information theoretic cryptography introduction

47
Information Theoretic Cryptography Introduction Benny Applebaum Tel Aviv University BIU Winter-School of Information-Theoretic Cryptography February 2020

Upload: others

Post on 18-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Information Theoretic Cryptography Introduction

Information Theoretic Cryptography

Introduction

Benny Applebaum

Tel Aviv University

BIU Winter-School of Information-Theoretic Cryptography

February 2020

Page 2: Information Theoretic Cryptography Introduction

Communication and Computation in the presence of adversary

Honest party Honest party

Adversary

Computational Cryptography

Page 3: Information Theoretic Cryptography Introduction

• Encryption

• Authentication

Honest party Honest party

Adversary

Computational Cryptography

Page 4: Information Theoretic Cryptography Introduction

• Commitments

• Coin Tossing

• ZK-Proofs

• Secure Computation

Adversary

Computational Cryptography

Page 5: Information Theoretic Cryptography Introduction

Exploit computational limitation to achieve privacy/authenticity/…

AdversaryPoly-bounded

Computational Cryptography

Page 6: Information Theoretic Cryptography Introduction

Information-Theoretic Cryptography

Exploit information gaps to achieve privacy/authenticity/…

AdversaryComputationally unbounded

Page 7: Information Theoretic Cryptography Introduction

Exploit information gaps to achieve privacy/authenticity/…

AdversaryComputationally unbounded

Information-Theoretic Cryptography

Page 8: Information Theoretic Cryptography Introduction

AdversaryComputationally unbounded

Exploit information gaps to achieve privacy/authenticity/…

Information-Theoretic Cryptography

Page 9: Information Theoretic Cryptography Introduction

(Shallow) Comparison

Computational Cryptography

• Comp-limited adversary

• Unproven assumptions

• Composability issues

• Complicated def’s

• Allows magic (PRG/PKC/OT/)

• Short keys

• May be comp. expensive

IT Cryptography

• Comp-unbounded adversary

• Unconditional (no assumptions)

• Good closure properties

• Easy to define and work with (concretely)

• No magic (useless w/o information gaps)

• Long keys/large communication

• Typically fast (for short messages)

Page 10: Information Theoretic Cryptography Introduction

Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic

The Crypto TowerAssumption

Page 11: Information Theoretic Cryptography Introduction

Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic

The Crypto Tower

One-time pad

AES

RSA

OT

Obfuscation

Time (per-bit)

Page 12: Information Theoretic Cryptography Introduction

Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic

The Crypto Tower: Realistic View

Page 13: Information Theoretic Cryptography Introduction

Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic

The Crypto Tower: Realistic View

GGMGLHILL

DDH-KARSA-OAEPFDH-RSA

GMW-MPC GMW-ZK Yao-GC

MMAPS-based obfuscation

Page 14: Information Theoretic Cryptography Introduction

Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic

The best of all worlds

Problem

Page 15: Information Theoretic Cryptography Introduction

Obfustopia

Secure Computation

Public-Key

Symmetric

Information Theoretic

The best of all worlds

Problem

Problem

Page 16: Information Theoretic Cryptography Introduction

Two Case Studies:

Perfect Encryption & Error Correcting Codes

Image credits:

Photo: CC BY SA 4.0, by DobriZheglov, https://commons.wikimedia.org/wiki/File:Claude_Shannon_1776.jpgAli Baba's cave: CC BY 2.5, by Dake, https://commons.wikimedia.org/wiki/File:Zkip_alibaba{1,2,3}.png

Page 17: Information Theoretic Cryptography Introduction

Case Study 1: Perfect Encryption [Shannon 48]

Alice Bob

Message 𝑀 ∈ 0,1 𝑛

Page 18: Information Theoretic Cryptography Introduction

Case Study 1: Perfect Encryption [Shannon 48]

Secrecy: For every 𝑋, 𝑌 ∈ 0,1 𝑛 EK(𝑋) ≡ EK(𝑌)

where 𝐾 ∈𝑅 𝑲

𝑀 ∈ 0,1 𝑛

Private key 𝐾 ∈ 𝑲

Ciphertext EK(𝑀)Encryption Decryption

Private key 𝐾 ∈ 𝑲

𝑀 ∈ 0,1 𝑛

Page 19: Information Theoretic Cryptography Introduction

Perfect SecrecySecrecy: For every 𝑋, 𝑌 ∈ 0,1 𝑛 EK(𝑋) ≡ EK(𝑌)

where 𝐾 ∈𝑅 𝑲

∀ 𝐶, Pr𝐾𝐸𝐾 𝑋 = 𝐶 = Pr

𝐾𝐸𝐾 𝑌 = 𝐶

Page 20: Information Theoretic Cryptography Introduction

Statistical SecrecySecrecy: For every 𝑋, 𝑌 ∈ 0,1 𝑛 EK(𝑋) ≈ EK(𝑌)

