instrumentation for solid-state dnp · vacuum electronic devices (veds): gyrotron klystron (eio,...

73
Innovation with Integrity Instrumentation for Solid-State DNP Melanie Rosay, Ph.D., Hyperpolarization Product Manager Winter School on Biomolecular SSNMR, Stowe, January 12, 2018 Stowe in October

Upload: others

Post on 31-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Innovation with Integrity

Instrumentation for Solid-State DNP

Melanie Rosay, Ph.D., Hyperpolarization Product Manager

Winter School on Biomolecular SSNMR, Stowe, January 12, 2018

Stowe in October

Page 2: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Outline

(1) NMR and sensitivity

(2) Microwave sources

Gyrotrons for DNP at 263-593 GHz

263 GHz klystron

Solid State Sources

(3) Low-temperature DNP MAS probes

(4) NHMFL 395 GHz solids and solution DNP

(5) Grenoble CEA He MAS

(6) UCSB 200 GHz DNP and EPR

(7) Additional references

Page 3: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

NMR and Sensitivity: the need for Hyperpolarization

Relatively low sensitivity in NMR and MRI due to small spin

polarization at thermal equilibrium

Boltzmann Polarization at 14 T

0.00001

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100 1000

Po

lari

zati

on

Temperature (K)

electron

1H

13C

Tk

BP

2

0

in high T limit:

Page 4: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Increasing the Sensitivity of NMR

• Spectrometer and probe optimization

• Increase magnetic field (B0)

• Lower temperature (T)

• Improve RF signal pickup and transmission efficiency

• Reduce thermal noise

• NMR method development

• FT, magic angle spinning, indirect detection, fast MAS...

Tk

BP

2

0

Page 5: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Increase Sensitivity by pushing spins away from thermal equilibrium: Hyperpolarization:

• Dynamic Nuclear Polarization (DNP)

• Solids DNP

• Dissolution DNP

• Ultra low temperature (ULT/Brute Force)

• Optical pumping (e.g. Xenon)

• Para Hydrogen

Increasing the Sensitivity of NMR

Hyperpolarization

Page 6: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Dynamic Nuclear Polarization

• A. W. Overhauser predicted that saturation of EPR signal of metals would result in highly enhanced NMR signal: Phys. Rev. (1953) 92, 411-415.

• T. Carver and C.P. Slighter measured nuclear polarization enhancement of ~ 100 in Lithium metal

Phys. Rev. (1953) 92, 211

Phys. Rev. (1956) 975-980

Li7 resonance enhanced by electron saturation

Page 7: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Solids DNP: Very Brief History

• Magnetic ordering at low temperature (< 1 K) (1970’s)

• Initial applications to solid-state NMR (R.A. Wind, C.S. Yannoni, J. Schaefer, 1980’s-early 1990’s)

• Doped polymers and carbonaceous materials

• DNP frequency ≤ 40 GHz, introduction of DNP with Magic Angle Spinning (MAS)

• Solids DNP experiments at high field (5-18 T) (R.G. Griffin, 1990’s-ongoing)

• Technology and method development

• Applications to biological solids

• Solids DNP experiments 3.4 T/95 GHz for dissolution experiments (J.H. Ardenjkaer-Larsen, K. Golman et. al., 2000’s-ongoing)

• Solids DNP followed by solution NMR

Page 8: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Dynamic Nuclear Polarization (DNP)

0.00001

0.0001

0.001

0.01

0.1

1

0.01 0.1 1 10 100 1000

Po

lari

zati

on

Temperature (K)

electron

1H

13C

DNP

B0

mwaves

100 K

• Transfer polarization from unpaired

electron spins to nuclear spins

e >> n

• Driven by microwave irradiation at

or near EPR frequency

CO

Ca

Cd Cb

C

DNP signal e = 130

at 395 GHz/600 MHz

13C

1H

e-

DEC

CP

Page 9: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Requirements for Solid-State DNP-NMR

(1)Millimeter-wave microwave sources: 1-50 watts in the 250-600 GHz

regime (gyrotron sources)

(2) Low temperature (100 K) multiple resonance NMR probes with MAS

(3) Polarizing agents that are widely applicable and stable

(4) Uncompromised NMR performance

Magnetic Field

EPR/mwave Frequency

EPR Wavelength

1H NMR Frequency

9.4 T 263 GHz 1.14 mm 400 MHz

14.1 T 395 GHz 0.76 mm 600 MHz

18.8 T 527 GHz 0.57 mm 800 MHz

Page 10: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Microwave Sources: wide array of sources up to 95 GHz (W-band)

