integrative taxonomy of the primitively segmented...

19
Integrative taxonomy of the primitively segmented spider genus Ganthela (Araneae: Mesothelae: Liphistiidae): DNA barcoding gap agrees with morphology XIN XU 1 , FENGXIANG LIU 1 , JIAN CHEN 1 , DAIQIN LI 1,2 * and MATJAŽ KUNTNER 1,3,4 * 1 Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan, China 2 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore 3 Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, P. O. Box 306, SI-1001 Ljubljana, Slovenia 4 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Received 23 January 2015; revised 25 March 2015; accepted for publication 25 March 2015 Species delimitation is difficult for taxa in which the morphological characters are poorly known because of the rarity of adult morphs or sexes, and in cryptic species. In primitively segmented spiders, family Liphistiidae, males are often unknown, and female genital morphology – usually species-specific in spiders – exhibits considerable intraspecific variation. Here, we report on an integrative taxonomic study of the liphistiid genus Ganthela Xu & Kuntner, 2015, endemic to south-east China, where males are only available for two of the seven morphological species (two known and five undescribed). We obtained DNA barcodes (cytochrome c oxidase subunit I gene, COI) for 51 newly collected specimens of six morphological species and analysed them using five species-delimitation methods: DNA barcoding gap, species delimitation plugin [P ID(Liberal)], automatic barcode gap discovery (ABGD), generalized mixed Yule-coalescent model (GMYC), and statistical parsimony (SP). Whereas the first three agreed with the morphology, GMYC and SP indicate several additional species. We used the consensus results to delimit and diagnose six Ganthela species, which in addition to the type species Ganthela yundingensis Xu, 2015, com- pletes the revision of the genus. Although multi-locus phylogenetic approaches may be needed for complex taxo- nomic delimitations, our results indicate that even single-locus analyses based on the COI barcodes, if integrated with morphological and geographical data, may provide sufficiently reliable species delimitation. © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306. doi: 10.1111/zoj.12280 ADDITIONAL KEYWORDS: DNA barcoding – East China – new species – phylogeny – species delimita- tion – taxonomy – trapdoor spiders. INTRODUCTION How a species is delimited has major implications, not only for taxonomy, but also for biology in general, because accurate species boundaries are crucial for understanding speciation patterns and processes (Sites & Marshall, 2004; Wiens, 2007; Camargo & Sites, 2013; Hedin, 2015), and will impact every subfield of the life sciences. Species delimitation is far from a trivial task for taxa that are morphologically similar (cryptic species or those lacking clear diagnostic features) or those rare in collections (missing sexes or adult forms), however. *Corresponding author. E-mail: [email protected]; [email protected] Zoological Journal of the Linnean Society, 2015, 175, 288–306. With 9 figures © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306 288

Upload: vuduong

Post on 21-Mar-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Integrative taxonomy of the primitively segmentedspider genus Ganthela (Araneae: Mesothelae:Liphistiidae): DNA barcoding gap agreeswith morphology

XIN XU1, FENGXIANG LIU1, JIAN CHEN1, DAIQIN LI1,2* and MATJAŽ KUNTNER1,3,4*

1Centre for Behavioural Ecology and Evolution, College of Life Sciences, Hubei University, Wuhan,China2Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543,Singapore3Evolutionary Zoology Laboratory, Biological Institute ZRC SAZU, Novi trg 2, P. O. Box 306, SI-1001Ljubljana, Slovenia4Department of Entomology, National Museum of Natural History, Smithsonian Institution,Washington, DC, USA

Received 23 January 2015; revised 25 March 2015; accepted for publication 25 March 2015

Species delimitation is difficult for taxa in which the morphological characters are poorly known because of therarity of adult morphs or sexes, and in cryptic species. In primitively segmented spiders, family Liphistiidae, malesare often unknown, and female genital morphology – usually species-specific in spiders – exhibits considerableintraspecific variation. Here, we report on an integrative taxonomic study of the liphistiid genus Ganthela Xu &Kuntner, 2015, endemic to south-east China, where males are only available for two of the seven morphologicalspecies (two known and five undescribed). We obtained DNA barcodes (cytochrome c oxidase subunit I gene, COI)for 51 newly collected specimens of six morphological species and analysed them using five species-delimitationmethods: DNA barcoding gap, species delimitation plugin [P ID(Liberal)], automatic barcode gap discovery (ABGD),generalized mixed Yule-coalescent model (GMYC), and statistical parsimony (SP). Whereas the first three agreedwith the morphology, GMYC and SP indicate several additional species. We used the consensus results to delimitand diagnose six Ganthela species, which in addition to the type species Ganthela yundingensis Xu, 2015, com-pletes the revision of the genus. Although multi-locus phylogenetic approaches may be needed for complex taxo-nomic delimitations, our results indicate that even single-locus analyses based on the COI barcodes, if integratedwith morphological and geographical data, may provide sufficiently reliable species delimitation.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306.doi: 10.1111/zoj.12280

ADDITIONAL KEYWORDS: DNA barcoding – East China – new species – phylogeny – species delimita-tion – taxonomy – trapdoor spiders.

INTRODUCTION

How a species is delimited has major implications, notonly for taxonomy, but also for biology in general,

because accurate species boundaries are crucial forunderstanding speciation patterns and processes (Sites& Marshall, 2004; Wiens, 2007; Camargo & Sites, 2013;Hedin, 2015), and will impact every subfield of the lifesciences. Species delimitation is far from a trivial taskfor taxa that are morphologically similar (cryptic speciesor those lacking clear diagnostic features) or those rarein collections (missing sexes or adult forms), however.

*Corresponding author. E-mail: [email protected];[email protected]

bs_bs_banner

Zoological Journal of the Linnean Society, 2015, 175, 288–306. With 9 figures

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306288

Page 2: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

As traditional taxonomy usually makes qualitative de-cisions on species delimitation, it is a fairly subjec-tive field (de Queiroz, 2007; Hausdorf, 2011). On theother hand, modern species delimitation approachestreat species as hypotheses in a statistical frame-work, and use objective tests to delineate evolution-arily independent lineages as species (for a review, seeFujita et al., 2012; see also Agnarsson & Kuntner, 2007).An integrative approach to taxonomy increasingly usesseveral lines of evidence to delimit and describe taxa(Dayrat, 2005; Will, Mishler & Wheeler, 2005; Pante,Schoelinck & Puillandre, 2015). Of these, modernmolecular-based species delimitation approaches arenow routinely used in a variety of taxa to comple-ment traditional taxonomy (Carstens et al., 2013;Fouquet et al., 2014; Shirley et al., 2014). Research onspecies delimitation is somewhat geopolitically biased(e.g. Harris & Froufe, 2005), however, as the major-ity of studies have been carried out using Europeanand North American taxa (e.g. Hamilton, Formanowicz& Bond, 2011; Derkarabetian & Hedin, 2014; Hamiltonet al., 2014), with only very few studies performed inEast and Southeast Asia (Huang et al., 2013). In spiders,a phylogenetic bias is also apparent, as most priorstudies that used molecular-based species delimita-tion have focused on derived spider groups to the ex-clusion of the primitively segmented spiders, Liphistiidae(e.g. Hamilton et al., 2011, 2014; Candek & Kuntner,2015; Derkarabetian & Hedin, 2014).

