rf amplifier

58
1 RF Small Signal Amplifier RF Small Signal Amplifier

Upload: jaoude

Post on 08-Apr-2015

391 views

Category:

Documents


12 download

TRANSCRIPT

Page 1: RF Amplifier

1

RF Small Signal AmplifierRF Small Signal Amplifier

Page 2: RF Amplifier

2

Low Frequency AmplifierLow Frequency Amplifier

• Transistor is an voltage controlled current source• Device capacitances are negligible • High Zin , rO are desirable for high voltage gain• Amplifier gain drops as frequency increases due to internal and

external capacitances →→→→ Low pass type amplifier Transistor model

inZ+

-

m ing vinv LR

SR

Sv LV+

−Or

)||()( OLmSinS

inL rRgv

ZZZV ⋅−⋅⋅+

=

iL

Page 3: RF Amplifier

3

Tuned AmplifierTuned Amplifier

• Gain over a narrow frequency range centered about some high frequency

• If feedback by Cgd is negligible

gsC

+

-

m ing vinv LR

SR

Sv LV+

−Or

gdCLC

( ) ( || ) at 1/(2 )L in m L OV v g R r f LCπ= ⋅ − ⋅ =

inyouty

Page 4: RF Amplifier

4

Tuned AmplifierTuned Amplifier

• When the internal capacitances cannot be ignored, yin and yout depend on the load and the source impedances respectively (Miller Effects)

• Additional capacitive loading at the output by Ceq=Cgd[1+gmRs] • Resonance frequency shifts downward due to Ceq→ difficult to

control the resonance frequency→ need relatively large C• If yL is inductive (below resonance frequency), yin shows negative

resistance →may oscillate• Cgd loads the output tank, decreases gain, detunes the resonance, and

most importantly causes instability– Minimizing feedback due to Cgd→ Cascode topology– Bilateral design using S parameters

(1 ) if j ( )(1 / ) if j

out gd m S eq gd gs m

in gs gd m L in gd L

y j C g R j C C C gy j C j C g y j C C y

ω ω ωω ω ω ω

≈ + = + <<

≈ + + = <<

Page 5: RF Amplifier

5

S Parameters of FETS Parameters of FET

ECP for RF CMOS with simple substrate model when body is groundedIn general, the substrate model is more complicated

gsC jm ig e vωτ−

iv+

dsr

gdC

iR

gRgL

sR

sL

Intrinsics

dR dL

dsCsubC

subR

Page 6: RF Amplifier

6

Bias Independent Parameters of FETBias Independent Parameters of FET

• Bias independence: assumption for convenience• Lg, Ls, Ld: parasitic inductances mainly due to electrodes. several

tens of pH, usually ignored for a few GHz application, but important for mm application

• Rg: due to gate poly resistance, reduce the power gain, increase device noise

• Rs: due to ohmic resistance, reduce gm, effective gme = gm/(1+gmRs)• Rd:due to ohmic resistance, affects the device power gain

Page 7: RF Amplifier

7

Bias Dependent Parameters of FETBias Dependent Parameters of FETgs: effective charging path resistance for C , / 3, channel resistance at DC

For simple channel model(short channel device)assume uniform sheet charge, and velocity saturated channel

( ),

i c c

d s s gs

R R R

i eWv n v

= −

m

( )

,

/ / 1/ ( : charging time)

3more accurately, (transit time),g 1/4

: parasitic, cause nonunilaterality

n s gs

n s d sgs m s

gs gs gs gs

dm gs s

n

s

ngd

gd

dds

ds

Q qWLn vQ n i nC qWL g qWvv v v v

ig C v LQ

L Lv

QCv

irv

τ τ

τ

=

∂ ∂ ∂ ∂= = = =∂ ∂ ∂ ∂

∂= = =∂

⇒ = ∝

∂=∂

∂=∂

1

cause ouput power loss

, less dependent on Vgs, but sensitive to Vds, cause output power loss and cross talk sub subR C