Graph courtesy of R. Weber, Bruker BioSpin EPR

10 15 20 25 30 40 50 60 70 80 90100 150 200 250 300 400

100

40

20

10

4

2

1

0.4

0.2

0.1

0.04

0.02

Atte

nu

atio

n (

dB

/Km

)

Frequency (Ghz)

H O2

H O2

H O2

O2

O2

Average Atmospheric

Absorption of Millimeter Waves

Q-band

X-band

W-band

Page 11: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices: Gunn and IMPATT diodes

Microwave Sources: High Frequency Options

Graph courtesy of R. Temkin, MIT

For ssNMR applications, also

consider: frequency and power

stability, spectral purity

Page 12: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Vacuum Electronic Devices (VED)

Principle:

• Conversion of electronic beam energy into radiation (electron bunching)

• Amplifiers or oscillators

Electron Tube Components:

• Cathode with heater for electron emission

• Anode to accelerate and focus electron beam

• Magnet to focus electron beam through the tube

• Interaction circuit or cavity

• Generates microwaves

• Collector for spent electron beam

High-Power Microwave Sources and Technologies, Robert J. Barker (Editor) and Edl

Schamiloglu (Editor), Wiley and Sons, New York, NY, 2001.

High-Power Microwave Sources, Victor Granatstein (Editor) and Igor Alexeff (Editor), Artech

House, Norwood, MA, 1987.

Page 13: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Vacuum Electronic Devices (VED)

Linear (slow-wave) devices:

• Klystrons, helix TWTs, coupled-cavity TWTs, etc…

• Circuit walls used to modify dispersion of EM wave to create resonance

• Circuit sizes scale with wavelength

• Very small at high frequencies

• Reduced power capabilities

• Reduced beam current capabilities

Fast wave devices:

• Gyrotrons, peniotrons, carms

• Beam dispersion modified by magnetic field to achieve synchronism

between beam and wave (high order modes)

• Typical transverse circuit dimensions are many times larger than free

space wavelength

• Cathode with heater for electron emission

• Larger sizes lead to higher power capabilities

• Higher beam current

• Reduced wall loading (W/cm2)

Page 14: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Gyrotrons: Typical Operation

• Most commercial gyrotrons are designed for plasma fusion, military, and radar applications

• Typically 140 GHz maximum frequency

• Very high power (kW-MW)

• Occasional use only

• Short pulses

• No stability requirements

– 1% or larger frequency drift common

• No frequency accuracy requirements

CPI 900 kW 140 GHz Gyrotron Tube

Page 15: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Gyrotrons for DNP Applications

• Continuous-wave gyrotrons first introduced for DNP applications by Griffin and Temkin at MIT, USA.

– Initial design and experiments at 140 GHz*

– Followed by 250 and 460 GHz

• Also developed in Japan by Idehara (Fukui) with Fujiwara and Matsuki (Osaka)

– 395 and 460 GHz MIT 460 GHz DNP Gyrotron

* L. R. Becerra et al. J. Magn. Reson. A 1995, 117, 28.

Page 16: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

• DNP with gyrotron

microwave source

• Magic Angle Spinning

• BDPA in polystyrene

• DNP signal

enhancements

“considerably larger than

expected”

1H 13C

MIT Introduction of Gyrotrons for DNP

Page 17: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Gyrotrons for DNP-NMR applications

Gyrotron Schematic

ELECTRON GUN

ANODE

CAVITY

LAUNCHER

MIRRORS

MILLIMETER WAVES

WINDOW

COLLECTOR

ELECTRON BEAM

SUPERCONDUCTING MAGNET

• Second harmonic design for all Bruker gyrotrons

• Cryogen-free magnets for short distance from cavity to window

mc

eB

c

cRF harmonicnn

0

,~

(28 GHz/Tesla)

