imtek powerpoint template 2008: version 2 of the … · imtek powerpoint template 2008: version 2...

41
IMTEK powerpoint template 2008: Biochip-Technologies T. Brandstetter

Upload: hathu

Post on 28-Aug-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

IMTEK powerpoint template 2008: Version 2 of the first slide

Biochip-Technologies

T. Brandstetter

T. Brandstetter/ 09.05.2014 / slide 2 www.imtek.de/cpi

• Materials and surface modifications (09.05.14)

• Manufacturing of Biochips (23.05.14)

• Biochip technologies – Between research and routine diagnostics (state of the art, 06.06.14)

• Nucleic acid based techniques (27.06.14)

• Biochips for protein analytics (04.07.14)

• Other applications (11.07.14)

• Summary (18.07.14)

Content

T. Brandstetter/ 09.05.2014 / slide 3 www.imtek.de/cpi

Our profile

Research and teaching

• 22 faculties

• 300 researchers and technicians

• highly interdisciplinary world of

microsystem technology

IMTEK and industry

• Many industrial cooperations

• MSTBw

Core competences of CPI

• Preparation of surfaces with tailor-made

properties

• Topological and chemical micro

structuring of surfaces

• AFM

• Biochip-technologies

T. Brandstetter/ 09.05.2014 / slide 4 www.imtek.de/cpi

Biochip-technologies http://portal.uni-freiburg.de/cpi/biochip-group-dr-brandstetter

T. Brandstetter/ 09.05.2014 / slide 5 www.imtek.de/cpi

Biochips – what are they?(1)

• devices that can contain anywhere from tens to tens of millions of individual sensor elements (or biosensors)

• The sensors are packed together into a package typically the size of a microscope slide. Because so many sensors can be put into such a small area, a huge number of distinct tests can be done very rapidly.

• Biochips are often made using the same microfabrication technology used to make microchips. Unlike microchips, however, biochips are generally not electronic (although they can be).

• The key premise behind biochips is, that they can do chemistry on a small scale. Each biosensor can be thought of as a "microreactor“, which does chemistry designed to sense a specific analyte.

T. Brandstetter/ 09.05.2014 / slide 6 www.imtek.de/cpi

Biochips – what are they?(2)

• Biosensors can be made to sense a wide variety of analytes, including DNA, protein, antibodies, and small biological molecules.

• Fluorescence is often used to indicate a sensing event. Automated microscopy systems can be used to "read" the chip, i.e. determine which sensors are fluorescing

• Most biochips are 2D arrays of sensors placed carefully in a grid arrangement. The position of the sensor on the chip determines its function.

• To place the sensors in precise coordinates, sophisticated and expensive microdeposition techniques are used. The sensors are essentially placed one at a time, or serially, on the chip.

T. Brandstetter/ 09.05.2014 / slide 7 www.imtek.de/cpi

Biochips – what are they?(3)

3

8

13

HPV 6

HPV_3D_Katrin_N_30s_Cy5

substrat

dot

microarray

http://en.wikipedia.org/wiki/Biochip#History

T. Brandstetter/ 09.05.2014 / slide 8 www.imtek.de/cpi

Manufacturing of biochips – in general(1)

3. Immobilisation

2. Microarray printing

1. Untreated slide

mixed analyte solution

T. Brandstetter/ 09.05.2014 / slide 9 www.imtek.de/cpi

step1:

print polymer mixed with DNA

step 2:

photocrosslinking

via UV-irradiation

step 3:

hybridisation

and

readout

C OH

Manufacturing of biochips – in general(2)

T. Brandstetter/ 09.05.2014 / slide 10 www.imtek.de/cpi

Materials and surface modifications

T. Brandstetter/ 09.05.2014 / slide 11 www.imtek.de/cpi

Biochip materials (1)

Microscope slide of glass Commercial microscope glass slides

• Silica (SiO2) + vitreous silica

• Sodium carbonate (Na2CO3) + soda-lime-silicate glass

• Limestone (CaCO3) + borosilicate glass-pyrex

• Magnesium Carbonate (MgCO3) + aluminosilicate glass

+ borosilicate glass

Detailled information

Frontiers in biochip technology

by Wan-Li Xing, Jing Cheng

Edition: illustrated

Published by Birkhäuser, 2006

ISBN 0387255680, 9780387255682

357 pages

T. Brandstetter/ 09.05.2014 / slide 12 www.imtek.de/cpi

Biochip materials (2)