Whereas the use of single-locus data for delimitingspecies has been a source of some controversy (Hebertet al., 2003a; Moritz & Cicero, 2004; Blaxter et al., 2005;Rubinoff & Holland, 2005), many species-delimitationmethods do use single-locus data in order to balancecosts and benefits. For example, DNA barcoding gapanalysis routinely uses single-locus DNA data (Hebertet al., 2003a; Hebert, Ratnasingham & deWaard, 2003b),as do other recently proposed techniques, such as ‘auto-matic barcode gap discovery’ (ABGD; Puillandre et al.,2012), the ‘generalized mixed Yule-coalescent model’(GMYC; Pons et al., 2006), the species delimitationplugin [P ID(Liberal); Masters, Fan & Ross, 2011], the‘statistics parsimony network analysis’ (SP; Templeton,Crandall & Sing, 1992), and the ‘W&P’ method (Wiens& Penkrot, 2002). An increasing body of literature usesthese approaches and confirms their usefulness in de-limiting species to complement traditional (morpho-logical) taxonomy (Hart & Sunday, 2007; Longhorn et al.,2007; Hamilton et al., 2011, 2014; Kuntner & Agnarsson,2011; Weigand et al., 2011, 2013; Jörger et al., 2012;Paz & Crawford, 2012; Fujisawa & Barraclough, 2013;Hendrixson et al., 2013; Kekkonen & Hebert, 2014;Opatova & Arnedo, 2014).

Approaches to species delimitation using single-locus data can be broadly categorised into two groups,species discovery versus species validation, depend-

ing on whether the samples are partitioned prior toanalysis. Although it is unnecessary to partition thesamples into putative species when discovering speciesthrough the use of ABGD (Puillandre et al., 2012),GMYC (Pons et al., 2006), and SP (Templeton et al.,1992), species validation requires the a priori assign-ment of putative species that can then be tested throughDNA barcoding gap analysis (Hebert et al., 2003a, b)and P ID(Liberal) (Masters et al., 2011). Comparing theresults from various species-delimitation methods com-bined with morphological-based species diagnoses shouldin theory yield more accurate taxonomic units com-pared with classical approaches, especially for specieswith high intraspecific variation.

The primitively segmented spiders, family Liphistiidae,represent an ancient lineage in which members arerestricted to Southeast and East Asia (World SpiderCatalog, 2015). The family has recently been re-viewed to contain eight genera, each endemic to a dif-ferent geographical region (Xu et al., 2015a, b); however,species delimitation in liphistiids is challenging forseveral reasons. Although a combination of both adultmale and female genital features is commonly usedto diagnose species of spiders, liphistiid females havesimple genitals with extraordinarily intraspecific vari-ation, blurring the distinction between geographic vari-ation and species-level divergence, and thus makingspecies delimitation based on female morphology ex-tremely challenging (Haupt, 2003; Tanikawa, 2013;Tanikawa & Miyashita, 2015). This problem is exac-erbated by the fact that it is relatively easier to findadult females than adult males (our own data suggestthat the ratio of immature : adult female : adult malespecimens collected in the field is 13 : 16 : 1), with 23out of 89 liphistiid species only being known from asingle sex (20 from females and three from males only;World Spider Catalog, 2015). In the acute absence ofmale diagnostic features, liphistiid taxonomy conse-quently suffers from common taxonomic errors suchas over-splitting, over-lumping, and incorrect speciesassignment of individuals or populations (Rittmeyer& Austin, 2012), with potentially erroneous implica-tions regarding species diversity, intraspecific vari-ation, and gene flow (Funk & Omland, 2003; Bickfordet al., 2007). Over-lumping, in particular, is a majorconcern to biodiversity research as the units of diver-sity, and therefore conservation decisions, are under-estimated (Bickford et al., 2007). This is particularlyrelevant to liphistiids, in which the species-level tax-onomy has been nearly devoid of molecular analyses(but, see Tanikawa, 2013; Tanikawa & Miyashita, 2015),yet the known species are often island endemics orotherwise restricted in ranges (Xu et al., 2015a, b).

Here, we report on a species delimitation study thatintegrated morphological data with DNA nucleotide datain a group of primitively segmented spiders. We used

INTEGRATIVE TAXONOMY OF GANTHELA 289

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 3: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

the standard DNA barcoding region of the mitochondrialcytochrome c oxidase subunit I (COI; Hebert et al., 2003a,b), which has been shown to represent a rapid and ac-curate marker in testing species hypotheses in animals(Hebert et al., 2003a, b; Barrett & Hebert, 2005;Robinson et al., 2009; Paz & Crawford, 2012; Kekkonen& Hebert, 2014), and in particular in spiders (e.g.Hamilton et al., 2011, 2014; Candek & Kuntner, 2015).We studied Ganthela Xu & Kuntner, 2015, a genus re-stricted to east China (Fujian and Jiangxi Provinces)that contains seven morphological species. In addi-tion to the recently described type species, Ganthelayundingensis Xu, 2015, there is only one other knownspecies, Ganthela cipingensis (Wang, 1989), and judgingfrom female morphology five undescribed species (Xuet al., 2015a). As in other liphistiids, Ganthela femalegenital morphology is highly variable and the malesof five new (morphological) species are not availablefrom collections. We therefore generated DNA barcodedata to devise a specimen phylogeny, and used the fivespecies-delimitation methods listed above to test themorphology-based species identification. We then usedthe consensus results to delimit and diagnose the speciesdiversity in Ganthela.

MATERIAL AND METHODSTAXON SAMPLING

We sampled 51 individuals from five localities of onedescribed and five new species of Ganthela in East China(Fujian and Jiangxi Provinces; see inset in Fig. 1), andused a specimen of Sinothela sinensis (Bishop & Crosby,1932) as the out-group (Table 1). We collected adultsand immature spiders by excavating them from theirsubterranean burrows. We found a single species perlocality except for two species at Mount Wangjiang,Fujian Province. All specimens were collected alive andfixed in absolute ethanol if they were adults, and thenthe right legs were removed to be stored at −80 °C forsubsequent DNA extraction. The remainder of the speci-mens was preserved in 80% ethanol for identificationand morphological examination. Small juveniles wereused whole for DNA extraction, but large juveniles andsubadults were collected alive and reared in the la-boratory until maturation. Voucher specimens are de-posited at the Centre for Behavioural Ecology andEvolution (CBEE), College of Life Sciences, Hubei Uni-versity, Wuhan, China, and all type specimens are de-posited in the National Zoological Museum, ChineseAcademy of Sciences, Beijing, China.