Page 18: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

395 GHz Tube Design: Cavity Beam Pattern In collaboration with CPI

WINDOW

ELECTRON GUN

MODE

CONVERTER

COLLECTOR

CAVITY

TE10,3 cavity mode

Page 19: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

395 GHz Tube Design: Cavity Modes

WINDOW

ELECTRON GUN

MODE

CONVERTER

COLLECTOR

CAVITY

0

0.05

0.1

0.15

0.2

0.94 0.96 0.98 1 1.02 1.04

TE10,3,1 2nd

395.2 GHz

TE-10,3,1 2nd

TE-7,4,1 2nd

398.7 GHz

TE2,3,1

194.9 GHz

TE5,2,1

205.7 GHz Sta

rt C

urr

en

t (A

)

Normalized Magnetic Field

15 kV

Cavity Modes

Page 20: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

395 GHz Tube Design: Mode Converter

Internal Mode Converter Layout

Transform gyrotron TE cavity mode to a Gaussian beam

WINDOW

CAVITY

SINGLE-ANODE ELECTRON GUN

LAUNCHER

BEAM

TUNNEL

VACION PUMP

MODE CONVERTOR

MOVEABLE MIRROR

COLLECTOR

Page 21: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Gyrotron Beam IR Images

Output Gaussian Beam

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Be

am

Wa

ist (c

m)

y (cm)

measured width (x)

theoretical expansion of design beam

measured width (z)

Page 22: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Gyrotron Final Test and Tuning

Microwave power and frequency

depend on:

• Electron beam current

• Cathode voltage

• Cavity dimensions

• Magnetic field at the cavity

• Magnetic field at the gun

Ou

tpu

t P

ow

er

(W)

0.00

10.0

20.0

30.0

40.0

50.0

60.0

395.150

395.160

395.170

395.180

395.190

395.200

395.210

14.5 15 15.5 16 16.5 17 F

req

ue

nc

y (G

Hz)

Cathode Voltage (kV)

Page 23: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Frequency and Power Stability

• Gyrotron power and frequency must be stable for extended ssNMR experiments

• Aim < 1% fluctuation in DNP-enhanced signal intensity

0

50

100

150

0 10 20 30

DN

P S

ign

al E

nh

ance

me

nt

Microwave Power

0 -200 200 400

Frequency (MHz)

4-amino TEMPO EPR

line (140 GHz)

Microwave irradiation

DNP signal

enhancement

Page 24: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Side Note on NMR Sweep Coils

Graph courtesy of R. Griffin (MIT)

• Most gyrotrons have limited frequency tuning or at least limited tuning with constant output power

• Sweep coils on DNP NMR magnets for investigation of different polarizing agents

• See also Griffin lectures

Page 25: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Tunable Gyrotrons and Amplifiers in development @ MIT (R. Griffin, R. Temkin) See also Griffin lecture notes

Page 26: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

DNP Gyrotron Developments

• F. Horii, T. Idehara, Y. Fujii, I. Ogawa, A. Horii, G. Entzminger,

F.D. Doty, Development of DNP-enhanced high-resolution

solid-state NMR system for the characterization of the surface

structure of polymer materials, J. Infrared. Millimeter THz

Waves 33 (2012) 756–765.

• S. Alberti, J.-Ph. Ansermet, K.A. Avramides, F. Braunmueller,

P. Cuanillon, J. Dubray, D. Fasel, J.-Ph. Hogge, A. Macor, E.

de Rijk, M. Da Silva, M.Q. Tran, T.M. Tran, Q. Vuillemin,

Experimental study from linear to chaotic regimes on a

terahertz-frequency gyrotron oscillator, Phys. Plasmas 19

(2012) 123102.

• M.Yu. Glyavin, A.V. Chirkov, G.G. Denisov, A.P. Fokin, V.V.

Kholoptsev, A.N. Kuftin, A.G. Luchinin, G.Yu. Golubyatnikov,

V.I. Malygin, M.V. Morozkin, V.N. Manuilov, M.D. Proyavin, E.V.

Sokolov, A.I. Tsvetkov, V.E. Zapevalov, Experimental test of a

263 GHz gyrotron for spectroscopic applications and

diagnostics of various media, Rev. Sci. Instrum. 86 (2015)

054705.

• Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M.

Toda, H. Akutsu, T. Fujiwara, Dynamic nuclear polarization

experiments at 14.1T for solid-state NMR, Phys. Chem. Chem.

Phys. 12 (2010) 5799–5803.