Microscope slide of plastic Commercial plastic slides

• PMMA (polymethymethacrylate) + PMMA

• Polystyrene + Polystyrene

• COC (cyclic olefin copolymer) + TOPAS

• Polycarbonate + Polycarbonate

• Polypropyrene + Polypropyrene

Lab Chip, 2007, 7, 856 - 862, DOI: 10.1039/b700322f

T. Brandstetter/ 09.05.2014 / slide 13 www.imtek.de/cpi

Biochip coatings

directly chemically modified surfaces

• In situ synthesis on glass + activated glass by poly-carbodiimide,

aminosilane, aldehyde

• Silanizated probes on unmodified glass + graft coating polymers on silicon (glass)

• Photocrosslinking on unmodified plastic + plastic-based DNA microarrays using

carbodiimide chemistry

+ amine-modified PMMA substrates

+ activated polystyrene, polypropyrene,

polycarbonate (PC)

• S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251 (1991) 767–773.

• M.J. Moorcroft, W.R. Meuleman, S.G. Latham, T.J. Nicholls, R.D. Egeland and E.M. Southern. NAR, 2005, Vol. 33, e75.

• N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research, 2004, Vol. 32, e68.

• H.-Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J. Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5.

• M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004) 286–292, 294, 296.

• A. Kumar, O. Larsson, D. Parodi, Z. Liang, Nucleic Acids Research, 2000, Vol. 28, e98.

• M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467–470.

• De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and Ehrat M.. Anal. Chem. 2005, 77, 5831-5838.

• Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc., 2004, 126, 9910-9911.

• N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N. Matsubara. Nucleic Acids Research, 2005, Vol. 33, e46.

T. Brandstetter/ 09.05.2014 / slide 14 www.imtek.de/cpi

2D chips using SAMs (self assembled monolayers)

typical DNA-chip design:

+ sensitivity

adapted from: E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5

+ surface properties

+ reproducibility (why is acceptance of microarrays below expectations in non-research areas?

sequence of the probe

polyT(thymine) tailer

Weakness:

T. Brandstetter/ 09.05.2014 / slide 15 www.imtek.de/cpi

A „skyscraper“-approach

“polymer layer” – approach allows to

improve the sensitivity

adjust properties of the surface

(hydrophilicity, reactivity)

polymer brushes

attachment of

oligonucleotide probes

2D

3D

polymer networks

3D

T. Brandstetter/ 09.05.2014 / slide 16 www.imtek.de/cpi

chemisorption of polymers

grafting of polymers on

plasma modified

surfaces

photochemical attachment

of polymers

blockcopolymers

via macroinitators

growth of polymers

on surfaces

surface-attached

polymer networks „grafting in between“

Functional polymer monolayers

T. Brandstetter/ 09.05.2014 / slide 17 www.imtek.de/cpi

C O C O C

CCH

350 nmOH

CC

OH

hydrogen

abstraction

recombination

= 100 µ s

Photochemistry of benzophenone

265 nm

triplet formation upon n,* excitation

biradical reacts with C,H bonds

Toomey R., Freidank D. and

Rühe J.. Swelling Behavior of

Thin, Surface-Attached

Polymer Networks.

Macromolecules, Vol. 37, 2004,

882-887.

T. Brandstetter/ 09.05.2014 / slide 18 www.imtek.de/cpi

Me

O O

O

ON

Me

Me

swelling in

water (2h)

polymeric substrate

(e.g. polyurethane)

photocrosslinkableovercoat

ca. 20 µm

~ 1 mm

simultaneous crosslinking

and surface attachment

via pendant benzophenone

units

Polymer networks attached to polymeric substrates

T. Brandstetter/ 09.05.2014 / slide 19 www.imtek.de/cpi

Microstructuring in biochip technologies, two procedures

I. Contact printing

http://www.anopoli.com/ http://www.anopoli.com/

Print pins Printhead

T. Brandstetter/ 09.05.2014 / slide 20 www.imtek.de/cpi

Microstructuring in biochip technologies, contact printing

Omnigrid from GeneMachine®

Contact printing procedure

65% humidity, RT

Steel or tungsten needle with reservoir

droplet volume 400 – 600 pl

droplet diameter 140 – 200 µm

Process variance > 10%

T. Brandstetter/ 09.05.2014 / slide 21 www.imtek.de/cpi

Microstructuring in biochip technologies, contact printing

Pin heads make the difference.