MOLECULAR PROTOCOLS

Total genomic DNA was extracted from spider legs usingthe Animal Genomic DNA Isolation Kit (Dingguo,Beijing, China), following the manufacturer’s proto-

cols. Following the standard polymerase chain reac-tion (PCR) settings (Bond & Hedin, 2006; Agnarsson,2010; Kuntner et al., 2013; Zhang & Maddison, 2013),we amplified cytochrome c oxidase subunit I (COI) usingthe primer pairs LCOI490/HCO2198 (Folmer et al., 1994)with the following PCR reaction protocol: initial de-naturation at 95 °C for 5 min; 35 cycles of denatura-tion at 95 °C for 1 min, annealing at 40 °C for 1 min,and elongation at 72 °C for 90 s; and final extensionat 72 °C for 7 min. The 25-μL PCR reactions includ-ing 16.7 μL of double-distilled H2O, 2.5 μL of 10× Taqbuffer (mixed with MgCl2; TianGen Biotech, Beijing,China), 2.5 μL of dNTP Mix (2.5 mM), 1 μL of eachforward and reverse 10-μM primer, 1 μL of DNA tem-plate, and 0.3 μL Taq DNA polymerase (2.5 U μL−1;TianGen Biotech, Beijing, China). The double-strandedPCR products were visualized by agarose gel electro-phoresis (1% agarose). PCR products were purified andsequenced by Sunny Biotechnology Co., Ltd (Shang-hai, China) using the ABI 3730XL DNA analyser.

We manually edited the sequences usingGENEIOUS 5.6.6 (Biomatters Ltd, 2012), translatednucleotide reads to amino acids to check for stop codonsand to ensure the proper configuration of codon posi-tions, and aligned the sequences in GENEIOUS withgap opening/extension penalties set to 24/3.

PHYLOGENETIC ANALYSES

The COI data were treated as a single partition, andthe best COI substitution model, chosen based on theAkaike information criterion (AIC) in jMODELTEST 2.1.3(Darriba et al., 2012), was GTR + I + G. We performedmaximum-likelihood (ML) analyses in GARLI 2.01(Zwickl, 2006), and assessed branch supports by 100bootstrap replicates. We used SumTrees in the DendroPyphylogenetic Python library (Sukumaran & Holder, 2010)to generate a majority-rule bootstrap consensus tree.We conducted Bayesian-inference (BI) analyses inMrBayes 3.2.1 (Ronquist et al., 2012) by running Markovchain Monte Carlo (MCMC) with one independent chainfor 50 million generations. We monitored stationarityin TRACER 1.6 (Rambaut et al., 2014) and discardedas ‘burn-in’ the first quarter of cold-chain samples withthe remaining trees used to build a consensus. We usedFigTree 1.4.0 (Rambaut, 2012) to visualize and ma-nipulate trees, and manually summarized the resultsfrom different approaches using vector graphics in AdobeILLUSTRATOR.

SPECIES DELIMITATION

We analysed the COI data set (see Appendix S1) usingfive different species-delimitation methods. As both DNAbarcoding gap (Hebert et al., 2003a) and P ID(Liberal)require a priori species designation, we divided 51

290 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 4: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Ganthela individuals into six putative species basedon a combination of phylogenetic topology from genetrees, morphological characters, and geographic infor-mation. In the DNA barcoding gap analysis, we ex-amined the overlap between the mean intraspecific andinterspecific Kimura two-parameter (K2P) and uncor-rected p-distance for each candidate species calculat-ed in MEGA 5.2.2 (Tamura et al., 2011). The species-delimitation plug-in (Masters et al., 2011) inGENEIOUS 5.6.6 (Biomatters Ltd, 2012) was used toobtain P ID(Liberal) statistical values. P ID(Liberal) isbased on the putative species groups to calculate themean probability of intra-/intergenetic distance ratiosfor these candidate species groups. The BI tree wasused as a guide tree to test species hypothesis.

The next three methods that we used do not requireassigning terminals to putative species. The ABGDprocedure (Puillandre et al., 2012) calculates all pairwisedistances in the data set, evaluates intraspecific di-vergences, and then sorts the terminals into candi-date species with calculated P values. We performedthe ABGD analyses online (http://wwwabi.snv.jussieu.fr/public/abgd/), using three different distance metrics:Jukes–Cantor (JC69; Jukes & Cantor, 1969), K2P(Kimura, 1980), and simple distance (p-distance;Nei & Kumar, 2000). We analysed the data using twodifferent values for the parameters Pmin (0.0001 and0.001), Pmax (0.1 and 0.2), and relative gap width(X = 1 or 1.5), with the other parameters set to defaultvalues.

Figure 1. Bayesian COI gene tree for 51 terminals of Ganthela, with the results of five different species delimitationapproaches, in addition to morphology (see legend). Numbers above branches show posterior probability and bootstrapsupports, and values below branches show mean intraspecific (black) and interspecific genetic distances (red), calculatedas Kimura two-parameter (K2P)/p-distance. Species names and locality group terminals (for specimen codes, see Table 1)according to consensus results of species delimitation approaches.

INTEGRATIVE TAXONOMY OF GANTHELA 291

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 5: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Tab

le1.

Sam

ples

use

din

spec

ies

deli

mit

atio

n:

spec

imen

labe

l,ta

xon

nam

e,n

um

ber

ofh

aplo

type

s,sa

mpl

eco

llec

tion

loca

lity

wit

hco

ordi

nat

es,

and

Gen

Ban

kac

cess

ion

nu

mbe

rs

Spe

cim

enco

deG

enu

sS

peci

esH

aplo

type

Loc

alit

yC

oun

try

Coo

rdin

ates

Ele

vati

on(m

a.s.

l.)C

OI

Gen

Ban

kac

cess

ion

JiA

n_3

530

Gan

thel

aji

an

ensi

ssp

.nov

.H

_1Ji

’an

Cit

y,Ji

angx

iP

rovi

nce

Ch

ina

27.0

5865

°N,

115.

0475

9°E

104

KP

8754

86Ji

An

_353

1G

anth

ela

jia

nen

sis

sp.n

ov.

H_1

Ji’a

nC

ity,

Jian

gxi

Pro

vin

ceC

hin

a27

.058

65°N

,11

5.04

759°

E10

4K

P87

5514

JiA

n_3

533

Gan

thel

aji

an

ensi

ssp

.nov

.H

_1Ji

’an

Cit

y,Ji

angx

iP

rovi

nce

Ch

ina

27.0

5865

°N,

115.

0475

9°E

104

KP

8754

81Ji

An

_353

4G

anth

ela

jia

nen

sis

sp.n

ov.

