impactsof(surface(ozone(polluon( on(global(agriculture:( ·...

28
Impacts of Surface Ozone Pollu4on on Global Agriculture: Present, Future Projec4ons, and Strategies to Reduce Damages Denise L. Mauzerall with Shiri Avnery, Larry Horowitz, Arlene Fiore, Junfeng Liu AgMIP Global Workshop Columbia University October 28, 2013

Upload: vudang

Post on 22-May-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Impacts  of  Surface  Ozone  Pollu4on    on  Global  Agriculture:  

Present,  Future  Projec4ons,  and    Strategies  to  Reduce  Damages  

 Denise L. Mauzerall

with Shiri Avnery, Larry Horowitz, Arlene Fiore, Junfeng Liu

AgMIP Global Workshop Columbia University

October 28, 2013

Tropospheric  Ozone  (O3)  •  Major  component  of  smog;  

GHG;  damages  human  health  and  vegeta9on.  

•  O3  produced  in  the  troposphere  by  photochemical  reac9ons  between  NOx,  CO,  CH4,  and  NMVOCs  –  Regional  pollutant,  can  be  

transported  across  con9nents  –  Temporal  and  spa9al  

variability    

http://www.globalchange.umich.edu  

Dentener  et  al.,  2010  

CH4  

HO2  OH  

NO  NO2  

CO  

hγ  

O3  

O3  Pollu4on  and  Crop  Yield  Reduc4ons  

Large-­‐scale,  open  top  chamber  (OTC)  studies  used  to  derive  concentra9on:response  func9ons  to  predict  the  rela9ve  yield  (RY)  of  a  crop  at  a  given  level  of  “O3  exposure”  (defined  by  various  average  and  cumula9ve  O3  concentra9on  metrics)  during  the  growing  season.  

–  U.S.  Na9onal  Crop  Loss  Assessment  Network  (NCLAN)  study  in  1980s  

–  European  Open  Top  Chamber  (EOTC)  program  in  1990s  

–  Smaller-­‐scale  studies  in  Asia  and  other  developing  countries  

Key  Ques4ons  1.  What  are  present  crop  losses  due  to  O3  exposure?  

2.  What  might  future  crop  losses  due  to  O3  exposure  be  given  op4mis4c  and  pessimis4c  trajectories  of  O3  precursor  emissions?      

3.  How  much  can  methane  reduc4ons  reduce  surface  O3  concentra9ons  and  hence  protect  crops  while  providing  co-­‐benefits  for  climate?    

4.  How  much  can  agricultural  produc9on  be  improved  by  choosing  O3  resistant  crop  cul4vars?  

5.   How  do  O3-­‐induced  agricultural  losses  today  and  in  the  near  future  compare  to  projected  impacts  from  climate  change?    

Method:    Integrated  Assessment  

Intermediate  Outcome   Method    

1)  Surface  O3  concentra9ons  

Simulated  using  MOZART-­‐2  CTM  in  2000  and  2030  according  to  IPCC  SRES  A2  and  B1  scenarios  (Horowitz  et  al.,  2006)  

2)  Plant  Exposures  to  O3     Calculated  using  various  exposure  metrics  for  each  scenario  derived  from  field  studies  

3)  Yield  Loss     Es9mated  using  concentra9on:response  func9ons  obtained  from  the  US  NCLAN  study  and  Mills  et  al.  (2007),  convert  to  crop  produc9on  loss  (soybean,  maize,  wheat)  

4)  Economic  Valua9on     Es9mated  value  of  lost  produc9on  based  on  producer  prices  in  2000  

MOZART-­‐2  Global  CTM  

•  Global  3D  chemical  transport  model  (CTM)  (Horowitz  et  al.,  2003)  to  simulate  global  hourly  O3  concentra9ons  

•  Mathema9cal  atmospheric  chemistry  model  –  Simulate  the  concentra9on  of  species  as  a  

func9on  of  emissions,  transport,  chemistry,  and  deposi9on  over  9me

•  Includes: –  Chemical  emissions,  –  Chemical  reac9ons,    –  Chemical  transport,  –  Winds,  convec9on,  –  Solar  radia9on,    –  Surface  deposi9on.    