• Hoff, D. E., Albert, B. J., Saliba, E. P., Scott, F. J., Choi, E. J.,

Mardini, M., Barnes, A. B. Frequency swept microwaves for

hyperfine decoupling and time domain dynamic nuclear

polarization. Solid State Nucl

Mag, 2015. DOI: 10.1016/j.ssnmr.2015.10.001

See also DNP gyrotron developments from:

• Idehara/Fujiwara/Matsuki (395 GHz *2, 460 GHz)

• Barnes (200 GHz, frequency agile http://pages.wustl.edu/barneslab/instrumentation)

• Glyavin (263 GHz)

• Alberti (263 GHz)

Page 27: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Bruker Solid-State DNP Spectrometer

L. R. Becerra et al. J. Magn. Reson. A 1995, 117, 28.

M. Rosay et al. Phys. Chem. Chem. Phys. 2010, 12, 5850.

Page 28: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

0.00

20.0

40.0

60.0

80.0

100

120

16 16.5 17 17.5 18

Ou

tpu

t P

ow

er

(W)

Beam Voltage (kV)

263 GHz 100 mA

395 GHz 140 mA

527 GHz 130 mA

Gyrotron Output Power as a Function of Frequency

Page 29: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Microwave Transmission to NMR Sample

• Corrugated waveguide:

• Negligible ohmic loss for Gaussian beam

• Loss possible due to mode conversion in case of tilt or offset

• Somewhat broadband

• 19 mm ID 263 GHz corrugations

• 16 mm ID 440 GHz corrugations

• Directional coupler for frequency and power measurement

p d

w

2a OD

p = λ/3

d = λ/4

w < 0.5p

Gaussian beam waist = 0.64a

Page 30: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

30

Microwave Transmission Line: corrugated waveguide

Gyrotron output: 100%

Probe base: 90% (395 GHz) 85% (527 GHz)

End of probe waveguide and double miter bend:

65% (395 GHz) 70% (527 GHz)

• 19 mm ID 263 GHz corrugations

• 16 mm ID 440 GHz corrugations

Page 31: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

DNP Power Curves AMUPol binitroxide in glycerol/water @ 100 K, 8 kHz MAS

0

50

100

150

200

250

0 5 10 15 20 25 30

DN

P S

ign

al E

nh

ance

me

nt

Microwave Power at Probe Base (W)

263 GHz

395 GHz

527 GHz

Page 32: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Low temperature for DNP NMR applications DNP Temperature Dependence AMUPol binitroxide in glycerol/water

Sample temperature calibrated with KBr T1 measurements: Thurber and Tycko JMR, (2009), 196, 84.

0

50

100

150

200

250

80 100 120 140 160 180 200

1H

DN

P S

ign

al E

nh

ance

me

nt

Sample Temperature (K)

263 GHz

395 GHz

Page 33: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Low-Temperature MAS Probes

Sample, MAS stator, NMR coil (and rf circuit) at cryogenic temperatures • Higher Q/less noise

• Higher Boltzmann polarization compared to room temperature • Variable temperature possible (phase transitions, relaxation

studies, etc...)

• Yannoni, et al. … 1990 He • Griffin, et al. … 1997 … He, N2, He/N2

• Samoson, et al. … 2005 … He • Levitt, et al. … 2007 … He • Tycko, et al. … 2008 … He/N2

Commercialized by Revolution NMR

• Engelke, et al. … 2007… N2

• Doty, et al. … 2007… N2/He

• Barnes, et al. … 2013… N2/He

• DePaepe, et al. … 2015… He

Page 34: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Low-Temperature MAS Probes

34

• A. Samoson, et al., New

Horizons for Magic-Angle

Spinning NMR, Topics in Current

Chemistry (2004) 246: 15-31

• 10 ml rotor, 3 m3/h helium gas, 2-

3 l/hr liquid helium

• 7 K at 5 kHz, 13 K at 10 kHz and

20 K at 20 kHz

• Example: low-temperature MAS

of H2 trapped inside a fullerene

cage

• Continued development ongoing

Page 35: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Low-Temperature MAS Probes

• K. R. Thurber and R. Tycko, Biomolecular solid state NMR with magic-angle

spinning at 25 K, J. of Magn. Reson. (2008) 179-186

• Room temperature N2 gas for drive and bearing, cold He VT gas

See also Tycko’s

lecture notes

Page 36: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Bruker LTMAS DNP Probe Family @ 400, 600, and 800 MHz