H_2

Ji’a

nC

ity,

Jian

gxi

Pro

vin

ceC

hin

a27

.058

65°N

,11

5.04

759°

E10

4K

P87

5503

JiA

n_3

535

Gan

thel

aji

an

ensi

ssp

.nov

.H

_3Ji

’an

Cit

y,Ji

angx

iP

rovi

nce

Ch

ina

27.0

5865

°N,

115.

0475

9°E

104

KP

8754

95Ji

An

_353

6G

anth

ela

jia

nen

sis

sp.n

ov.

H_1

Ji’a

nC

ity,

Jian

gxi

Pro

vin

ceC

hin

a27

.058

69°N

,11

5.04

761°

E10

7K

P87

5522

JiA

n_3

538

Gan

thel

aji

an

ensi

ssp

.nov

.H

_1Ji

’an

Cit

y,Ji

angx

iP

rovi

nce

Ch

ina

27.0

5869

°N,

115.

0476

1°E

107

KP

8755

21Ji

An

_353

9G

anth

ela

jia

nen

sis

sp.n

ov.

H_1

Ji’a

nC

ity,

Jian

gxi

Pro

vin

ceC

hin

a27

.058

69°N

,11

5.04

761°

E10

7K

P87

5497

JiA

n_3

540

Gan

thel

aji

an

ensi

ssp

.nov

.H

_1Ji

’an

Cit

y,Ji

angx

iP

rovi

nce

Ch

ina

27.0

5869

°N,

115.

0476

1°E

107

KP

2299

09Ji

An

_354

1G

anth

ela

jia

nen

sis

sp.n

ov.

H_1

Ji’a

nC

ity,

Jian

gxi

Pro

vin

ceC

hin

a27

.058

69°N

,11

5.04

761°

E10

7K

P87

5517

Jin

ggan

gsh

an_3

503

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.579

16°N

,11

4.15

894°

E82

2K

P87

5500

Jin

ggan

gsh

an_3

504

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.578

88°N

,11

4.15

890°

E83

6K

P87

5496

Jin

ggan

gsh

an_3

508

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.580

04°N

,11

4.15

881°

E88

8K

P87

5499

Jin

ggan

gsh

an_3

510

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.580

04°N

,11

4.15

881°

E88

8K

P87

5516

Jin

ggan

gsh

an_3

511

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.580

04°N

,11

4.15

881°

E88

8K

P87

5519

Jin

ggan

gsh

an_3

512

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.580

04°N

,11

4.15

881°

E88

8K

P87

5502

Jin

ggan

gsh

an_3

514

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.579

76°N

,11

4.15

991°

E90

1K

P87

5491

Jin

ggan

gsh

an_3

516

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.569

02°N

,11

4.16

351°

E86

2K

P87

5509

Jin

ggan

gsh

an_3

517

Gan

thel

aci

pin

gen

sis

H_4

Cip

ing

Tow

n,

Jin

ggan

gsh

anC

ity,

Jian

gxi

Pro

.C

hin

a26

.569

70°N

,11

4.16

383°

E84

9K

P22

9886

Qin

gyu

ansh

an_2

287

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_5

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

73°N

,11

8.60

315°

E47

5K

P22

9807

Qin

gyu

ansh

an_2

288

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

73°N

,11

8.60

315°

E47

5K

P87

5525

Qin

gyu

ansh

an_2

290

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

73°N

,11

8.60

315°

E47

5K

P87

5511

Qin

gyu

ansh

an_2

292

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_5

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

73°N

,11

8.60

315°

E47

5K

P87

5523

Qin

gyu

ansh

an_2

294

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_7

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

73°N

,11

8.60

318°

E48

4K

P87

5505

Qin

gyu

ansh

an_2

295

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_5

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

73°N

,11

8.60

318°

E48

4K

P87

5482

Qin

gyu

ansh

an_2

296

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_7

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

73°N

,11

8.60

318°

E48

4K

P87

5501

Qin

gyu

ansh

an_2

298

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

77°N

,11

8.60

329°

E48

2K

P87

5506

Qin

gyu

ansh

an_3

138

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

83°N

,11

8.60

336°

E48

0K

P87

5515

Qin

gyu

ansh

an_3

139

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_5

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

83°N

,11

8.60

336°

E48

0K

P87

5485

Qin

gyu

ansh

an_3

140

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_5

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

83°N

,11

8.60

336°

E48

0K

P87

5493

Qin

gyu

ansh

an_3

141

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

83°N

,11

8.60

336°

E48

0K

P87

5484

Qin

gyu

ansh

an_3

142

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_5

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

83°N

,11

8.60

336°

E48

0K

P87

5518

Qin

gyu

ansh

an_3

146

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

79°N

,11

8.60

328°

E48

5K

P87

5489

Qin

gyu

ansh

an_3

147

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

79°N

,11

8.60

328°

E48

5K

P87

5513

Qin

gyu

ansh

an_3

148

Gan

thel

aq

ingy

ua

nen

sis

sp.n

ov.

H_6

Mou

nt

Qin

gyu

an,

Qu

anzh

ouC

ity,

Fu

jian

Pro

.C

hin

a24

.957

79°N

,11

8.60

328°

E48

5K

P87

5498

Wan

gjia

ngs

han

_227

5G

anth

ela

wa

ngj

ian

gen

sis

sp.n

ov.

H_8

Mou

nt

Wan

gjia

ng,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.6

6220

°N,

118.

8723

5°E

680

KP

8755

10W

angj

ian

gsh

an_2

278

Gan

thel

aw

an

gjia

nge

nsi

ssp

.nov

.H

_9M

oun

tW

angj

ian

g,P

uti

anC

ity,

Fu

jian

Pro

.C

hin

a25

.662

24°N

,11

8.87

240°

E66

7K

P87

5508

Wan

gjia

ngs

han

_227

9G

anth

ela

wa

ngj

ian

gen

sis

sp.n

ov.

H_9

Mou

nt

Wan

gjia

ng,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.6

6224

°N,

118.

8724

0°E

667

KP

8755

04W

angj

ian

gsh

an_3

157

Gan

thel

aw

an

gjia

nge

nsi

ssp

.nov

.H

_9M

oun

tW

angj

ian

g,P

uti

anC

ity,

Fu

jian

Pro

.C

hin

a25

.662

30°N

,11

8.87

235°

E67

5K

P87

5494

Wan

gjia

ngs

han

_315

9G

anth

ela

wa

ngj

ian

gen

sis

sp.n

ov.

H_9

Mou

nt

Wan

gjia

ng,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.6

6233

°N,

118.

8718

6°E

698

KP

2298

99W

angj

ian

gsh

an_3

160

Gan

thel

ave

nu

ssp

.nov

.H

_10

Mou

nt

Wan

gjia

ng,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.6

5730

°N,

118.

