 4

2is tight for k ≥ 6, where k = χNL(T).

Γ(5) = 68.

There is a tree T of order 66 and χNL(T) = 5.

There is a tree T of order at least 67 and χNL(T) = 5.

II If k ≥ 4, `(k) = k3−k2

2 and `(k − 1) < n ≤ `(k), then χNL(Pn) = k.

If diam(G) = d, then χNL(G) ≥ χNL(Pd+1)

Google: arxiv pelayo locating

THANKSIgnacio M. Pelayo (U.P.C.) Neighbor-Locating Colorings in Pseudotrees 3 September 2018 14 / 14