•  Evaluated  with:    -­‐  Surface,  ozonesonde  and  aircraf  data  

 

Graedel and Crutzen (1997)

Year  2000  O3  Exposure  

Soybean  

Maize  

Wheat  

Yield  Loss  in  2000  

Soybean  

Maize  

Wheat  

Avnery  et  al.,  Atmospheric  Environment  45  (2011),  doi:10.1016/j.atmosenv.2010.11.045  

•  Global  year  2000  yield  losses  4-­‐15%  for  wheat,  9-­‐14%  soybean,  2-­‐6%  for  maize  •  Crop  produc9on  losses  ~80-­‐120  Mt  worth  $11-­‐18  billion  USD2000  annually    

Total EL

0 1000 2000 3000 4000

U.S.

China

India

Iran

Canada

Pakistan

Turkey

Italy

Syria

Brazil

EL (Million USD)

AverageM12AOT40

Economic  Losses  from  Reduced  Grain  Yields  in  2000  

NMVOC Emissions

050

100150200250

2000 2010 2020 2030Tg

 /  yr

CH4 Emissions

0100200300400500600

2000 2010 2020 2030

Tg  C

H4  /  y

r

A2B1

NOx Emissions

050

100150200250

2000 2010 2020 2030

Tg  N

O2  /  y

r

CO Emissions

0250500750

100012501500

2000 2010 2020 2030

Tg  C

O  /  yr

Op4mis4c  and  Pessimis4c  O3  Precursor  Emission  Scenarios  for  2030  

•  Emissions  from  the  IPCC  SRES  A2  and  B1  scenarios    –  Represent  lower-­‐  and  upper-­‐boundary  projec9ons  of  O3  precursor  emissions  

–  Difference  between  A2  and  B1  simula9ons  indicates  poten9al  decreases  in  O3  and  associated  crop  yield  benefits  of  reducing  emissions  of  air  pollutants.    

 

http://sedac.ciesin.columbia.edu/ddc/sres/

Year  2030  Growing  Season    O3  Exposure  –  A2  

Soybean  

Maize  

Wheat  

Yield  Loss  in  2030  (A2)  

Soybean  

Maize  

Wheat  

Avnery  et  al.,  Atmospheric  Environment  45  (2011),  doi:10.1016/j.atmosenv.2011.01.002  

•  2030  A2  yield  losses  range  from  5-­‐26%  (+2-­‐10%)  globally  for  wheat,  15-­‐19%  (+1-­‐11%)  for  soybean,  4-­‐9%  for  maize  (+2-­‐3%)    

•  Crop  produc9on  losses  120-­‐230  Mt  worth  $17-­‐35  USD2000  (+$6-­‐17  billion)  annually    

Total

0 1000 2000 3000 4000 5000

India

China

U.S.

Iran

Brazil

Turkey

Pakistan

Syria

Egypt

Russia

Change in EL (Million USD)

AverageM12AOT40

0 1000 2000 3000 4000 5000 Change in Economic Loss (Million $US)

Increase  in  Economic  Losses  (2030A2  –  2000)  

Change  in  Economic  Losses    (2030B1  –  2000)  

Total

-1000 -500 0 500 1000 1500 2000

China

India

U.S.

Brazil

Iran

Italy

Japan

Pakistan

Canada

Argentina

Change in EL (Million USD)

AverageM12AOT40

Improving air quality through reductions in ozone precursors increases crop yields.

-1000 -500 0 500 1000 1500 2000 Change in Economic Loss (Million $US)

Benefits  of  Reducing    Conven4onal  Ozone  Precursors  

•  Improving air quality through reductions in conventional ozone precursors increases crop yields.  

•  India,  U.S.,  and  China  experience  greatest  gains  >$1.5  billion  each  

Change in EL (Million USD2000) 0 500 1000 1500 2000 2500 3000 3500

India

United States

China

Iran

Turkey

Syria

Pakistan

Egypt

Russia

France

M12AOT40Average

Change in 2030 EL (2030A2 – 2030B1)

How  much  can  Methane  (CH4)  Mi4ga4on  or  use  of  O3  Resistant  Crop  cul4vars  Improve  Crop  

Produc4on?  