• Dry low-temperature nitrogen gas supply

– 3 gas lines at 100 K: bearing, drive and VT

– Pressurized heat exchanger chambers

– Automatic refill of liquid nitrogen supply

• Cold insert/eject capability

• 3.2 mm (15 kHz MAS @ 100 K)

– HCN, HX or HXY with variety of X/Y

combinations

– low-gamma probe

• 1.9 mm HCN (25 kHz MAS @ 100 K)

• 1.3 mm HCN (40 kHz MAS @ 100 K)

• Corrugated waveguide

1.9 mm DNP probe head

Page 37: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Stability Measurement: CPMAS signal intensity with gyrotron on and off

• DNP-enhanced signal intensity variation < ±1% over 36 hour run (0.31% standard deviation) • After gyrotron off duration, DNP-enhanced signal stabilizes back to within ±1% of 36 hour

value in less than 5 minutes • 16 scans, 6 s recycle delay, 8 kHz MAS, 1.5 ms 55 kHz CP with 100 kHz Spinal 64 dec., 100 K,

0.1M U-13C-15N Proline in glycerol-d8/D20/H20 (60/30/10) with 10 mM TOTAPOL

Time

Sig

nal In

tensity (

Pro

line C

d)

36 hours gyrotron on

80 min

Gyrotron state:

off off

2 hrs on

Page 38: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

593 GHz/900 MHz DNP

• 593 GHz gyrotron development for Lyndon Emsley (EPFL)

– 10.9 T gyrotron magnet

– Gyrotron tube design

– System test and optimization

• Enabled by key improvements at 263-527 GHz

– Improved launcher and mode converter

– Improved gyrotron tube and magnet alignment

Page 39: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

593 GHz Factory Test at CPI

Page 40: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

593 GHz Factory Test at CPI Output power and frequency as a function of cathode voltage and magnet current

0

10

20

30

40

50

60

592.660

592.670

592.680

592.690

592.700

592.710

592.720

592.730

592.740

17.7 17.9 18.1 18.3 18.5 18.7 18.9 19.1 19.3

Ou

tpu

t P

ow

er

(W) F

req

uen

cy (G

Hz)

Cathode Voltage (kV)

I 0 = 180 mA

I g = -2.0 A

I m

= 160.40 A

160.45 A

160.55 A

160.60 A 160.50 A

160.60 A 160.45 A

160.55 A 160.50 A

I m

= 160.40 A

Cav Cool Temp= 22.5 C

0.030” shim at +x axis

Page 41: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Gyrotron Beam IR Images

Output Gaussian Beam

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

Be

am

Wa

ist (c

m)

y (cm)

measured width (x)

theoretical expansion of design beam

measured width (z)

Page 42: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Power Measurements @ 593 GHz with 440 GHz Transmission Line and 527 GHz probe waveguide

TL input:

33 W

26 W

30 W

Page 43: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

593 GHz/900 MHz DNP Installation at EPFL

Page 44: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

DNP Measurements at 593 GHz/900 MHz @ EPFL

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35DN

P s

ign

al e

nh

ance

me

nt

Gyrotron Ouput Power (W)

DNP POWER CURVE AMUPOL

Page 45: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Solid-State DNP NMR

1980 - 2008: mostly limited to true experts

Now, a well-established commercial product, 34 total Bruker systems

DNP

Installations

9

4

1

20

Page 46: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

DNP at 263 GHz/400 MHz Can we use a more compact source?

DNP with Gyrotron

DNP with Klystron

Page 47: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

263 GHz klystron, Thurber and Tycko JMR 2016

Also, Kemp et. al, (Warwick) gyrotron amplifier at 187 GHz/284 MHz, JMR 2016.