8794

6°E

459

KP

8754

83W

angj

ian

gsh

an_3

160A

Gan

thel

ave

nu

ssp

.nov

.H

_11

Mou

nt

Wan

gjia

ng,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.6

5730

°N,

118.

8794

6°E

459

KP

8754

92W

angj

ian

gsh

an_3

161

Gan

thel

ave

nu

ssp

.nov

.H

_10

Mou

nt

Wan

gjia

ng,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.6

5711

°N,

118.

8797

5°E

446

KP

8755

24X

ian

you

_228

3G

anth

ela

xia

nyo

uen

sis

sp.n

ov.

H_1

2X

ian

you

Cou

nty

,P

uti

anC

ity,

Fu

jian

Pro

.C

hin

a25

.249

53°N

,11

8.68

851°

E55

6K

P87

5488

Xia

nyo

u_2

284

Gan

thel

axi

an

you

ensi

ssp

.nov

.H

_12

Xia

nyo

uC

oun

ty,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.2

4953

°N,

118.

6885

1°E

556

KP

8755

12X

ian

you

_315

1G

anth

ela

xia

nyo

uen

sis

sp.n

ov.

H_1

3X

ian

you

Cou

nty

,P

uti

anC

ity,

Fu

jian

Pro

.C

hin

a25

.249

44°N

,11

8.70

219°

E33

6K

P22

9880

Xia

nyo

u_3

152

Gan

thel

axi

an

you

ensi

ssp

.nov

.H

_13

Xia

nyo

uC

oun

ty,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.2

4944

°N,

118.

7021

9°E

336

KP

8755

20X

ian

you

_315

3G

anth

ela

xia

nyo

uen

sis

sp.n

ov.

H_1

3X

ian

you

Cou

nty

,P

uti

anC

ity,

Fu

jian

Pro

.C

hin

a25

.249

40°N

,11

8.70

224°

E33

7K

P87

5526

Xia

nyo

u_3

153A

Gan

thel

axi

an

you

ensi

ssp

.nov

.H

_13

Xia

nyo

uC

oun

ty,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.2

4940

°N,

118.

7022

4°E

337

KP

8754

90X

ian

you

_315

4G

anth

ela

xia

nyo

uen

sis

sp.n

ov.

H_1

3X

ian

you

Cou

nty

,P

uti

anC

ity,

Fu

jian

Pro

.C

hin

a25

.249

28°N

,11

8.70

213°

E33

6K

P87

5487

Xia

nyo

u_3

155

Gan

thel

axi

an

you

ensi

ssp

.nov

.H

_13

Xia

nyo

uC

oun

ty,

Pu

tian

Cit

y,F

uji

anP

ro.

Ch

ina

25.2

4980

°N,

118.

7017

2°E

335

KP

8755

07Z

han

gqiu

_203

4S

inot

hel

asi

nen

sis

Pu

jiTo

wn

,Z

han

gqiu

Cit

y,S

han

don

gP

ro.

Ch

ina

36.7

2757

°N,

117.

6110

6°E

103

KP

2299

08

292 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 6: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

The GMYC methodology (Pons et al., 2006) uses like-lihood to test for species boundaries by detecting thetransition point of interspecific versus intraspecific ratesof lineage coalescence. We performed GMYC analysesin the ‘splits’ package for R (Ezard, Fujisawa &Barraclough, 2009). We used the single-threshold model(Pons et al., 2006) because prior studies have shownthat the output of the multiple-threshold model(Monaghan et al., 2009) is no better than the single-threshold model (Hamilton et al., 2011, 2014; Paz &Crawford, 2012; Fujisawa & Barraclough, 2013;Hendrixson et al., 2013; Talavera, Dinca & Vila, 2013;Kekkonen & Hebert, 2014). We used BEAST 1.8.0(Drummond et al., 2012) to obtain an ultrametric genetree that GMYC requires as a guide tree, in combi-nation with a strict molecular clock (Zuckerkandl &Pauling, 1962) and Yule speciation model (Yule, 1924;Gernhard, 2008). We used standard arthropod substi-tution rates (Brower, 1994) by setting the COI sub-stitution rate parameter as a normal prior with a meanvalue of 0.0115, and ran 50 million generations, sam-pling every 5000 generations. We used TRACER 1.6(Rambaut et al., 2014) to assess the chain convergenceand correct mixing of each MCMC chain, then dis-carded as ‘burn-in’ 10% of the trees in each chain tosettle on an ultrametric tree using TreeAnnotator(Drummond et al., 2012).

Finally, we employed SP haplotype network analy-sis (Templeton et al., 1992) to investigate intraspecificrelationships among the terminals, and thus delimitspecies (Jörger et al., 2012; Weigand et al., 2013). Wegenerated haplotype networks using TCS 1.21 (Clement,Posada & Crandall, 2000) with a 95% parsimonycriterion.

TAXONOMY

Within a liphistiid genus-level revision, we recently de-scribed (Xu et al., 2015a) the type species of Ganthela:G. yundingensis Xu, 2015. Additional Ganthela speci-mens were examined with an Olympus SZX16 ster-eomicroscope, and anatomical details were studied witha Leica M205C stereomicroscope. Male palps and femalegenitalia were examined and photographed with a LeicaM205C stereomicroscope and Olympus BX51 com-pound microscope after being dissected from the spiderbodies. Genitalia were cleared in boiling 10% KOH fora few minutes to dissolve soft tissues. Unless other-wise noted, left palps were depicted. All measure-ments are in millimetres. Leg and palp measurementsare given in the following order: total length(femur + patella + tibia + metatarsus + tarsus).

Abbreviations used are: ALE, anterior lateral eyes;AME, anterior median eyes; BL, body length; CL, cara-pace length; Co, conductor; CT, contrategulum; CW, cara-pace width; E, embolus; OL, opisthosoma length; OW,opisthosoma width; PC, paracymbium; PLE, posteri-

or lateral eyes; PME, posterior median eyes; RC,receptacular cluster; T, tegulum.

RESULTSPHYLOGENETIC INFERENCE

The COI matrix of 51 individuals of Ganthela of 656 bphad 210 variable and 209 parsimony-informative sites,and contained 13 haplotypes (Table 1; Appendix S1).The phylogenetic topologies from BI and ML analy-ses agreed on Ganthela monophyly, with the node beinghighly supported (Fig. 1; posterior probability, PP = 1;bootstrap value, BS = 1). The two highly supported(PP > 0.95, BS > 75%) sister clades within Ganthela cor-respond to two geographical regions: Jiangxi and Fujianprovinces (Fig. 1). Within the Jiangxi and the Fujianclades, the individuals from each separate localitygrouped into solidly supported clades (PP = 1, BS > 75%).These locality clades mostly comprise closely relatedindividuals, except in the case of Mount Wangjiang,where a single locality harbours two distinct and highlysupported species clades (Fig. 1).