Method:    Same  approach  as  part  1,  but…    

•  Methane  Mi9ga9on  Benefits  –  2030  CLE  emissions  scenario  compared  with  2030  CLE  scenario  with  reduced  methane  emissions  (2030  CH4-­‐red  scenario  ).  

•  Crop  Cul9var  Selec9on  Benefits  –  Use  minimum-­‐sensi9vity  O3-­‐response  func9on  for  each  crop  and  compare  to  median-­‐sensi9vity  results  

–  2030  CLE  scenario    benefits  of  adapta9on  only  policy  –  2030  CH4-­‐red  scenario    benefits  of  both  mi9ga9on  &  adapta9on  policies.  

Methane Mitigation Scenarios

•  CLE  (“Current  legisla4on”):  Global  anthropogenic  emissions  of  CH4,  NOx,  CO,  and  NMVOC  change  by  +29%,  +19%,  -­‐10%,  and  +3%,  respec9vely  from  2005.  

•  CH4-­‐red:  Reduc9ons  begin  in  2006,  grow  to  125  Mt  yr-­‐1  by  2030  (29%  decrease  from  CLE  2030)    

CLE  

CH4-­‐red  

Crop  Produc4on  Gains  in  2030  due  to  CH4  Control  

AOT40  

W126  

•  Total  crop  produc9on  improvements  of  ~23-­‐100  Mt,  85%  due  to  wheat  yield  improvements  •  Preven9on  of  10-­‐45%  of  the  O3-­‐induced  crop  produc9on  losses  that  are  otherwise  projected  

to  occur  in  2030  CLE    •  Globally,  increase  in  produc9on  equivalent  of  2-­‐8%  from  2000  levels,  most  significant  gains  

for  the  Indian  subcon9nent,  China,  U.S.,  Middle  East  &  N.  Africa  

Economic  Gains  in  2030  due  to  CH4  Control  

AOT40  

W126  

•  Crop  produc9on  gains  due  to  CH4  mi9ga9on  worth  $3.5-­‐15  billion  •  Significant  regional  variability,  economic  benefits  concentrated  in  regions  of  

major  agricultural  produc9on  (Indian  subcon9nent,  China,  U.S.)  

Benefits  of  Ozone  Resistant    Cul4var  Selec4on  in  2030  

•  Increase  crop  produc9on  by  +140  Mt  in  2030,  equivalent  of  an  12%  improvement  in  year  2000  produc9on  worth  ~$22  billion  

•  Greater  economic  gains  in  regions  where  soybean  and  maize  are  the  primary  sources  of  CPL  (NA  and  EA)  compared  to  CH4  mi9ga9on  policy  

•  Largest  economic  benefit  in  Indian  subcon9nent  (~74%),  followed  by  the  U.S.  ($2.5  billion)  and  China  ($1.2  billion)  

Benefits  of  Combined  Methane  Mi4ga4on  and    Ozone  Resistant  Crop  Cul4var  Selec4on  

•  Lead  to  crop  produc9on  improvements  of  +170  Mt  in  2030,  equivalent  +14%  from  year  2000  produc9on,  worth  $26  billion.  

•  Benefits  to  agriculture  less  than  fully  addi9ve.  

•  How  do  predicted  O3  impacts  on  agriculture  compare  with  those  of  climate  change?  

•  Is  agriculture  in  certain  regions  of  the  world  at  risk  of  nega9ve  impacts  from  both  O3  exposure  and  climate  change?  

Comparison of Impacts of Ozone Exposure and Climate Change

Comparison  of  Future  O3  (2030)  and    Climate  Change  (A2  -­‐  2050)  Impacts    

 •  Global  maize:  -­‐7%  for  O3  

and  –  8-­‐11%  for  CC  –  CC  >  O3  (Excep9ons:  

U.S.,  China)  

•  Global  wheat:  -­‐15%  for  O3  and  -­‐7  -­‐  +3%  for    CC  –  O3  >  CC  (Excep9ons:  E.  