Split pin

Solid pin

•Spot diameters : 75µm to 215 µm

•Uptake volumes : 0.25µl to 0.64 µl

•Spot diameters : 75µm to 450 µm

htt

p:/

/ww

w.a

nopoli.

com

/

T. Brandstetter/ 09.05.2014 / slide 22 www.imtek.de/cpi

PDMAA(Polydimethylmetacrylate) PS (Polystyrene)

Microstructuring in biochip technologies, contact printing

Printing with different, not aqueous, solutions is possible.

printing medium: ethanol printing medium: toluene

200 µm

T. Brandstetter/ 09.05.2014 / slide 23 www.imtek.de/cpi

Microstructuring in biochip technologies, contact printing

Spot diameter is not really controllable.

Split pin

Solid pin

Printing of 0.25 µm Cy5-labelled oligo-DNA in 400

mM Napi and 1mg/ml PDMAA-co-5%MABP-co-

2,5%VPA

T. Brandstetter/ 09.05.2014 / slide 24 www.imtek.de/cpi

Microstructuring in biochip technologies, contact printing

scale lining

PDMAA layer

PMMA (5 mg/ml) lining

Printing medium toluene

exposure after

photocrosslinkage

T. Brandstetter/ 09.05.2014 / slide 25 www.imtek.de/cpi

1. copolymers 2. buffer 3. PT-6000 tungsten

2D

3D

plastic/PMMA glass/Epoxy

PDMAA-co-5%MABP-co-2,5%VPA (a) 400 mM Napi

(b) 200 mM Napi/3xSSC/0.75 M betaine

2D_16_04_07_P2Dsp.2a 2D_16_04_07_N2Dsp.4b

3D_12_04_07_P3Dsp.11a

a. a.

3D_12_04_07_N3Dsp.2a

a. a. b.

b.

2D_04_04_07_N2Ds.4a

3D_03_04_07_N3Ds.4a

b.

2D_04_04_07_P2Ds.1a

3D_03_04_07_P3Ds.11

b.

Microstructuring in biochip technologies, contact printing

3D

T. Brandstetter/ 09.05.2014 / slide 26 www.imtek.de/cpi

1. copolymers 2. buffer 3. PT-6000 tungsten

2D

3D

plastic/PMMA glass/Epoxy

PDMAA-co-5%MABP-co-2,5%VPA (a) 400 mM Napi

(b) 200 mM Napi/3xSSC/0,75 M betaine

2D_16_04_07_P2Dsp.2a

3D_12_04_07_P3Dsp.11a

a. a.

3D_12_04_07_N3Dsp.2a

a. a. b.

b.

2D_xx_04_07_N2Ds.x

3D_xx_04_07_N3Ds.x

b.

2D_xx_04_07_P2Ds.x

3D_xx_04_07_P3Ds.x

b.

2D_16_04_07_N2Dsp.4b

Microstructuring in biochip technologies, contact printing

2D

3D

T. Brandstetter/ 09.05.2014 / slide 27 www.imtek.de/cpi

Microstructuring in biochip technologies, contactless printing

II. Contactless printing/Piezo Electric Dispenser

http://www.scienion.de

T. Brandstetter/ 09.05.2014 / slide 28 www.imtek.de/cpi

Microstructuring in biochip technologies, contactless printing

II. Piezo Electric dispenser

Piezo Electric dispenser(Scienion AG®)

Contactless printing procedure

65% humidity, RT

droplet volume 410 pl,

droplet diameter 175 µm

droplet volume and diameter is

adjustable

Process variance < 10%

T. Brandstetter/ 09.05.2014 / slide 29 www.imtek.de/cpi

Photos after print

Microstructuring in biochip technologies, contactless printing

2D

3D

3D

2D = printing with PBS without polymer

3D = printing with PBS 1 mg/ml PDMAA-co-

5%MABP-co-2,5%VPA

T. Brandstetter/ 09.05.2014 / slide 30 www.imtek.de/cpi

Microstructuring in biochip technologies, contactless printing

Droplet stacking

1mg/ml polymer in distilled water

PSS = Polystyrenesulfanit

PMMA = Polymethylmetacrylate

Small droplet with 10x

Large droplets with 20x

Photo after print

PSS PMMA

T. Brandstetter/ 09.05.2014 / slide 31 www.imtek.de/cpi

Microstructuring in biochip technologies, contactless printing

“donut”-structuring

1mg/ml PDMAA-co-

5%MABP-co-2,5%VPA in

PBS

Exposure after wash with

PBS and 0.1% (v/v) Tween)

T. Brandstetter/ 09.05.2014 / slide 32 www.imtek.de/cpi

Dot morphology, how to analyze?