where 𝐾 ∈𝑅 𝑲

∀ set of ciphertexts 𝑆, Pr𝐾𝐸𝐾 𝑋 ∈ 𝑆 ≈𝛿 Pr

𝐾𝐸𝐾 𝑌 ∈ 𝑆

Page 21: Information Theoretic Cryptography Introduction

Statistical SecrecySecrecy: For every 𝑋, 𝑌 ∈ 0,1 𝑛 EK(𝑋) ≈ EK(𝑌)

where 𝐾 ∈𝑅 𝑲

∀ unbounded 𝐴𝑑𝑣, Pr𝐾𝐴𝑑𝑣 𝐸𝐾 𝑋 = 1 − Pr

𝐾𝐴𝑑𝑣 𝐸𝐾 𝑌 = 1 ≤ 𝛿

Page 22: Information Theoretic Cryptography Introduction

Computational Secrecy [GM’82]Secrecy: For every 𝑋, 𝑌 ∈ 0,1 𝑛 EK(𝑋) ≈ EK(𝑌)

where 𝐾 ∈𝑅 𝑲

∀ comp − bounded 𝐴𝑑𝑣, Pr𝐾𝐴𝑑𝑣 𝐸𝐾 𝑋 = 1 − Pr

𝐾𝐴𝑑𝑣 𝐸𝐾 𝑌 = 1 ≤ 𝛿

Page 23: Information Theoretic Cryptography Introduction

One-Time Pad is Perfectly Secure

Message 𝑀 ∈ 0,1 𝑛

Private key 𝐾 ∈𝑅 0,1 𝑛Private key 𝐾 ∈𝑅 0,1 𝒏

EK 𝑀 = 𝐾⊕𝑀

∀𝑋, 𝑌, EK(𝑋) ≡ EK(𝑌)

DK 𝐶 = 𝐶 ⊕𝐾𝑮

𝑮 𝑮

+

−Encryption Decryption

Page 24: Information Theoretic Cryptography Introduction

Proof∀𝑋, 𝑌, EK(𝑋) ≡ EK(𝑌)

Claim: ∀ 𝑋, 𝐶, Pr𝐾𝐸𝐾 𝑋 = 𝐶 = 1/|𝐺|

Pr𝐾𝐾 +𝑀 = 𝐶 = Pr

𝐾𝐾 = 𝐶 −𝑀 = 1/|𝐺|

Put differently: For every 𝑋 the mapping 𝐾 ↦ 𝐸𝐾 𝑋

is a bijection from randomness space to ciphertext space

In fact, non-degenerate linear mapping

Page 25: Information Theoretic Cryptography Introduction

Efficiency Measures

Alice Bob

Message 𝑀 ∈ 0,1 𝑛

Private key 𝐾 ∈𝑅 0,1 𝑛 Private key 𝐾 ∈ 0,1 𝒏

EK 𝑀 = 𝐾⊕𝑀 DK 𝐶 = 𝐶 ⊕𝐾+ −

Communication, Randomness, Round complexity

• OTP: Optimal !

Page 26: Information Theoretic Cryptography Introduction

Riddle: Broadcast Encryption [Fiat-Naor94]

Alice

Bob1

Message 𝑀 ∈ {0,1}Subset 𝑆

Keys 𝐾1, … , 𝐾𝑁

key 𝐾1

EK 𝑀, 𝑆

Bob N

key 𝐾𝑁

Subset S Can decrypt iff𝒊 ∈ 𝑺Bob 𝒊

key 𝐾𝑖

Page 27: Information Theoretic Cryptography Introduction

Riddle: Broadcast Encryption [Fiat-Naor94]

Alice

Bob1

Message 𝑀 ∈ {0,1}Subset 𝑆

Keys 𝐾1, … , 𝐾𝑁

key 𝐾1

EK 𝑀, 𝑆

Communication?

Randomness (length of each key)?

Best tradeoffs?

Bob N

key 𝐾𝑁

Subset S Can decrypt iff𝒊 ∈ 𝑺Bob 𝒊

key 𝐾𝑖

Page 28: Information Theoretic Cryptography Introduction

Case Study 2: Error Correction/Detection [Hamming47, Shannon48]

Codeword 𝐶 = (𝐶1, … , 𝐶𝑁)

Encode Decode 𝑀 ∈ 0,1 𝑛𝑀 ∈ 0,1 𝑘

Can tamper (erase/corrupt)

up to 𝜹-fraction of symbols

or ⊥

Shannon: Solutions with optimal communication overhead

• Random linear mapping is optimal [Varshamov]

• Later efficient constructions

Page 29: Information Theoretic Cryptography Introduction

Unified view: Distributed Storage

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐶1

Bob N

𝐶𝑁

Encoding

𝐶𝑖

Coding setting:

Adv. actively corrupts/erase servers

Decoding𝑀 ∈ 0,1 𝑘

Page 30: Information Theoretic Cryptography Introduction

Unified view: Distributed Storage

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐶1

Bob N

𝐶𝑁

Encoding

𝐶𝑖

Secrecy setting:

Adversary passively corrupts servers

Decoding𝑀 ∈ 0,1 𝑘

Page 31: Information Theoretic Cryptography Introduction

Unified view: Distributed Storage

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐾

𝐸𝐾 𝑀 = 𝐾 +𝑀

Encoding

Secrecy setting:

Adversary passively corrupts servers

Decoding𝑀 ∈ 0,1 𝑘

Page 32: Information Theoretic Cryptography Introduction

Unified view: Distributed Storage

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐾1

Bob N

𝑀 +𝐾1 +⋯+ 𝐾𝑁

Encoding

𝐾𝑖

Secrecy setting:

Adversary passively corrupts servers

Decoding𝑀 ∈ 0,1 𝑘

Page 33: Information Theoretic Cryptography Introduction

Can we achieve privacy & resiliency?

