in5240 rf amplifier part 3

31
Institutt for Informatikk IN5240 RF Amplifier Part 3 Sumit Bagga * , Torleif Skår and Dag T. Wisland ** * Staff IC Design Engineer, Novelda AS ** CTO, Novelda AS

Upload: others

Post on 13-Jan-2022

22 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: IN5240 RF Amplifier Part 3

Institutt for Informatikk

IN5240 RF Amplifier Part 3

Sumit Bagga*, Torleif Skår and Dag T. Wisland**

*Staff IC Design Engineer, Novelda AS**CTO, Novelda AS

Page 2: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Direct-RF Receiver

Receiver comprises high-pass filter (HPF) for interference rejection, impedance and noise-matched low-noise amplifier (LNA), and high-speed analog-to-digital converter (ADC)

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

LNAHPF

ADC

Page 3: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Design Aspects

• Specifications– Gain, noise figure, bandwidth, impedance and noise

match, linearity, stability, group delay and power consumption

• Configuration– Single-ended, single-ended to differential, fully

differential or pseudo-differential

• RF design, single-stage amplifier are preferred– Common-source or common-gate

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 4: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Performance Metrics

• ‘Dominant’ input device suppresses noise contributed subsequent blocks à ↑ gain– Trade-off gain for linearity

• Optimize input device for lowest noise figure– NF < 2 dB à CS-stage w/ 𝑔! ≫ "

#$Ω and minimum

gate resistance, 𝑅%• Cover bandwidth specified by standard• Conjugate matching at the input

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 5: IN5240 RF Amplifier Part 3

Institutt for Informatikk

LNA Topologies

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Common-Source (CS) Common-Gate (CG) Broadbandw/ CG (Cascode)

Resistive feedback

Inductive load

Inductive degeneration

w/ CG

Inductive load

Feedback

Feedforward (Boosted CG)

Noise-cancelling

Reactive cancelling

Page 6: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Performance Metrics

• ‘Dominant’ input device suppresses noise contributed subsequent blocks à ↑ gain– Trade-off gain for linearity

• Optimize input device for lowest noise figure– NF < 2 dB à CS-stage w/ 𝑔! ≫ "

#$Ω and minimum

gate resistance, 𝑅%• Cover bandwidth specified by standard• Conjugate matching at the input

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 7: IN5240 RF Amplifier Part 3

Institutt for Informatikk

ECE145A/ECE218A AMPLIFIER DESIGN

12/14/07 6 Prof. Stephen Long, ECE/UCSB

Ref. G. Gonzalez, Microwave Transistor Amplifiers, Analysis and Design, Second Ed., Wiley, 1997.

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 8: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Small-Signal Model

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 9: IN5240 RF Amplifier Part 3

Institutt for Informatikk

CS, CG and CD

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 10: IN5240 RF Amplifier Part 3

Institutt for Informatikk

CG Power-to-Voltage Amplifier

• Inductive loading à tuned parallel resonance – Frequency selectivity to remove

out-of-band interferers– Current magnification (𝑸 & 𝑰𝑳)– No voltage drop

𝑍! ≈ 1/𝑔"

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 11: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Transformer Layout contd.

Monolithic Transformers for Silicon RF IC Design, John R. Long, 2000

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 12: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Transformer Model contd.

𝑣𝑜 =𝑘2𝐿1𝐿1

𝐿2𝑀 𝑣𝑖 =

𝑘2𝐿2𝑀 𝑣𝑖 =

𝑘2𝐿2𝑘 𝐿1𝐿2

𝑣𝑖 = 𝑛𝑘𝑣!