Dot morphology, depending on

surface properties

print solution contact angle

analyte concentration

Dot morphology, analyzed by

AFM

Fluorescence microscope

Raster electron microscope

T. Brandstetter/ 09.05.2014 / slide 33 www.imtek.de/cpi

Microstructuring in biochip technologies, contactless printing

Printing with additives, avoiding

“donut”-morphology

1mg/ml PDMAA-co-5%MABP-

co-2,5%VPA in PBS

Additive Glycerol

Photo after print

0 2.5 5 10 25%(v/v)

T. Brandstetter/ 09.05.2014 / slide 34 www.imtek.de/cpi

Microstructuring in biochip technologies, contactless printing

Printing with/withoutTrehalose

1mg/ml PDMAA-co-5%MABP

-co-2,5%VPA in PBS

125 mg/ml Trehalose (T) in PBS

“Donut”-structure without

Trehalose

Homogeneity in the dot

morphology, using Trehalose

-T

-T

+T

+T

α-D-glucopyranosyl α-D-

glucopyranoside(α,α‐Trehalose)

http://en.wikipedia.org/wiki/Trehalose

Exposure with a fluorescence microscope

T. Brandstetter/ 09.05.2014 / slide 35 www.imtek.de/cpi

Printing on microstructured surfaces

500 µm

T. Brandstetter/ 09.05.2014 / slide 36 www.imtek.de/cpi

Microstructuring in biochip technologies

Micronas Biochip technlogy

Piezo Electric dispenser(Scienion AG®)

Contactless printing procedure

80% humidity, RT

droplet volume 390 pl,

photodiode diameter 180 µm

printing on structured surfaces

Process variance < 10%

T. Brandstetter/ 09.05.2014 / slide 37 www.imtek.de/cpi

Microstructuring in biochip technologies

Micronas Biochip technlogy

Piezo Electric dispenser(Scienion AG®)

printing directly on a photodiode

180 µm

T. Brandstetter/ 09.05.2014 / slide 38 www.imtek.de/cpi

Microstructuring in biochip technologies

Micronas Biochip technlogy

Piezo Electric dispenser(Scienion AG®)

printing directly on a photodiode

pattern matching using a software

no

t p

rin

ted

pri

nte

d

T. Brandstetter/ 09.05.2014 / slide 39 www.imtek.de/cpi

Piezo Electric dispenser (Scienion AG®)

Contactless printing procedure

Droplet volume control

Droplet diameter tunable (>100µm)

Printing only with aqueous solutions

1mg/ml polymer

Process variance < 10%

Omnigrid from GeneMachine®

Contact printing procedure

Steel or tungsten needle with reservoir

droplet volume 400 – 600 pl

droplet diameter approx. 200 µm

Printing of different solutions

> 1mg/ml polymer possible

Process variance > 10%

Microstructuring in biochip technologies, summary

T. Brandstetter/ 09.05.2014 / slide 40 www.imtek.de/cpi

Thank you for your attention!

http://www.bilder-welten.net/de/produkt_detail.php?id=23019&catid=1623

T. Brandstetter/ 09.05.2014 / slide 41 www.imtek.de/cpi

Literature

• E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5

• Frontiers in biochip technology, by Wan-Li Xing, Jing Cheng, Edition: illustrated, published by

Birkhäuser, 2006, ISBN 0387255680, 9780387255682, 357 pages

• Lab Chip, 2007, 7, 856 - 862, DOI: 10.1039/b700322f

• S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251

(1991) 767–773.

• M.J. Moorcroft, W.R. Meuleman, S.G. Latham, T.J. Nicholls, R.D. Egeland and E.M. Southern.

NAR, 2005, Vol. 33, e75.

• N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research, 2004, Vol. 32, e68.

• H.-Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J.

Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5.

• M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004)

286–292, 294, 296.

• A. Kumar, O. Larsson, D. Parodi, Z. Liang, Nucleic Acids Research, 2000, Vol. 28, e98.

• M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467–470.

• De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and

Ehrat M.. Anal. Chem. 2005, 77, 5831-5838.

• Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc., 2004, 126, 9910-9911.

• N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N.

Matsubara. Nucleic Acids Research, 2005, Vol. 33, e46.

• Toomey R., Freidank D. and Rühe J.. Swelling Behavior of Thin, Surface-Attached Polymer

Networks. Macromolecules, Vol. 37, 2004, 882-887.