Page 8: RF Amplifier

8

ffTT of FETof FET

• Assume unilateral, ignore Cgd• Short circuit current gain, h21=ig/id

21

21

21

T

h drops by 6dB/octave

1 ,2

f is a figure of merit for switching speed

T

m gsd m

g gs gs gs

mT T T

gs

g vi ghi C v C

gh fCω ω

ω ω

ω π ω=

= ≈ =

= ⇒ = =

gsC mgiv

+

gdC

gi di

Page 9: RF Amplifier

9

ffmaxmax of FETof FET

• Assume unilateral• Gp : Power gain under matched condition

• To improve fmax, high fT , high Rds, low Rg

gsC mgiv+

gi di

gR

dsRgZ

LZgv+

−dv

+

dsg

T

p

g

dsT

g

ds

gs

m

gsggsgsmd

g

dsgd

g

Lgd

ggddgLp

RRff

G

RR

ff

RR

Cg

CjIvvgIRRII

ZZII

IVIVPPG

/4

ffat 1

41

41

)/,2/(

/)Re()Re(/

)Re(/)Re(/

max

max

22

22

**

=

==

==

==←

==

==

ω

Page 10: RF Amplifier

10

Accurate Accurate ffTT and and fmaxfmax

• Nonunilateral• Includes all parasitic resistances• For CMOS, junction capacitance should be merged to Cgs, Cgd• Substrate parasitics are not included

2

max

)1(23

154

)1()(14

)(]/)(1][[2

smgs

gd

gs

gd

sm

gsmim

mds

T

dsgdmdsdsgdgs

mT

RgCC

CC

RgRRg

RggR

ff

RRCgRRRCCgf

+

++

+

++

=

+++++=

π

Page 11: RF Amplifier

11

Low Frequency Approximation of S11, S22Low Frequency Approximation of S11, S22

011

0

022

0

1/

( ||1/ )

in

in

in g in

out

out

out o eq

Z ZSZ Z

Z R j CZ ZSZ Z

Z r j C

ω

ω

−=+

= +

−=+

=

freq (50.00MHz to 10.00GHz)

S(1

,1)

m5

m6

freq (50.00MHz to 10.00GHz)

S(2

,2)

m7m8

Series R-C

Parallel R-CL18 CMOS S-parameter (2.15GHz & 5.25GHz) for Finger=32 (width=160um)

Lg, Ls, Ld, Rd, Rs, Ri, ττττ are ignored

Page 12: RF Amplifier

12

Low Frequency Approximation of S21,S12Low Frequency Approximation of S21,S120

210

0

012 0

0

2 when are ignored1

(1 )

when Z 1/1

mg

in

in gs gd m

gdgs

gd

g ZS Rj C Z

C C C g Zj C Z

S j Cj C Z

ω

ωω

ω

−=+

= + +

= <<+

-4 -3 -2 -1 0 1 2 3 4-5 5

freq (50.00MHz to 10.00GHz)

S(2

,1)

m1m2

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15-0.20 0.20

freq (50.00MHz to 10.00GHz)

S(1

,2)

m3

m4

Page 13: RF Amplifier

13

RF Small Signal AmplifierRF Small Signal Amplifier

• Small signal amplifier– not voltage amplifier but power amplifier– conjugate impedance matching– usually CE(Common Emitter) and CS(Common Source structure)– characteristics of devices are given by S parameters

• Classification– narrow band amplifier (about 10% BW of carrier frequency)

• Lossless L-section matching– medium band amplifier(20-30% BW)

• double resonance matching, multi-section matching technique– broad band amplifier(more than 50% BW)

• feedback, balanced, traveling wave amplifier

Page 14: RF Amplifier

14

Small Signal High Frequency AmplifierSmall Signal High Frequency Amplifier

• ZSO, ZLO: usually 50Ω

• Recall!

oin

oinin ZZ

ZZ+−=Γ

InputMatchingNetwork

transistor[S]

OutputMatchingNetwork

ZZZZsosososoZZZZLoLoLoLo

VsoVsoVsoVso

(VSWR)in (VSWR)out

aΓbΓ

( )L LZΓ( )out outZΓ( )S SZΓ ( )in inZΓ

Page 15: RF Amplifier

15

Small Signal High Frequency AmplifierSmall Signal High Frequency Amplifier

• For Re(Zi)>0, always |Γi|≤1• VSWR

• All networks are specified by S parameters and reflection coefficient Γ instead of impedance– practically Γ , S parameters are based on the same normalizing impedance 50 Ω– merely an alias of impedance or admittance– Γin is equivalent to Zin, Γout is equivalent to Zout

• Amplifier Specification– Linear spec :Gain, Bandwidth, VSWR, Noise Figure– Nonlinear spec: P1dB, IIP3 etc.