Output power 1.5 W

See also Tycko’s

lectures for more

detail

Page 48: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

EIK Principle of Operation

2017.07.27 CPI Canada 48

Tuner

Electron Beam

Cathode

Icathode

Ibody

Output Cavity

Icollector

Collector Ladder

+ -

Input Cavity

Magnetic Field

Power Supply

• The EIK/EIO converts kinetic energy of electron beam into microwave radiation by interaction with electromagnetic waves in a series of cavities

• Each cavity represents a short piece of the resonant slow-wave structure (SWS) based on a ladder geometry

• Ladder could be manufactured to operate in fundamental mode up to 300 GHz

Page 49: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

EIO Capabilities

2017.07.27 CPI Canada 49

Oscillator (EIO)

Power Tuning Range

Pulsed/CW Achieved

140 GHz 20 W 5,000 MHz CW

263 GHz 5 W 9,000 MHz CW

263 GHz 10W 9,000 MHz CW –

EIO

20 cm

Page 50: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

ε = 160

263 GHz Klystron in Billerica DNP Demo Lab: 5 W Output Power (FACTOR OF 10 INCREASE in 10 YEARS)

263GHz klystron with transmission line

(safety shroud removed for visualization)

Klystron

Transmission line

Klystron ON

Klystron OFF

Page 51: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

DNP with 263 GHz Klystron: Measurements on Dilute Protein Samples

2H,13C,15N-DHFR 0.5 mM with 1:1 TMP,

20 mM TOTAPOL, in 3:6:1 glycerol-d8/

D2O/H2O

13C-13C correlation: 6 hours 15N-13C correlation: 3 hours

R. Rogawski, et al., J. Phys. Chem. B, 2017, 121 (6), 1169

Page 52: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

DNP at 263 GHz: Is 5 W really enough microwave power?

• Dense opaque organic polymer CNHS with impregnated AMUPol

0

5

10

15

20

25

30

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Enh

ance

me

nt

W @ probe base (approx.)

5 W is not enough power for saturation, but there is also a trade off between lifetime and output power

Page 53: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Current DNP Sources: Solid State

• IMPATT, Gunn diodes

• 9 – 20 GHz synthesizers or source followed by series of multipliers

– www.vadiodes.com

• Advantages of solid state sources

– Compact

– Easy to use

– Inexpensive

– No special facilities required

• Disadvantages of solid state sources

– Not capable of producing much power

– But… quickly changing field

– For example, 200 GHz, 70 mW 0.5 W in 8 years! (See Han

slides)

– Currently, 100 mW @ 263 GHz (from VDI)

Page 54: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Acknowledgements

Bruker BioSpin:

Fabien Aussenac

Chris Hickey

Jim Kempf

Shane Pawsey

Ivan Sergeyev

Leo Tometich

Frank Engelke

Benno Knott

Armin Purea

Christian Reiter

Werner Maas

CPI:

Monica Blank

Kevin Felch

Albert Roitman

Ross MacHattie

MIT:

Robert Griffin

Richard Temkin

Swissto12:

A. Dimitriades

Arndt von Bieren

Emile de Rijk

Page 55: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

One Gyrotron, two DNP Instruments

395 GHz Gyrotron

Quasi-optics

14.1 T – 600 MHz Overhauser DNP

600 MHz MAS DNP

Joanna Long

Thierry Dubroca

F. Mentink-Vigier

Page 56: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Microwave management system

Based on work by Lesurf, Millimetre-Wave Optics, Devices and Systems, CRC press (1990)

Designed and build by Thierry Dubroca, Hans van Tol, Bianca Trociewitz at National High Magnetic Field Lab and Kevin Pike, Richard Wylde at Thomas Keating company

Page 57: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Overhauser Dynamic Nuclear Polarization at 600 MHz – 395 GHz

Liquid DNP at high field in high volumes work by Thierry Dubroca, Stephen Hill et al. Submitted to JMR

Sample: triphenylphosphine with

100 mM BDPA, in d6-benzene. Sample volume

50 uL (i.e. 3 mm tube). Temperature about 300 K.

Microwave power 2 W.

NSF MRI Grant CHE-1229170

Maglab NSF core Grant DMR-1157490

State of Florida matching Grant

ε = 160

For more info about our liquid DNP instrument or quasi-optics contact Thierry at [email protected]

Page 58: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

https://nationalmaglab.org/user-facilities/nmr-mri/nmr-instruments/600-mhz-89-mm-mas-dnp-system

National MAGLAB

User Program for MAS

DNP

Contact Fred Mentink

for time:

Fred Mentink

[email protected].

edu

Page 59: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

10-100 K 10-100 K

10-100 K

10-100 K 10-100 K

• Independent control of the flow on the three lines. • Insert / eject capability + Ind. warming of the probe • Design compatible with small diameter rotors • Need a very efficient heat exchanger!

