in situ chemical oxidation of vocs and btex plume in low-permeability soils · 2018. 7. 25. ·...

22
In Situ Chemical Oxidation of VOCs and BTEX Plume in Low-Permeability Soils Amit Haryani, PE, LSRP

Upload: others

Post on 16-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • In Situ Chemical Oxidation of VOCs and BTEX Plume in Low-Permeability SoilsAmit Haryani, PE, LSRP

  • Process Map

    • Diesel, gasoline, solvents

    Maintenance Yard

    • Attain NJ GWQS - Rapidly

    Client Goals

    • Mixed plume in low perm soil

    Challenges

    • Benefits of real time CSM evolution

    Evolution of CSM

    Page 2

  • Process Map

    • Low perm soils & MIP results

    Thoughts on Data Interpretation

    Evolution of

    • Alternate oxidants

    Evolution of Remedial Approach

    Results & Path Forward

    Page 3

  • Site History

    2001

    2002 -2005• Wells Installed• BTEX; MTBE;

    TBA

    2007 - 2008• Previous

    COCs• PCE

    Page 4

    1998• 4,000g

    Diesel UST• 2,000g

    Diesel UST

    2001• 10,000g Gas

    UST• VOC Storage

    Bldg• Fuel dispenser

    TBA• Lead• TCE; cis-1,2-

    DCE; VC• 1,2-DCA; 1,1-

    DCE

  • Initial Conceptual Site Model – Hydrogeology

    Asphalt

    Brown to grey Silt + med to fine sand,

    trace clay

    10 ft

    0.5 ft

    2 ft, occasionally

    Page 5

    Dark grey clayey Silt

    90 ft

  • Remedial Notions - Based on 2008 CSM

    • Site geochemistry preferable for CHP• High dissolved iron content• Site pH is low (4-6) range

    • Iron a catalyst for hydroxyl radical generation• Acidic pH assists keeping iron in solution & available for reaction• Site contaminants susceptible to immediate oxidation by CHP• Cons: potential TBA (as by-product MTBE oxidation) generation

    CHP as remedial approach

    • Cons: potential TBA (as by-product MTBE oxidation) generation

    • Oxygen generated by hydrogen peroxide decomposition aids aerobic biological systems

    • Site contaminants (TBA, MTBE, benzene, and VC) susceptible to long-term aerobic biological degradation

    Plus, added benefits :

    Page 6

  • Remedial Focus

    • One saturated (8 – 13 ft bgs) soil sample• Groundwater• Sample from or adjacent to well with highest concentration (MW-10 @

    MIP-6 and MIP-7)• Acidic buffer capacity / Peroxide reactivity / Oxidant effectiveness

    EXTERNAL BENCH STUDY

    BENCH RESULTS

    2009

    • Initial VOCs: gw 1.5 mg/L VOCs; soil 0.404 mg/kg• Soil pH

  • Recent History

    2010

    2011• SPS

    Injections

    Page 8

    2009• Aug to Sep

    - Peroxide Injections

    • Nov – MIP / HPT

    • Revise CSM

  • Phase I ISCO Application Summary

    • Could not inject target volume (500 gal of 14% H2O2) due to surfacing.

    • Reduced H2O2 from 14% to 8% to 4%.

    • Eliminated addition of iron after IP-12.

    Round 1 – August 20092009

    • Used Hydraulic Profile Tool (HPT) on day 1 to establish permeable zones to target injections.

    • Completed injections (IP 17 - 78) but at reduced target volume (120 gallons).

    • Overall, actual volume

  • 1800

    3400

    71

    340

    620

    730

    5400

    270

    2100

    2200

    610

    1100

    1300

    1600

    100

    1000

    10000

    Tert Butyl Alcohol (TBA)

    ppb

    Phase I ISCO Results Summary

    71

    5.8

    37

    17

    11

    40

    5

    16

    6.3

    22

    1

    10

    100

    MW-1 MW-5 MW-6 MW-7 MW-10 MW-12 MW-102S MW-103S MW-105S MW-106S

    Jan-08 Mar-09 Oct-09 Dec-09

  • Phase I ISCO Results Summary140 170

    170

    230

    38

    270

    9.9

    150

    19

    4248

    350

    13

    85

    100

    680

    140

    12

    80

    140

    35

    57

    47

    420

    11

    80

    10

    48

    100

    1000

    Methyl Tert Butyl Ether (MTBE)

    ppb

    3.2

    3.8

    9.9

    1

    6.2

    8.5

    6.4

    0.93

    2.8

    4.9

    10

    0.1

    1

    10

    MW-1 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 MW-11 MW-12 MW-102S MW-103S MW-105S MW-106S

    Jan-08 Mar-09 Oct-09 Dec-09

  • Phase I ISCO Results Summary

    71

    780

    61

    450

    37

    110

    980

    61

    210

    690

    40

    100

    1000

    Pechloroethene (PCE)

    ppb

    1.4

    2.7

    4.5

    5.3

    1.2

    16

    5.3

    4.6

    5.3

    1.6

    1.4

    14

    18

    1.1

    4.3

    6.7

    1

    10

    MW-6 MW-8 MW-9 MW-10 MW-11 MW-12 MW-103S MW-105S MW-106S

    Jan-08 Mar-09 Oct-09 Dec-09

  • Phase I ISCO Lessons Learned

    • Poor performance > 7ft bgs.

    Injection volumes restricted

    • Injections forced to target 5 to 7 feet depth interval.