Sin

Sin

a

a

ΓΓ−Γ−Γ

=Γ−Γ+

=11

1 *

in(VSWR)Lout

Lout

b

b

ΓΓ−Γ−Γ

=Γ−Γ+

=11

1 *

out(VSWR)

Page 16: RF Amplifier

16

Input, Output Reflection CoefficientsInput, Output Reflection Coefficients

• If S12 ≠0, Γin(Γout )is a function of ΓL (ΓS) • Instability of Γin, Γout• Usually, high speed active devices have magnitudes of S11, S22

close to 1. • If ΓL( ΓS) is also highly reflective and certain phase condition is

satisfied, magnitude of Γin ( Γout) may become larger than 1 →amplifier oscillates

L

L

L

Lin S

SSSSS

Γ−∆Γ−=

Γ−Γ+=Γ

22

11

22

211211 11

S

S

S

Sout S

SSSSS

Γ−∆Γ−=

Γ−Γ+=Γ

11

22

11

211222 11

21122211 SSSS −=∆

Page 17: RF Amplifier

17

Simplified Amplifier NetworkSimplified Amplifier Network

• Transistor S parameters are given • |ΓS|≤1 for all passive ZS, |ΓL|≤1 for all passive ZL

• Amplifier design is simply to choose source and load impedance ZS, ZL to achieve a desired power gain avoiding oscillation

Transistor[S]

)( LL ZΓ)( outout ZΓ)( inin ZΓ)( SS ZΓ

ZZZZSSSS

VsVsVsVs

ZZZZLLLL

Page 18: RF Amplifier

18

Amplifier Gain in Terms of S ParametersAmplifier Gain in Terms of S Parameters

• Power– Pavs : power available from source, function of source impedance– Pin : power delivered to transistor– Pavn: power available from transistor output– PL:power delivered to load, function of load impedance

• Transducer power gain GT =PL/Pavs (function of ΓS , ΓL)• Available power gain GA=Pavn/Pavs (function of ΓS)• Operating power gain GP= PL/Pin (function of ΓL)• Measurements

– usual power measurement setup gives GT since signal source indicates Pavs, power meter reads PL

– VNA |S21|2 corresponds to GT for ΓS= ΓL=0

SS

2S

avs Zoffunction ,)8Re(Z

VP =

Page 19: RF Amplifier

19

Derivation of Transducer Power GainDerivation of Transducer Power Gain

[ ]S

a1

b1ZS

ZL

a2

b2

)( SS ZΓ ( )in inZΓ ( )L LZΓ( )out outZΓ

Page 20: RF Amplifier

20

Transducer Power Gain GTransducer Power Gain GTT

2 2 221

211 22 12 21

2 22

212 222

2 22

212 211

(1 | | ) | | (1 | | )| (1 )(1 ) |

1 | | 1 | | | ||1 | |1 |

1 | | 1 | | | ||1 | |1 |

S LT

S L S L

S L

in S L

S L

S L out

SGS S S S

SS

SS

− Γ − Γ=− Γ − Γ − Γ Γ

− Γ − Γ=− Γ Γ − Γ

− Γ − Γ=− Γ − Γ Γ

Page 21: RF Amplifier

21

Available Power Gain GAvailable Power Gain GA, A, Operating Power Gain GOperating Power Gain GTT

*

*

22

212 211

22

212 222

1 | | 1| | ||1 | 1 | |

Function of source impedanceConjugately matched output

Useful for LNA design

1 1 | || | |1 | | |1 |

Function of load impe

L out

S in

SA T

S out

A

LP T

in L

P

G G SS

G

G G SS

G

Γ =Γ

Γ =Γ

− Γ= =− Γ − Γ

− Γ= =− Γ − Γ

danceConjugately matched input

Useful for low input VSWR design

Page 22: RF Amplifier

22

ProblemsProblems

• An RF amplifier has the following s-parameters: S11=0.3 ∠ -70°, S21=3.5∠ 85 °, S12=0.2 ∠ -10 °, S22=0.4 ∠ -45 °. The system is shown below. Assuming reference impedance (used for measuring s-parameters) Zo=50Ohm, find:

• (1) Find Γs, ΓL, Γin, Γout

• (a) GT, GA, GP.• (b) PL, PA, Pinc

Amplifier

2221

1211

SSSS ZL=73Ω

40Ω

Page 23: RF Amplifier

23

Stability Stability

• Unconditional Stability– for any |ΓS|, |ΓL|≤1 ⇒ |Γin|, |Γout|≤1

• Simple measure of stability →Roulette Stability Factor K

• if K<1 and |∆|<1, potentially unstable– for some |ΓS|, |ΓL|≤1 ⇒ |Γin|, |Γout|≥1– stability depends on ZS and ZL

– you should find stable ZS and ZL

• if -1 < K<0 , unstable for almost values of ZS and ZL

2 2 211 22

11 22 12 2112 21

1 | | | | | | 1, | | 1, where 2 | |

S SK S S S SS S

− − + ∆= > ∆ < ∆ = −

Page 24: RF Amplifier

24

Simultaneous Conjugate MatchingSimultaneous Conjugate Matching

• Only if unconditionally stable, simultaneous conjugate matching yields maximum gain– ΓS

* =Γin(ΓL), ΓL* =Γout(ΓS)

– Solution ΓMS, ΓML are little bit complicated. CAD will help you.

• Under simultaneous conjugate matching condition – GTmax = GPmax = GAmax

221Tmax

12

| | ( 1)| |SG K KS

= − −

* 111

22

* 222

11

1

1

Ls

L

sL

s

SS

SS

− ∆ΓΓ = Γ =− Γ

− ∆ΓΓ = Γ =− Γ

Page 25: RF Amplifier

25

Stability CirclesStability Circles

• Potentially Unstable(Conditional Stability)– find stable ZS and ZL using stability circle

• Input (Source) Stability Circle– locus of ΓS on Smith chart producing |Γout|=1– if |S11|<1, ZS in the region including origin(ZS=Z0) is stable source impedance

• Output (Load) Stability Circle– locus of ΓL on Smith chart producing |Γin|=1– if |S22|<1, ZL in the region including origin(ZS=Z0) is stable load impedance

• You can easily draw stability circle using CAD

Page 26: RF Amplifier

26

Load Stability Load Stability Circle(LSCCircle(LSC))

( )22

22

211222

22

**1122

22

211211 1

1

DSSS

DSDSS

SSSS

L

L

L

−=

−−Γ⇒

=Γ−Γ+

LLL RC =−Γ⇒ Load stability circle

Center of circle Radius of circle

Re

Im

RLCL

0

From

(2)

plane LΓ

Page 27: RF Amplifier

27

Source Stability Source Stability Circle(SSCCircle(SSC))

( )22

11

211222

11

**2211

22

211222 1

1

DSSS

DSDSS

SSSS

s

s

s

−=

−−Γ⇒

=Γ−Γ+

sss RC =−Γ⇒ Source stability circle

Center of circle Radius of circle

Re

Im

RsCs

0

From

(3)

planeSΓ

Page 28: RF Amplifier

28

Stability RegionsStability Regions

• The source and load stability circles only indicate the value of Γs and ΓL where |Γ2 | = 1 and |Γ1 | = 1. We need more information to show the stability regions for Γ s andΓL.

• For example for LSC, when ΓL =0, |Γ1 | = |S11|.• Let the LSC does not encircle S11=0 point. If |S11| < 1 then

ΓL =0 is a stable point, else if |S11| > 1 then ΓL=0 is an unstable point.

LSC

|S11|<1

StableRegion LSC

|S11|>1

Page 29: RF Amplifier

29

Stability Region Cont...Stability Region Cont...

• Let the LSC encircles S11=0 point. Similarly if |S11| < 1 then ΓL =0 is an stable point, else if |S11| > 1 then ΓL=0 is an unstable point.

• This argument can also be applied for SSC.

LSC

|S11|<1

LSC

|S11|>1

StableRegion

Page 30: RF Amplifier

30

Summary for Stability RegionSummary for Stability Region

• For both Source and Load reflection coefficients (Γs and ΓL ) :

LSC or SSC

|S11| or |S22| <1

LSC or SSC

|S11| or |S22| >1

LSC or SSC

|S11| or |S22| <1

LSC or SSC

|S11| or |S22| >1

Page 31: RF Amplifier

31

Unconditionally Stable AmplifierUnconditionally Stable Amplifier

• There are times when the amplifier is stable for all passive source and load impedance.

• In this case the amplifier is said to be unconditionally stable.