The Grenoble design - Helium spinning

• 3 gas lines forms a closed-loop circuit • Cooling = cryogenic fluid or cryocooler

Page 60: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

NUMOC vs SACRYPAN

ULT-MAS-DNP is sustainable…!

100 €/hour LHe Cryogen Free!!!

Page 61: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Coll. Engelke et al.

2M 13C-urea, [2H8]glycerol, D2O,

H2O, 4 mM AMUPOL

Helium spinning MAS-DNP at T << 100 K

Bouleau et al., Chem. Sci. 2015 Lee et al., JMR, 2016

1H eON/OFF = 677 !!

Page 62: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

• x9 time-savings by lowering the temp. from 100 to 36 K

x 3

enhancement

in sensitivity

[D6]-DMSO, D2O, and H2O

(78/14/8, w/w/w) containing

10 mM of AMUPol

-Al2O3

1H Hahn echo

Sensitivity improvement He

He He

He

He

Page 63: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

[D6]-DMSO, D2O, and H2O

(78/14/8, w/w/w) containing

10 mM of AMUPol

-Al2O3

Surface selective CP

• Low power CP at fast spinning frequency = no sign of arcing!

• Larger Cq can easily be excited by CP at faster spinning

Sensitivity improvement He

He He

He

He

Page 64: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

x 6.5

enhancement

in sensitivity

Cyclo-FF NTs

High Power dec. 30 ms

No sign of arcing!

tDNP = 4 s

tDNP = 3 s

Bouleau et al., Chemical Science 2015

Sensitivity improvement

More than x 50 in time-savings …! by going from 100 K to 30-50 K

Page 65: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Multidimensional experiments

• 2D experiments = possible!

40 K

8 kHz

Lee et al., JMR, 2016

Page 66: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

A.L. Barra

F. Engelke

A. Purea

F. Aussenac

S. Vega

Funding Agency

Acknowledgments

D. Lee

S. Hediger

F. Mentink

S. Paul

K. Märker

E. Bouleau

I. Marin-

Montesinos

Page 67: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

High-level manipulations of electron spins at 200 GHz and 7 T Towards sensitivity-enhanced, integrated and time-domain DNP-NMR and EPR

AWG shaping at 10 & 200

GHz

Static 7 Tesla DNP-EPR setup

Helium Inlet

7 Tesla MAS DNP setup

N2 gas line

4 mm Revolution probe

Solid-state source & QO bridge

incident beam

EPR signal

Dual DNP and EPR 200 GHz bridge

MW Waveguide

Kaminker, Leavesley, Siaw & Han, UCSB

Page 68: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

At 200 GHz and 7 Tesla, now < 0.5 Watt of microwave power available

0 200 400 600 800 1000

tp (ns)

0.5W AMC

0.15W AMC

EPR nutation curve with Gd3+ (spin S = 7/2)

p/2 from 380 ns to 190 ns New VDI source

What about higher fields? scalable to 400 GHz, but …

Limitations will be the source and amplifier technology

However, concept of pulse shaping will greatly benefit high-field DNP Songi Han, UCSB

Page 69: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

probe

pump

Next generation integrated DNP hardware with dual AWG capabilities for modular pump and probe

channels

Ilia Kaminker

Upgrade AWG DAC board from 16 kB to 8 MB memory

Maximum waveform length has increased from ~16 ms to 3.3 ms

• Siaw, T. A., Leavesley, A., Lund, A., Kaminker, I. & Han, S. J. Magn. Reson. 264, 131–153 (2016)

• Kaminker et al. unpublished work Songi Han, UCSB

Page 70: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Implementation of pulsed EPR with phase-locked solid-state source and heterodyne and phase-sensitive detection

Siaw, T. A., Leavesley, A., Lund, A., Kaminker, I. & Han, S. J. Magn. Reson. 264, 131–153 (2016)

Ilia Kaminker

Songi Han, UCSB

Page 71: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

4AT 10K

chirp bandwidth 200MHz chirp length 14us tp_ELDOR 100ms

νpump

τ τ 𝜋

2

𝜋

2

tchirp

tpump

AWG chirp-enhanced pump mapped by ELDOR

τ τ 𝜋

2

𝜋

2 νdetect

Conventional CW pump mapped by ELDOR

tpump

νpump

νdetect

193.3 193.7 194.1 194.5

0.0

0.5

1.0

detect

194 GHzE

PR

ech

o in

ten

sity /

a.u

.