SPECIES DELIMITATION

DNA barcoding gapBased on our prior species hypotheses, the lowest meaninterspecific distance was 12/11% (K2P/uncorrectedp-distance) found between G. cipingensis and Ganthelajianensis sp. nov., which was about eight times thehighest mean intraspecific distance (1.62/1.57% for K2P/uncorrected p-distance) estimated for Ganthelaxianyouensis sp. nov. (Table 2). Histograms with pairwisedistances visualize a barcoding gap in Ganthela of4–12% (K2P)/4–11% (uncorrected p-distance; Fig. 2). Sixspecies were identified by the barcoding gap range, ofwhich one is known and five are new (Fig. 1).

P ID(Liberal)The results based on the Bayesian inference tree foundhigh P ID(Liberal) values of ≥0.97 (0.88–1.0) and lowintra-/interspecific ratios of ≤0.1 for all species hy-pothesized (Table 2), thereby also supporting the tax-onomy of six putative species (Fig. 1).

ABGD analysisThe ABGD results using different parameter combi-nations and the initial partition of six species (Table 3)agreed on those six species, whereas those under a re-cursive partition regime yielded more species (Table 3).The settings Pmin/Pmax = 0.0001/0.2 yielded the most sig-nificant P values.

All analyses reported so far support six morphologi-cal species, with syntopic terminals being conspecific,except in the case of Mount Wangjiang, where twospecies coexist within an absolute distance of 1 km.

INTEGRATIVE TAXONOMY OF GANTHELA 293

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 7: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

In contrast, the following two analyses suggest morespecies. The single-threshold model GMYC resulted innine clusters and entities with different confidence in-tervals of 7–9 and 7–11, respectively (Table 4). Theseresults indicate two species in each of the Ji’an, Xianyou,and Mount Qingyuan clades (Fig. 1). The SP haplotypenetworks also show similar results, but with a singlespecies within the Mount Qingyuan clade (Figs 1, 3).

DISCUSSION

In this study, under an integrative framework, we ana-lysed original DNA barcoding data with five differentspecies-delimitation methods to test the validity of onedescribed and five undescribed morphological speciesof the liphistiid genus Ganthela known to us, in ad-dition to the type species G. yundingensis Xu, 2015.Our results show that three molecular species-delimitation methods – DNAbarcoding gap, P ID(Liberal),and ABGD – all fully confirm the morphological under-standing of Ganthela species diversity, and thus el-egantly complement traditional taxonomy (Fig. 1);however, GMYC and SP found more species of Ganthela,and thus disagree with the morphology, a result thatreinforces conclusions from previous studies (Esselstynet al., 2012; Paz & Crawford, 2012; Miralles & Vences,2013; Talavera et al., 2013; Hamilton et al., 2014). Weuse the consensus from our analyses for species de-limitation and diagnoses to conclude the formal revi-sion of Ganthela (see Taxonomy).

The traditional DNA barcoding gap and ABGDmethods are both based on the identification of a sig-nificant difference between inter- and intraspecificgenetic distances in samples of terminal taxa, in orderto assign organisms into putative species. For the DNAbarcoding gap analysis, we assigned Ganthela speci-mens into putative species considering the phylogenetic,morphological, and geographic information available.Our results are roughly comparable with those fromthe mygalomorph spider literature, which found abarcode gap of 5–6% (Hamilton et al., 2011, 2014);however, the gap is wider in Ganthela, ranging from4 to 12% (K2P)/4 to 11% (uncorrected p-distance; Fig. 2).ABGD usually generates diverse outcomes (Jörger et al.,2012; Puillandre et al., 2012; Kekkonen & Hebert, 2014).In this study, however, all analyses under different as-sumptions confirmed the six species, thereby lendingfurther support to the utility of the barcoding gap indelimiting species (Weigand et al., 2013; Candek &Kuntner, 2015; Hamilton et al., 2014).

P ID(Liberal) is usually used to test species hypoth-eses on phylogenetic trees (Masters et al., 2011; Hamiltonet al., 2014). According to our findings, a P ID(Liberal)value > 95% would be reasonable to distinguish Ganthelaspecies, and thus the cut-off of 95% can be used todelimit Ganthela and probably other liphisitiid species.T

able

2.S

um

mar

yof

the

mea

nin

tras

peci

fic

and

clos

est

inte

rspe

cifi

cge

net

icdi

stan

ce,

the

mea

npr

obab

ilit

yw

ith

95%

con

fide

nce

inte

rval

,an

dth

ein

tra/

inte

rspe

cifi

cra

tio

for

the

six

puta

tive

spec

ies

Pu

tati

vesp

ecie

sIn

tras

peci

fic

K2P

/p-d

ista

nce

Clo

sest

inte

rspe

cifi

cK

2P/P

-dis

tan

ceP

ID(L

iber

al)

Clo

sest

PID

(Lib

eral

)sp

ecie

sIn

tra/

inte

r

Gan

thel

aci

pin

gen

sis

0/0

0.12

/0.1

1;G

.jia

nen

sis

sp.n

ov.

1.00

(0.9

5–1.

00)

G.j

ian

ensi

ssp

.nov

.0.

06G

an

thel

aji

an

ensi

ssp

.nov

.0.

0071

/0.0

069

0.12

/0.1

1;G

.cip

inge

nsi

s0.

99(0

.94–

1.00

)G

.cip

inge

nsi

s0.

01G

an

thel

ave

nu

ssp

.nov

.0.

0010

/0.0

010

0.12

65/0

.115

1;G

.wa

ngj

ian

gen

sis

sp.n

ov.

1.00

(0.8

6–1.

00)

G.w

an

gjia

nge

nsi

ssp

.nov

.0.

03G

an

thel

aq

ingy

ua

nen

sis

sp.n

ov.

0.00

33/0

.003

30.

1321

/0.1

191;

G.x

ian

you

ensi

ssp

.nov

.1.

00(0

.97–

1.00

)G

.xia

nyo

uen

sis

sp.n

ov.

0.1

Ga

nth

ela

wa

ngj

ian

gen

sis

sp.n

ov.

0.00

10/0

.000

60.

1265

/0.1

151;

G.v

enu

ssp

.nov

.0.

98(0

.88–

1.00

)G

.ven

us

sp.n

ov.

0.02

Ga

nth

ela

xia

nyo

uen

sis

sp.n

ov.

0.01

62/0

.015

70.

1321

/0.1

191;

G.q

ingy

ua

nen

sis

sp.n

ov.

0.97

(0.9

1–1.

00)

G.q

ingy

ua

nen

sis

sp.n

ov.

0.02

294 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 8: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Figure 2. DNA barcoding gap for Ganthela. Histograms show division of intraspecific (grey) and interspecific (black)COI sequence variation based on Kimura two-parameter (K2P, A) and uncorrected p-distance (B).