Europe  without  CO2)  

Climate change impact data from Iglesias and Rosenzweig (2009)

Maize Wheat

O3

CC

(no

CO

2)

CC

+ C

O2

Risk  of  Double  Exposure    to  Ozone  and  Climate  Impacts  

•  Maize:  medium-­‐high  to  high  risk  across  E.  Europe,  Asia,  Africa,  Mexico  in  A2,  high  risk  in  India,  Pakistan,  DRC  in  B1  

•  Wheat:  High  to  cri9cal  risk  in  the  Indian  subcon9nent,  Middle  East,  Brazil,  Mexico,  E.  Europe  (A2)  

Maize

Wheat

Climate change impact data from Iglesias and Rosenzweig (2009)

Conclusions    •  O3  exposure  results  in  substan9al  yield  reduc9ons  in  

many  parts  of  the  world.  

•  Depending  on  future  emissions  of  O3    precursors,  global  impacts  could  increase  substan9ally.  

•  Opportuni9es  to  improve  yields  sustainably  exist  via  reduc9on  in  short-­‐lived  O3    precursors  and  CH4  as  well  as  through  use  of  O3    resistant  crop  cul9vars.  

•  In  the  next  couple  of  decades  O3  impacts  may  exceed  adverse  impacts  of  climate  change.  

•  Some  regions  will  be  par9cularly  hard  hit  by  both  O3  pollu9on  and  climate  change  (eg.  India,  Middle  East,  Brazil,  Eastern  Europe,  etc.).    

Results summarized in two posters here and three papers

•  Avnery,  S,  DL  Mauzerall,  J  Liu,  LW  Horowitz.    Global  Crop  Yield  Reduc9ons  due  to  Surface  Ozone  Exposure:  1.  Year  2000  Crop  Produc9on  Losses  and  Economic  Damage,  Atmospheric  Environment,  45,  2284-­‐2296,  2011.    

•  Avnery,  S,  DL  Mauzerall,  J  Liu,  LW  Horowitz.  Global  Crop  Yield  Reduc9ons  due  to  Surface  Ozone  Exposure:  2.  Year  2030  Poten9al  Crop  Produc9on  Losses  and  Economic  Damage  under  Two  Scenarios  of  O3  Pollu9on,  Atmospheric  Environment,  45,  2297-­‐2309,  2011.  

•  Avnery,  S,  DL  Mauzerall,  AM  Fiore.  Increasing  global  agricultural  produc9on  by  reducing  ozone  damages  via  methane  emission  controls  and  ozone  resistant  cul9var  selec9on,  Global  Change  Biology,  19,  1285-­‐1299,  2013.    

Overview  of  Major  Sources  of  Uncertainty  •  Simulated  hourly  O3  concentra9ons  by  a  global  CTM  to  predict  O3  

exposure  •  Metrics  and  CR  rela9onships  that  were  derived  from  OTC  studies  in  the  

U.S.  and  EU  in  the  1980s/90s  applied  globally  due  to  the  lack  of  similar  large-­‐scale  studies  elsewhere  –  Recent  studies  suggest  current  cul9vars  are  at  least  as  sensi9ve  to  those  

from  which  CR  func9ons  were  derived  (Morgan  et  al.,  2006;  Biswas  et  al.,  2008;  Emberson  et  al.,  2009;  Feng  and  Kobayashi,  2010;  Zhu  et  al.,  2011;  EPA,  2011)  

•  For  benefits  of  CH4  mi9ga9on,  O3  reduc9ons  will  con9nue  beyond  2030;  benefits  not  included  

•  Changes  in  future  produc9on  or  commodity  prices  not  accounted  for    •  No  provision  for  farmer  adapta9on  to  O3,  but  benefits  of  altering  crop  

calendars  or  watering  regimes  appear  limited  globally  (Teixeira  et  al.,  2011)  

•  Poten9al  effect  of  climate  change  on  stomatal  conductance  not  accounted  for,  nor  direct  impact  of  climate  change  on  crops  

Comparison  of  Future  O3  and    Climate  Change  Impacts  –  B1  

•  Global  maize:  -­‐4%  for  O3  and  –  7-­‐8%  for  CC  –  CC  >  O3  (Excep9ons:  

Canada,  DRC,  possibly  China  and  India)  

•  Global  wheat:  -­‐10%  for  O3  and  -­‐5  -­‐  +1%  for    CC:  –  O3  >  CC  (Excep9ons:  

E.  Europe,  Russia,  Brazil  without  CO2)    

Climate change impact data from Iglesias and Rosenzweig (2009)

Wheat

O3

CC

(no

CO

2)

CC

+ C

O2

Maize