• Assuming |S11| > 1 and |S22| < 1, the stability region would look like this:

LSC

|S11|>1

ΓL can occupy any point in the Smith chart

SSC

|S22|<1

Γs can occupy any point in the Smith chart

Page 32: RF Amplifier

32

Problem 2Problem 2

• Use the s-parameters of the amplifier in Problem 1, draw the load and source stability circles and find the stability region.

SSC LSC

Page 33: RF Amplifier

33

Summary for Stability CheckSummary for Stability Check

Set frequency range

Get S-parameters withinfrequency range

K factor > 1and |∆| < 1 ?

Amplifier Unconditionally Stable

Yes

Draw SSC and LSC

No

Find |S11| and |S22|

Circles intersectSmith Chart ?

Amplifier is conditionallystable, find stability regions

Yes

No Amplifier isnot stable

Start

End

Page 34: RF Amplifier

34

Stabilization MethodsStabilization Methods

• |Γin | > 1 and |Γout | > 1 can be written in terms of input and output impedances:

• This implies that Re[Zin] < 0 or Re[Zout] < 0.• Thus one way to stabilize an amplifier is to add a series

resistance or shunt conductance to the port. This should made the real part of the impedance become positive.

1 and 1in o out oin out

in o out o

Z Z Z ZZ Z Z Z

− −Γ = > Γ = >+ +

Page 35: RF Amplifier

35

Stabilization Methods Cont...Stabilization Methods Cont...

2 - port Network

Z1

SourceNetwork

LoadNetwork

Z1+R1’

2221

1211

SSSS

R1’ R2’

Z2 Z1+R1’

2 - port Network

Y1

SourceNetwork

LoadNetwork

Y1+G1’

2221

1211

SSSS

G1’ G2’

Y2 Y2+G2’

Page 36: RF Amplifier

36

Example Example -- SS--parameters measurement and stability parameters measurement and stability analysisanalysis

DCDC1

DC

S_ParamSP1

Step=1.0 MHzStop=1.0 GHzStart=50.0 MHz

S-PARAMETERS

CCc2C=470.0 pF

CCc1C=470.0 pFTerm

Term1

Z=50 OhmNum=1

TermTerm2

Z=50 OhmNum=2

LLb2

R=L=330.0 nH

LLb1

R=L=330.0 nH

LLc

R=L=330.0 nH

RRb1R=10.0 kOhm

RRb2R=4.7 kOhm

CCeC=470.0 pF

RReR=100 Ohm

pb_phl_BFR92A_19921214Q1

V_DCSRC1Vdc=5.0 V

Page 37: RF Amplifier

37

Example Cont...Example Cont...

m1freq=600.0MHzK=0.956

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0 1.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.8

1.2

freq, GHz

K

m1

D

Plotting K and ∆ versus frequency(from 50MHz to 1.0GHz):

This is the frequencywe are interested in

Amplifier isconditionallystable

Page 38: RF Amplifier

38

Example Example -- Viewing SViewing S1111 and Sand S2222 at f=600MHzat f=600MHz

freq600.0MHz

S(1,1)0.263 / -114.092

S(2,2)0.491 / -20.095

Page 39: RF Amplifier

39

Example Cont...Example Cont...

indep(SSC) (0.000 to 51.000)

SS

C

indep(LSC) (0.000 to 51.000)

LS

C

Since |S11| < 1 @ 600MHz Since |S22| < 1 @ 600MHz

Page 40: RF Amplifier

40

ExampleExample

• The S-parameters for a BJT at a particular bias point and f=750MHz are:

• S11 = 0.76<38o

• S21 = 2.35<33o

• S12 = 0.04<-52o

• S22 = 0.66<-42o

• Check the transistor stability, plot the Source and Load Stability Circles and determine the stability regions.

Page 41: RF Amplifier

41

Transistor Power GainTransistor Power Gain

• Used as a figure of merit for transistor• Independent of source and load impedance• Classification

– K>1, MAG(Maximum Available Gain)

– K<1, MSG(Maximum Stable Gain)

– Unilateral Power Gain U :MAG obtained using neutralization

||||MSG

12

21

SS=

)1(||||MAG 2

12

21 −−= kkSS

)/Re(2|/|2|1/|

12211221

21221

SSSSkSSU−

−=

K

MAG(6dB/octave)MSG

3dB/oct

f [log]

[dB]