    HPT data clarifies delivery issues.

    Rapid reaction of Catalytic Hydrogen Peroxide

    • Back pressure reduces ability to inject further oxidant solution.• Difficult to inject volumes into areas previously injected.

    Rapid reaction of Catalytic Hydrogen Peroxide evolves gas = back pressure.

    • Rebound / back diffusion?• Permanent injection wells?

    Follow up treatment of residual “hot spots” warranted.

  • Phase II

    • Strategy focusing on greatest residual• Use MIP/HPT direct sensing to focus “Hot Spot”

    treatment efforts• Identify zones of flux

    “Hot Spot” treatment

    Apply different oxidant - SPS

    2010

    Page 14

    • Strong oxidizing radical• Catalyzed by native iron• No temperature increase• No off-gas• Oxidation & reduced formation of TBA (suggested

    in lit.) • More Persistent• Lower affinity for natural soil organics (Brown

    2003); greater efficiency

  • MIP in Low Perm Soil

    • PID readings >11 ft bgssuggestive of mg/L to 10s mg/L conc.?

    • Signal in multiple areas of high soil conductivity

    MIP Operator Observations

    Multiple grab samples at depth do not confirmdepth do not confirm

    • Others (Quinnan, et al) have documented bias in MIP within low permeability units

    • + varying sensitivity depending on chlorine substitution

    Signal Bias in Low Perm Soil

  • Phase II ISCO Application – January 2011

    • 23 injection points• Catalyst – 575-gallon• 15% persulfate – 1,885-gallon• Flow Rate – 1 gpm – 3.57 gpm

    Area 1

    • 42 injection points• Catalyst – 1,710-gallon

    Area 2

    2011

    • Catalyst – 1,710-gallon• 15% persulfate – 5,925-gallon• Flow Rate – 0.76 gpm – 3.85gpm

    • 24 injection points• Catalyst – 600-gallon• 15% persulfate – 2,200-gallon• Flow Rate – 0.58 gpm – 2.78 gpm

    Area 3

  • 730

    5400

    37

    270

    2100

    790

    580

    310

    960

    740

    2002

    90 380

    48

    340

    1802

    80

    470

    170

    53

    920

    58

    100

    1000

    10000

    Phase II ISCO Results Summary - TBA

    5.8

    37

    17

    116.

    2 7.7

    6.5

    12

    7.2

    1818

    11

    18

    1

    10

    MW-1 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 MW-11 MW-12 MW-102S MW-103S MW-104S

    MW-105S MW-106S

    Mar-09 11-Mar 11-May 11-Aug

  • 48

    350

    13

    85

    100

    6.2

    680

    8.5

    140

    140

    12

    80

    39 39

    100

    180

    9.2

    50

    60

    95

    34

    44

    20

    90

    30

    52

    8.1

    72

    30

    23

    15

    7.2

    58

    22

    12

    45

    190

    42

    150

    10

    100

    1000

    Phase II ISCO Results Summary - MTBE

    1.0

    6.2 8

    .5

    2.7

    1.8

    1.7

    5.6

    4.7

    0.7

    4.8

    8.1

    7.2

    0.56

    0

    1

    10

    MW-1 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 MW-11 MW-12 MW-102S MW-103S MW- 104SMW-105S MW-106S

    Mar-09 11-Mar 11-May 11-Aug

  • 110

    980

    56 61

    99

    200

    51

    67

    81

    210

    48

    95

    170

    46

    80

    97

    100

    1000

    Phase II ISCO Results Summary - PCE

    1.2

    16

    5.3

    4.6 5.

    3

    1.1

    1.1 1.

    3

    5

    3.1

    1.5

    1.1 1.

    3

    1.3

    3.5

    6.6

    2.3

    1.7

    2.4

    1.6

    2.6

    15

    1

    10

    MW-1 MW-5 MW-6 MW-7 MW-8 MW-9 MW-10 MW-11 MW-12 MW-102S MW-103S MW- 104SMW-105S MW-106S

    Mar-09 11-Mar 11-May 11-Aug

  • Phase II ISCO Results Summary

    • MW-5, MW-10, and MW-12

    HOT spot wells = Significant reduction in concentrations

    • Except: MW-1, MW-5, and MW-10

    TBA below GWQS in all on-site wells

    2011

    • Except: MW-10

    MTBE below GWQS in all on-site wells

    • MW-104S and MW-106S

    Off Site contaminant increases

  • Next Steps to Site Closure

    • Past system behavior suggest anaerobic conditions exist(ed)• PCE degradation via RD with daughter products and ~50 %

    reduction of COCs without active treatment over 4 yrs (‘04 – ’08)• In fuel release source areas, e-acceptors (e.g., oxygen, nitrate, iron

    and sulfate) often absent/limited – handicapping biodegradation• Anerobic biodegradation systems benefit from Fe-SPS once redox

    potential decreases again as the process supplements iron and sulfate

    MNA Considerations – Anaerobic

    Life Cycle Costs: MNA with LTM vs. Additional ISCO

    • Given past plume stability (pre-ISCO perturbations), LTM could be in perpetuity

    • One additional targeted applications of Fe-SPS equivalent to 2 years of LTM

    • Additional ISCO shortens LTM time by years• Sequential injection events within target interval = mass reduction in

    zones of flux.

    Life Cycle Costs: MNA with LTM vs. Additional ISCO with Re-assessment

  • The End

    Amit Haryani, PE, LSRPSenior Project Manager(732) [email protected]