pump

/ GHz

detect

193.6 GHz

193.2 193.5 193.8 194.1 194.4

Frequency / GHz

Kaminker, I., Leavesley, A., et al, unpublished

Shaping the electron spin polarization potential by AWG shaping of microwaves

Songi Han, UCSB

Page 72: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Additional References (not comprehensive)

• Background/early work A.W. Overhauser Phys. Rev. 92, 411 (1953)

T.R. Carver, and C.P. Slichter, “Polarization of Nuclei Spins in Metals” Phys. Rev. 92, 212 (1953)

A. Abragam, W.G. Proctor, C. R. Acad. Sci. 246, 2121 (1958)

M. Golman, Spin Temperature and Nuclear Magnetic Resonance in Solids; Oxford University Press: London, 1970

V.A. Atsarkin, M.I. Rodak Sov. Phys.-USPEKHI 15, 251 (1972)

V.A. Atsarkin, “Dynamic polarization of nuclei in solid dielectrics” Sov. Phys. Usp. 21, 725 (1978)

A. Abragam, M. Goldman, Nuclear magnetism: order and disorder. Claredon Press: Oxford, 1982

W.T. Wenckenback, T.J.B. Swanenburg, N.J. Poulis, Physics Reports 14, 181 (1974)

• Solids DNP/NMR at 40 GHz & 95 GHz, review papers and dissolution experiment R.A. Wind, M.J. Duijvestijn, C. Vanderlugt, A. Manenschijn, J. Vriend, “Applications of Dynamic Nuclear-Polarization in C-

13 NMR in Solids” Progress in Nuclear Magnetic Resonance Spectroscopy 17, 33-67 (1985)

M. Afeworki, R.A. McKay, J. Schaefer “Selective Observation of the Interface of Heterogeneous Polycarbonate Polystyrene

Blends by Dynamic Nuclear-Polarization C-13 NMR-Spectroscopy”. Macromolecules 25, 4084-4091 (1992)

M. Afeworki, S. Vega, J. Schaefer“ Direct Electron-to-Carbon Polarization Transfer in Homogeneously Doped

Polycarbonates” Macromolecules 25, 4100-4105 (1992)

Page 73: Instrumentation for Solid-State DNP · Vacuum electronic devices (VEDs): Gyrotron Klystron (EIO, EIK/A) Backward wave oscillator (BWO) Traveling wave tube (TWT) Solid State devices:

Additional References (not comprehensive)

H. Lock, R. Wind, G. Maciel, Solid State Communications 64, 41 (1987)

• Gyrotron references

T. Maly, G. T. Debelouchina, V. S. Bajaj, K-N. Hu, C-G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri,

P. C. A. van der Wel, J. Herzfeld, R. J. Temkin and R. G. Griffin, “Dynamic Nuclear Polarization at High

Magnetic Fields” J. Chem. Physics 128, 052211 (2008)

A.B. Barnes, G. De Paëpe, P.C.A. van der Wel, K-N. Hu, C-G. Joo, V. S. Bajaj, M. L. Mak-Jurkauskas,

J. R. Sirigiri, J. Herzfeld, R. J. Temkin, and R. G. Griffin,” High Field Dynamic Nuclear Polarization for

Solid and Solution Biological NMR” Applied Magnetic Resonance 34, 237 (2008)

L.R. Becerra, G.J. Gerfen, B.F. Bellew, J.A. Bryant, D.A. Hall, S.J. Inati, R.T. Weber, S. Un, T.F. Prisner,

A.E. McDermott, K.W. Fishbein, K.E. Kreischer, R.J. Temkin, D.J. Singel, and R.G. Griffin,

"A Spectrometer for Dynamic Nuclear Polarization and Electron Paramagnetic Resonance at High Frequencies", Jour. Magn.

Reson.A 117, 28-40 (1995)

C-G. Joo , K-N. Hu , J. A. Bryant, and R. G. Griffin “In situ Temperature Jump-High Frequency Dynamic

Nuclear Polarization Experiments: Enhanced Sensitivity in Liquid State NMR” J. Am. Chem. Soc. 128, 9428-9432 (2006)

T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, La Agusu, H. Mori, S. Kobayashi, “Development of Terahertz FU CW

Gyrotron Series for DNP” Applied Magnetic Resonance 34, 265 (2008)