impulse and momentum chapter problems serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60...

21
Impulse and Momentum Chapter problems Serway – 5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,6 0 – cw.prenhall.com/~bookbind/pubbooks/giancoli

Upload: juliana-page

Post on 05-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Impulse and Momentum

• Chapter problems Serway– 5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60

– cw.prenhall.com/~bookbind/pubbooks/giancoli

Page 2: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Linear momentum & impulse

• Linear momentum is defined as the product of mass and velocity– p=mv, px=mvx , py= mvy

– units of momentum are kgm/s

• From Newtons 2nd law• F= ma F=mdv/dt F= dp/dt

• The rate of momentum change with respect to time is equal to the resultant force on an object

• The product of Force and time is known as IMPULSE

• J= Fdt

• units of impulse are Ns

Page 3: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Linear momentum & impulse

Examples of impulses being applied on everyday objects

Page 4: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Impulse Momentum Theorem

Fdt=mdv

You apply an impulse on an object and you get an equal change in momentum

IFdtmdvdppf

pi

tf

ti

vf

vi

tf

ti

Fdt Area under a Force vs time graph

v m t F

Page 5: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Impulse Graph

Page 6: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Linear Momentum and Impulse

Example problems 1,2,3

Chapter questions 5,6,10,13,16

Page 7: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Conservation of momentum2 particle system

For gravitational or electrostatic force

m1m2

F12

F21

F12 is force of 1 on 2

F21 is force of 2 on 1

F12 =dp1/dt F21 = dp2/dt

Page 8: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Conservation of momentum2 particle system

From Newton’s 3rd Law

F12 = - F21 or F12 + F21 = 0

m1m2

F12

F21

F12 is force of 1 on 2

F21 is force of 2 on 1

F12 + F21 =dp1/dt + dp2/dt = 0

d(p1 + p2)/dt= 0

Since this derivative is equal to 0

Page 9: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Conservation of momentum2 particle system

d(p1 + p2)/dt= 0then integration yieldsp1 + p2 = a CONSTANT

m1m2

F12

F21

F12 is force of 1 on 2

F21 is force of 2 on 1

Since this derivative is equal to 0

Thus the total momentum of the system of 2 particles is a constant.

Page 10: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Conservation of linear momentum

m1

m2

F12

F21

Simply stated: when two particles collide,their total

momentum remains constant.

pi = pf

p1i + p2i = p1f + p2f

(m1v1)i + (m2v2)i = (m1v1)f + (m2v2)f

Provided the particles are isolated from external forces, the total momentum of the particles will remain constant regards of the interaction between them

Page 11: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Conservation of linear momentum

Serway problems 9.2

17 & 18

Page 12: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions

Page 13: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions

Event when two particles come together for a short time producing impulsive forces on each other., No external forces acting. Or for the enthusiast: External forces are very small compared to the impulsive forces

Types of collisions

1) Elastic- Momentum and Kinetic energy conserved

2) Inelastic- Momentum conserved, some KE lost

3) Perfectly(completely) Inelastic- Objects stick together

Page 14: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions in 1 d

Perfectly Elastic

1) Cons. of mom.

2) KE lost in collision

3) KE changes to PE

Page 15: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Elastic C

ollis ion Calculation

2 objects

Page 16: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions - Examples

Computer Simulations

example 2, problems 5,24,29

Serway Problems 27,29,33,37

Page 17: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions in 2 dimensions

mavax

mb

vel=0

p=0

Before collision

After Collision

mavaf

mbvbf

mavafx

mbvbxf

x momentum before collision equals x momentum after the collision

xfxi pp

1

2

Page 18: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions in 2 dimensions xfxi pp

mavax= mavafx + mbvbxf

or

mavax= mavaf cos1 + mbvbf cos2

Page 19: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions in 2 dimensions

mavax

mb

vel=0

p=0

Before collision

After Collision

mavaf

mbvbf

mavayf

Mbvbyf

y momentum before collision equals y momentum after the collision

yfyi pp

Velocity

y axis =0

py=o

2

1

Page 20: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions in 2 dimensions yfyi pp

0= mavafy - mbvbfy

or

0= mavaf sin1 -mbvbf sin2

Page 21: Impulse and Momentum Chapter problems Serway –5,6,10,13,16,17,18,27,29,33,43,44,52,54,59,60 –cw.prenhall.com/~bookbind/pubbooks/giancoli

Collisions in 2 dimensions

xfxi pp

0= mavaf sin1 -mbvbf sin2

yfyi pp

mavax= mavaf cos1 + mbvbf cos2

Problems ex 9.9

43,44