Page 42: RF Amplifier

42

Narrow Band Amplifier DesignNarrow Band Amplifier Design

• Unilateral Design– assume S12=0– approximate design– use unilateral transducer power gain GTU=GT|S12=0

– detailed design procedure (Refer to Gonzales)– not practical, just shows attainable variable range of GT

• Bilateral Design(if S12 is not negligible)– Simultaneous conjugate matching design

• valid for k>1(unconditionally stable), fixed gain GTMAX

– GP or GA design• if unconditionally stable(k>1) and for gain other than GTMAX

• if potentially unstable(k<1)

Page 43: RF Amplifier

43

Operating Power Gain DesignOperating Power Gain Design

• Mismatched output, matched input • (VSWR)in=1, (VSWR)out>1, • Constant GP circle on ΓL plane

– locus of ΓL(ZL) that yields constant GP at a frequency – GP is only a function of ΓL(ZL)

• Unconditionally stable case– GPMAX exists at a single point of ΓL(ZL)– Design procedure for a gain less than GPMAX

① Determine GP

② Draw GP circle and select the desired ΓL

③ Matched source impedance is ΓS= Γin*

221 12| / | ( 1)PMAXG S S K K= − −

Page 44: RF Amplifier

44

Design Procedure Using GDesign Procedure Using GP P (potentially unstable)(potentially unstable)

① Determine GP(Gp<MSG)② Draw GP circle ③ Draw load stability circle(Γin stability)④ Select ΓL on the GP circle far from stability circle⑤ Matched source impedance is ΓS= Γin

*

⑥ Draw input stability circle(Γout stability)– Check if ΓS placed in the stable region– If stable, design completed– If unstable. go to step 4 and select new ΓL

⑦ If input match is made, GP becomes GT

Page 45: RF Amplifier

45

GGP P circle when K<1 circle when K<1

Page 46: RF Amplifier

46

Available Power Gain DesignAvailable Power Gain Design

• Mismatched input, matched output • (VSWR)in>1, (VSWR)out=1• Constant GA circle on Γ S plane • Design procedures are equivalent to that of using GP gain except that

Γs replaces ΓL

• If output match is made, GA becomes GT

Page 47: RF Amplifier

47

NoiseNoise

• Random variation of current or voltage

• White and Color noise• Thermal noise(white)

– PSD(Power Spectral Density)=kT, – k Boltzman constant ,T Kelvin Temperature – Pn at 290°K, PSD =-174dBm/Hz– Spectrum analyzer with 1MHz resolution bandwidth shows noise floor

-114dBm/MHz

• Shot noise(white)– PSD= q electron charge, I dc current

0)(lim == ∫+

∞→dttVV

Tt

tn

Tn

constant== ∫+

∞→dttVv

Tt

tn

Tn

22 )]([lim 2, nrmsn vv =

qIin 22 =

Page 48: RF Amplifier

48

NoiseNoise

• Flicker noise– PSD=Γ/fα, Γ: proportional constant, α≅ 1 Other noise source

• Lorentz noise– PSD=kτ/(1+(ωτ)2)

Page 49: RF Amplifier

49

Thermal noise of ResistanceThermal noise of Resistance

• Available thermal noise power Pn=kTB• Equivalent circuit of noisy R

– can deliver the same available noise power to matched load R– Pn = v2

n,rms/4R=i2n,rmsG/4

Noisy R at T

Noiseless R

Vn,rms

G=1/Rin,rms

Equivalent Noise Voltage Source Model

kTBRvv nrmsn 42, ==

Equivalent Noise Current Source Model

kTBGii nrmsn 42, ==

yield same available noise power Pn=kTB

Page 50: RF Amplifier

50

Equivalent Noise Temperature TEquivalent Noise Temperature Tee

• Te equivalent noise temperature• Passive network Te

– ambient temperature

• Active network Te– not physical temperature– can be much larger than the ambient temperature

NoisyNetworks

Pa[available noise power]

R at Te

Pa=kTe

Equivalent Thermal Noise Model

Page 51: RF Amplifier

51

Noise FactorNoise Factor

• Noise Factor F

• Reference input noise power Ni=kToB, To= 290°K• Noise Figure NF=10logF• Ex: LNA Te=464 °K(not real Temp), F=2.16, NF=4.15dB