Table 3. Results of the automatic barcode gap discovery (ABGD) analyses

Substitutionmodel Pmin/Pmax X Partition

Prior intraspecific divergence (P)

0.001 0.0017 0.0028 0.0046 0.0077 0.0129 0.0215 0.0359 0.0599 0.1

JC 0.001/0.1 1.5 Initial 6 6 6 6 6 6 6 6 6 6Recursive 11 9 9 9 9 8 7 7 6 6

K2P 0.001/0.1 1.5 Initial 6 6 6 6 6 6 6 6 6 6Recursive 11 9 9 9 9 8 7 7 6 6

Simple 0.001/0.1 1.5 Initial 6 6 6 6 6 6 6 6 6 6Recursive 11 9 9 9 9 8 7 7 6 6

JC 0.001/0.1 1 Initial 6 6 6 6 6 6 6 6 6 6Recursive 11 9 9 9 9 8 7 7 6 6

K2P 0.001/0.1 1 Initial 6 6 6 6 6 6 6 6 6 6Recursive 11 9 9 9 9 8 7 7 6 6

Simple 0.001/0.1 1 Initial 6 6 6 6 6 6 6 6 6 6Recursive 11 9 9 9 9 8 7 7 6 6

0.0001 0.0002 0.0005 0.0013 0.0029 0.0068 0.0159 0.0369 0.086JC 0.0001/0.2 1.5 Initial 6 6 6 6 6 6 6 6 6

Recursive 11 11 11 11 9 9 8 7 6K2P 0.0001/0.2 1.5 Initial 6 6 6 6 6 6 6 6 6

Recursive 11 11 11 11 9 9 8 7 6Simple 0.0001/0.2 1.5 Initial 6 6 6 6 6 6 6 6 6

Recursive 11 11 11 11 9 9 8 6 6JC 0.0001/0.2 1 Initial 6 6 6 6 6 6 6 6 6

Recursive 11 11 11 11 9 9 8 7 6

JC, Jukes–Cantor subsitution model; K2P, Kimura two-parameter substitution model; Simple, p-distance; X, relative gap width.

INTEGRATIVE TAXONOMY OF GANTHELA 295

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 9: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

As a species delimitation technique, the often usedGMYC is known to overestimate the number of species(Esselstyn et al., 2012; Paz & Crawford, 2012; Miralles& Vences, 2013; Talavera et al., 2013; Hamilton et al.,2014; but see, Jörger et al., 2012). In our case GMYCindeed seemingly overestimates the Ganthela species,suggesting that there are nine. Because GMYC re-quires an input tree, a differently obtained ultramatricgene tree, particularly one resulting from several genes,would probably change these results (Talavera et al.,2013; Kekkonen & Hebert, 2014). Our starting tree wasderived from a single mitochondrial gene, but the ad-dition of nuclear genes would be useful (Jörger et al.,2012; Dellicour & Flot, 2015).

Whereas SP has been successfully used in delimit-ing species in some taxa (Pons et al., 2006; Sauer &Hausdorf, 2012), it is often used to investigateintraspecific relationships. In our study, it oversplitsGanthela species and thus may not be helpful in de-limiting Ganthela species.

The peril of employing single-locus species delimi-tation techniques is the possibility of over-splitting taxaas a result of co-amplified nuclear mitochondrialpseudogenes (Song et al., 2008), incomplete lineagesorting and introgression (Hausdorf & Hennig, 2010;Edwards & Knowles, 2014), and particularly the deepgenetic structuring of mtDNA sequences (Bond et al.,2001; Arnedo & Ferrández, 2007). To avoid spuriousresults, taxonomic studies ideally incorporate multilocusdata and analyse it in a phylogenetic framework totest the validity of putative species (e.g. Satler, Carstens& Hedin, 2013; Edwards & Knowles, 2014; Opatova& Arnedo, 2014). Multi-locus approaches may be par-ticularly useful to understand lineages with seden-tary females and vagile males (Opatova & Arnedo, 2014;Hedin, 2015), where maternally inherited mtDNA mayshow deep genetic structuring, even in the absence ofgeographical barriers (Bond et al., 2001).

Showing poor dispersal abilities, primitively seg-mented spiders are strongly endemic and range-restricted, and the high interspecific genetic distancesin our study support the hypothesized low levels of geneflow among populations, which is typical of mygalomorphs(Hamilton et al., 2011, 2014; Hendrixson et al., 2013;Opatova & Arnedo, 2014). Nevertheless, our results

indicate that even single-locus analyses based on theCOI barcodes, if integrated with morphological and geo-graphical data, may provide sufficiently reliable speciesdelimitation, and that multi-locus phylogenetic ap-proaches may not be necessary for reliable taxonomicdecisions.

TAXONOMYGENUS GANTHELA XU & KUNTNER, 2015

For genus diagnosis and description, see Xu et al., 2015a.Type species by original designation, G. yundingensis

Xu, 2015. For diagnosis and description, see Xu et al.,2015a.

GANTHELA CIPINGENSIS (WANG, 1989) (FIG. 4)

Liphistius cipingensis Wang, 1989: 30, figs 1–6 (de-scription of female, type may be lost from HunanNormal University, not available for examination).

Heptathela cipingensis Platnick, 1993: 77 (trans-ferred from Liphistius).

Songthela cipingensis Ono, 2000: 150.

Material examinedFive females [XUX-2013-(508/510/511/512/514)] col-lected at Cemetery of Mount Jinggang RevolutionaryMartyrs, Ciping Town, Jinggangshan City, Jiangxi Prov-ince, China, 26.58°N, 114.16°E, 900 m a.s.l.,21 October 2013; two females [XUX-2013-(515–518)] col-lected at Nanshan, Ciping Town, Jinggangshan City,Jiangxi Province, China, 26.57°N, 114.16°E, 850 m a.s.l.,22 October 2013, collected by F.X. Liu, C. Xu, and X. Xu.No male found.

DiagnosisFemales of G. cipingensis resemble G. xianyouen-sis sp. nov., but differ by the details in genitalia, withrelatively longer genital stalks (Fig. 4B, C). Ganthelacipingensis differs from all other Ganthela species bythe following unique nucleotide substitutions in thestandard DNA barcode alignment: G (20), G (26), C(77), C (326), and C (413).

DescriptionFemale (Fig. 4A). Carapace and opisthosoma darkbrown; with clear fovea; chelicerae robust, with

Table 4. Results of the general mixed Yule-coalescent (GMYC) analyses

Analysis Clusters (CI) Entities (CI) Likelihood (null) Likelihood (GMYC) Likelihood ratio Threshold

Single 9 (7–9) 9 (7–11) 153.0361 166.2342 26.39622*** −0.3631672

Clusters, operational taxonomic units (OTUs) delineated by GMYC with more than one specimen; Entities, singletonOTUs delineated by GMYC; CI, confidence interval; Likelihood (null), likelihood of the null model; Likelihood (GMYC),likelihood of the GMYC model; Threshold, the threshold between speciation and coalescence processes; Single, single-threshold model; ***P < 0.001.