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐾1

Bob N

𝑀 +𝐾1 +⋯+ 𝐾𝑁

Encoding

𝐾𝑖

Secrecy setting:

Adversary passively corrupts servers

Decoding𝑀 ∈ 0,1 𝑘

Page 34: Information Theoretic Cryptography Introduction

Secret-Sharing (Gilad’s talk)

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐶1

Bob N

𝐶𝑁

Encoding

𝐶𝑖

Threshold setting:

Corruption bounds 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑇𝑒𝑟𝑎𝑠𝑢𝑟𝑒 , 𝑇𝑝𝑎𝑠𝑠𝑖𝑣𝑒

Decoding𝑀 ∈ 0,1 𝑘

Page 35: Information Theoretic Cryptography Introduction

Secret-Sharing (Gilad’s talk)

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐶1

Bob N

𝐶𝑁

Encoding

𝐶𝑖

Threshold setting:

Corruption bounds 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑇𝑒𝑟𝑎𝑠𝑢𝑟𝑒 , 𝑇𝑝𝑎𝑠𝑠𝑖𝑣𝑒

Decoding𝑀 ∈ 0,1 𝑘

Page 36: Information Theoretic Cryptography Introduction

General Secret-Sharing (Benny’s talk)

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐶1

Bob N

𝐶𝑁

Encoding

𝐶𝑖

General corruption patterns:

• Related to Broadcast encryption problem

• Huge gaps between LBs and UBs

Decoding𝑀 ∈ 0,1 𝑘

Page 37: Information Theoretic Cryptography Introduction

Private Information Retrieval (Yuval+Klim)

Alice

Message 𝑀 ∈ 0,1 𝑘

𝐶1

Bob N

𝐶𝑁

Encoding

𝐶𝑖 Decoding𝑀 ∈ 0,1 𝑘

Page 38: Information Theoretic Cryptography Introduction

Private Information Retrieval (Yuval+Klim)

Bob N

𝑀

Alice

Decoding

Page 39: Information Theoretic Cryptography Introduction

Private Information Retrieval (Yuval+Klim)

𝑀

Bob N

𝑀

𝑀

𝑀[𝑖]

Alice

index 𝑖 ∈ {1,… , 𝑘}

Hide access pattern i

Page 40: Information Theoretic Cryptography Introduction

Private Information Retrieval (Yuval+Klim)

Bob N

𝑀[𝑖]

Alice

index 𝑖

Hide access pattern i

• Power of non-linearity

• Huge gaps between LBs and UPs

Page 41: Information Theoretic Cryptography Introduction

Computation: Beyond Storage

𝑥1

𝑥2 𝑥3

𝑥4

𝑥5

𝑥6

TrustedParty

Page 42: Information Theoretic Cryptography Introduction

Consensus (Ittai’s talk) Achieving Agreement at the presence of failures/corruptions/delays

1

56

3

2

4

Only correctness requirement No privacy requirements

1

1

1

1

Page 43: Information Theoretic Cryptography Introduction

General Secure Computation (Yuval’s talk)Compute joint function of the parties inputs

𝑥1

𝑥2 𝑥3

𝑥4

𝑥5

𝑥6

𝐹(𝑥1, … , 𝑥5)

Passive adversaries

• Privacy

Active adversaries

• Correctness & Privacy

General Functions

Page 44: Information Theoretic Cryptography Introduction

General Secure Computation (Yuval’s talk)Compute joint function of the parties inputs

𝑥1

𝑥2 𝑥3

𝑥4

𝑥5

𝑥6

𝑥1 +⋯+ 𝑥5

Challenge:

Design 1-private protocol for sum over G

Page 45: Information Theoretic Cryptography Introduction

Proofs in Non-Interactive Setting (Niv’s Talk)

𝑥1

𝑥2 𝑥3

𝑥4

𝑥5

𝑥6

𝐹(𝑥1, … , 𝑥5)=1

prover

verifiers

Page 46: Information Theoretic Cryptography Introduction

𝑥1

𝑥2 𝑥3

𝑥4

𝑥5

𝑥6

𝐹(𝑥1, … , 𝑥5)

receiver

senders

Randomized Encoding & Constant-Round MPC (Benny’s Talk)

Page 47: Information Theoretic Cryptography Introduction

Summary: Information Theoretic Cryptography

• Cool questions

• Exciting connections with• Coding, Information-theory, Communication Complexity,

Computational complexity, Theory of Computation

• Relevant to computational crypto as well

• Many open problems

• New conference: ITC 2020, June 17-19, 2020 in Boston• PC: Daniel Wichs, General Chairs: Adam Smith & Yael Kalai

Have a Good Time!