+

-

Rs at Ts

Vs

Noisy 2 Port

GA

s

e

i

addedi

TT1

NInput) to ReferredPower Noise (AddedN Power) Noise(Input N

+=+

•Available output noise power Pno=kTSBGA+Pn,added=kTSBGA+KTeBGA

=kBGATS(1+Te/TS)Te: equivalent noise temperature of 2 port network

referred to input

power noiseoutput oo

i

o

i

i

o

i

i

i

Ao NSNRSNR

SS

NN

SS

NGNFcf ,/)( ===

Page 52: RF Amplifier

52

NF of Cascaded NetworkNF of Cascaded Network

• NF of 1st stage is important• Gain of 1st stage should be high enough to suppress the

2nd stage noise• N cascaded network

G1F1

G2F2

NiNo

1

21 G

1FFF

,

−+=

−+−=+=+= 222112221121 )1()1(/1 GFNGGFNGNGGNN

NGGNF iio

i

o

G1, G2 available gain of each stageN1, N2 input referred added noise power of each stage

....G1)/G(F1)/G(FFF 213121 +−+−+=

Page 53: RF Amplifier

53

CLASSICAL TWOCLASSICAL TWO--PORT NOISE THEORYPORT NOISE THEORY

Noisy 2 portSYis is Noiseless 2 portSY+-

en

in→→→→

( )

( ) ( )

22

2

2 22 2 2

2 2

2 2 2

2 22

, ,

1

, ,4 4 4

1 1

s n s nn c u c c n

s

s u c s n u c s n

s s

n u sn u s

u c s c s nu c s n

s s

i i Y eF i i i i Y e

i

i i Y Y e i Y Y eF

i i

e i iR G GkT f kT f kT f

G G G B B RG Y Y RF

G G

+ += = + =

+ + + + += = +

≡ ≡ ≡∆ ∆ ∆

+ + + ++ + = + = +

Page 54: RF Amplifier

54

CLASSICAL TWOCLASSICAL TWO--PORT NOISE THEORYPORT NOISE THEORY

( ) ( )

2

2min

2 2

min

,

1 2 1 2

us c opt s c opt

n

un opt c n c c

n

ns opt s opt

s

GB B B G G GR

GF R G G R G GR

RF F G G B BG

= − = = + =

= + + = + + +

= + − + −

Page 55: RF Amplifier

55

Noise Figure of 2 Port NetworkNoise Figure of 2 Port Network

• Noise factor of 2 port network is dependent on the source admittance• Noise 4 parameters are dependent on frequency and bias conditions• Manufacturer provides noise 4 parameters

])()[( 22min optsopts

s

n BBGGGRFF −+−+=

Fmin minimum noise factorYs=Gs+jBs source admittanceYopt=Gopt+jBopt source admittance at FminRn equivalent input noise resistance of 2 port networkNoise 4 parameters : Fmin, Yopt, Rn

in,rms

YsNoisy 2 Port

Network

Page 56: RF Amplifier

56

Noise CircleNoise Circle

• Rn, Γopt, Fmin are device parameters and constants if bias and frequency are fixed

• Locus of Γs on the Smith chart for a given noise figure Fi is a circle→Constant Noise Figure Circle

• CAD will automatically draw these family of circles

onn

opts

optsn

ZRr

rFF

/

|1|)||1(

||422

2

min

=

Γ+Γ−

Γ−Γ+=

2min |1|4 opt

n

ii r

FFN Γ+−

= where,i

iioptFi

i

optFi N

N)N|-|Γ(R

NC

+

+=

=1

1

1

22

Radius Center

Page 57: RF Amplifier

57

LNA DesignLNA Design

• Impossible to achieve maximum gain and minimum noise figure simultaneously

• Compromise between Gain, NF, and VSWR• Potentially unstable bilateral design① Determine GA(<MSG)② Draw source stability circle, GA circle, NF circle on Γs plane③ Select Γs.. close to Γopt and far from source stability circle④ ΓL= Γ*

out, automatically VSWRout=1⑤ Output stability check (|Γin| <1)⑥ Input is always mismatched. Therefore always (VSWR)in>1

Page 58: RF Amplifier

58

Output stability circle

Input stability circle

20dB GA circle

2dB noise circle

•S parameters S11=0.641/-171 °S21=5.89/9.6 °S12=0.057/163 °S22=0.572/-95.7 °

•Stabilityk=0.617MSG=20.1dBpotentially unstable

•Noise ParametersNFmin=1.5dBΓopt=0.58/151 °Rn=7.5Ω