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 13: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Transformer Model

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Monolithic Transformers for Silicon RF IC Design, John R. Long, 2000

𝑛 =𝑣'𝑣(=𝑖(𝑖'= 𝑙'/𝑙(

𝑘 =𝑀𝑙'/𝑙(

𝑛/𝑘 = 𝑙'/𝑀

Page 14: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Z Parameters

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 15: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Transformer Layout

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 16: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Broadband LNA w/ LC-Ladder

Cascode gain cell, input filter, and output buffer

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 m CMOS, M. Reiha, ’07 (Ref.: [4-6])

A. Bevilacqua, A. Ismail, F. Lee

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 17: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Resistive-Feedback Preamplifier

L 50 Ω input match, low NF and low Pdc

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 m CMOS, M. Reiha, ’07 (Ref.: [4-6])

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 18: IN5240 RF Amplifier Part 3

Institutt for Informatikk

2-Stage LNA w/ Idc Reuse

gm-boosting input stage and transimpedance amplifier

INF5481: RF kretser, teori og design Dag T. Wisland

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 m CMOS, M. Reiha, ’07 (Ref.: [4-6])

Page 19: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Negative Current Feedback CS-LNA

β = nZi ≅ n/gm

T1 is non-inverting. Current sensed via T1,p is negatively fed back and applied in parallel at the input via T1,s

T1,s

RFi M1

RL

RFo

VDD-ifb

T1,p

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 20: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Gm = gm(1+nk); nk < 1Zi ≅ n/(Gm)

T1 is inverting. Current sensed via T1,p is negatively fed back and applied in parallel at the input via T1,s

T1,s

RFi M1

T1,p

RL

RFo

VDD-ifb

+vin-

-vin/n+

A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 μm CMOS, M. Reiha, ‘07

gm-Boosted CS-LNA

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 21: IN5240 RF Amplifier Part 3

Institutt for Informatikk

gm-Boosted CS-LNA w/ Trifilar

Gm = gm(1+nk)Zi ≅ n/(Gm)

T1 is inverting. Assume kpt ≅ 0 and kps & kst ≅ 1. Total gate-source voltage is ≅ vin + vin/n2 - (-vin/n1)

T1,s

RFi

T1,t

M1

T1,p

RL

RFo

VDD-ifb

+vin-

- vin/n2 +-

vin/n1+

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 22: IN5240 RF Amplifier Part 3

Institutt for Informatikk

gm-Boosted CS-LNA w/ Auto-Transformers (AT)

Gm = gm(1+n2k2)Zi ≅ n1,2/(Gm)

2 ATs w/ T2 > T1- +V feedforward- -I feedback

T2,s

RFi,+

T2,pM1

T1,pT1,s

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 23: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Basic CG-LNA

NF ≥ 2 dBZi ≅ 1/gm

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 24: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Feedforward gm-Boosting

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

[Liscidini, ISSCC, 2015]

Page 25: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Gm-Boosted CG-LNA

Gm = gm(1+nk)Zi ≅ 1/(gm(1+nk))

Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18 µm CMOS, X. Li, ‘05

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 26: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Positive Current Feedback CG-LNA

β = 1-(k/n)Zi ≅ 1/(gm(1-k/n))

Common Gate Transformer Feedback LNA in a High IIP3 Current Mode RF CMOS Front-End, A. Liscidini, ‘06

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 27: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Feedback & Feedforward

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

• [Li, 2005] – 𝑔"-boosted CG-LNA with transformer feedforward loop– Feedforward factor is (1 + 𝑘𝑛), where n is the turns

ratio and k is the coupling coefficient

• [Liscidini, 2005] – CG-LNA with positive transformer feedback loop– Feedback factor is (1 − 𝑘/𝑛)

Page 28: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Trifilar CG-LNA

LP-LS: Inv.LP-LT: Non-Inv.LP-LT: Inv.(stability, kT,S à 0)

Zi ≅ 1/(gm(1+nP,SkP,S+nT,SkT,S)(1-kT,P/nT,P))

P1

P2

P3

P4

P5

P6

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 29: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Trifilar Design

P1P2 P3

P4

P5P6

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 30: IN5240 RF Amplifier Part 3

Institutt for Informatikk

S21 and S11 in 55 nm CMOS

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga

Page 31: IN5240 RF Amplifier Part 3

Institutt for Informatikk

Key References

1. A. M. Niknejad, EECS 142 and 2422. A. Liscidini, “Fundamentals of Modern RF

Receivers,” ISSCC 20153. N. Andersen, “A 118-mW Pulse-Based Radar

SoC in 55-nm CMOS for Non-Contact Human Vital Signs Detection,” JSSC, 2017

IN5240: Design of CMOS RF-Integrated Circuits, Dag T. Wisland and Sumit Bagga