296 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 10: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Figure 3. Haplotype networks of Ganthela under a 95% parsimony criterion. The size of each open circle indicates haplotypefrequency, numbers preceded by ‘H’ indicate haplotype number, and numbers in brackets indicate population sizes. Opendots on lines connecting haplotypes indicate a substitution. Dashed lines enclosing haplotype networks correspond tomorphological and consensus species.

INTEGRATIVE TAXONOMY OF GANTHELA 297

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 11: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

promargin of cheliceral groove with between ten and13 strong denticles of variable size; legs with stronghairs and spines; opisthosoma with 12 tergites, withtergite 5 being largest; seven spinnerets. Measure-ments: BL 8.70–14.70, CL 4.13–6.40, CW 3.70–5.00,OL 4.65–8.00, and OW 3.25–5.40; ALE > PLE > PME >AME; palp 9.72 (3.47 + 1.70 + 2.15 + 2.40), leg I 12.00(3.75 + 2.15 + 2.40 + 2.30 + 1.40), leg II 12.06(3.70 + 2.13 + 2.23 + 2.50 + 1.50), leg III 13.30(3.60 + 2.20 + 2.25 + 3.35 + 1.90), and leg IV 19.07(5.30 + 2.67 + 3.45 + 5.20 + 2.44).

Female genitaliaThe posterior part of the genital area wide, rectan-gular (Fig. 4B, C), a pair of receptacular clusters closeto each other and more or less parallel, with shortgenital stalks (Fig. 4B, C).

DistributionJiangxi (Jinggangshan) Province, China.

GANTHELA JIANENSIS XU, KUNTNER &CHEN SP. NOV. (FIG. 5)

HolotypeFemale (XUX-2013-534), Mount Qingyuan, Ji’an City,Jiangxi Province, China, 27.06°N, 115.05°E, 100 m a.s.l.,23 October 2013, collected by F.X. Liu, X. Xu, andZ.T. Zhang.

ParatypesTen females (XUX-2013-530-531/533–536/538-541A) col-lected at the same locality, 23 October 2013, collectedby F.X. Liu, X. Xu, and Z.T. Zhang. No male found.

Etymology‘Jian’ refers to the type locality of this species.

DiagnosisFemales of G. jianensis sp. nov. differ from other speciesof Ganthela by details in genitalia, with short and thickgenital stalks (Fig. 5B, C), and by the slightly curvedposterior part of the genital area (Fig. 5B, C). Ganthelajianensis sp. nov. differs from all other Ganthela speciesby the following unique nucleotide substitutions inthe standard DNA barcode alignment: G (59), A (131),A (155), C (245), T (249), G (317), C (398), C (528), C(581), and C (638).

DescriptionFemale (holotype) (Fig. 5A). Carapace and opisthosoma,dark brown; chelicerae robust, with promargin ofcheliceral groove with between ten and 13 strongdenticles of variable size; legs with strong hairsand spines; opisthosoma with 12 tergites, with tergite 5being largest; seven spinnerets. Measurements:BL 11.80–15.50, CL 5.60–7.40, CW 5.30–6.50, OL 5.95–9.10, and OW 4.46–6.70; ALE > PLE > PME > AME;palp 11.55 (4.00 + 2.10 + 2.45 + 3.00), leg I 13.25(4.15 + 2.50 + 2.35 + 2.65 + 1.60), leg II 12.88(3.73 + 2.37 + 2.25 + 2.75 + 1.78), leg III 13.82

Figure 4. Ganthela cipingensis (Wang, 1989). A, female (XUX-2013-516). B, C, female genitalia (XUX-2013-517): B, dorsalview; C, ventral view; RC, receptacular cluster. Scale bar: 0.5 mm.

298 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 12: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

(4.00 + 2.42 + 2.17 + 3.23 + 2.00), and leg IV 20.37(5.61 + 3.00 + 3.45 + 5.53 + 2.78).

Female genitaliaPosterior part of genital area slightly curved (Fig. 5B,C), with pair of receptacular clusters close to eachother, and with very short and thick genital stalks(Fig. 5B, C).

DistributionJiangxi (Ji’an) Province, China

GANTHELA QINGYUANENSIS XU, KUNTNER &LIU SP. NOV. (FIG. 6)

HolotypeMale (XUX-2012-288, matured 18 July 2013 at CBEE,College of Life Sciences, Hubei University), aroundTV Tower, Mount Qingyuan, Quanzhou City, FujianProvince, China, 24.95°N, 118.60°E, 475 m a.s.l.,

11 December 2012, collected by D. Li, F.X. Liu,M. Kuntner, and X. Xu.

ParatypesThree females [XUX-2012-(287/290/297)] collected atthe same locality, 11 December 2012; eight females [XUX-2013-(138–142/146A-148)] collected at the same local-ity, 9 July 2013; collected by F.X. Liu, X. Xu, andZ.T. Zhang.

Etymology‘Qingyuan’ refers to the type locality of this species,Mount Qingyuan.

DiagnosisMales of G. qingyuanensis sp. nov. differ fromG. yundingensis by anatomical details in the palps,which have a small posterior apophysis on the con-ductor, in addition to the spiniform apex (Fig. 6G).Females of G. qingyuanensis sp. nov. can be distin-guished from all other Ganthela species by details inthe genitalia, with longer genital stalks (Fig. 6B, C).Ganthela qingyuanensis sp. nov. differs from all otherGanthela species by the following unique nucleotidesubstitutions in the standard DNA barcode align-ment: C (42), C (50), C (104), G (108), C (158), G (197),C (218), A (269), C (380), G (339), C (353), C (383), C(449), C (504), C (575), and C (625).

DescriptionMale (holotype). Carapace brown; opisthosoma lightbrown, with dark brown tergites; sternum narrow, muchlonger than wide; a few long pointed hairs running overocular mound in a longitudinal row; chelicerae robust,with promargin of cheliceral groove with 11 denticlesof variable size; legs with strong hairs and spines;opisthosoma with 12 tergites, with tergites 2–6 largerthan others, and with tergite 4 being largest; sevenspinnerets. Measurements: BL 10.55, CL 5.00, CW 4.85,OL 5.60, and OW 3.63; ALE > PLE > PME > AME; leg I14.50 (4.11 + 1.80 + 2.89 + 3.70 + 2.00), leg II 15.14(3.87 + 1.82 + 3.00 + 4.15 + 2.30), leg III 16.47(4.00 + 1.85 + 2.92 + 5.05 + 2.65), and leg IV 21.53(5.18 + 2.00 + 4.10 + 6.85 + 3.40).

PalpCymbium with a projection; prolateral side ofparacymbium unpigmented and unsclerotized, numer-ous setae and spines at the tip of paracymbium (Fig. 6F,G). Contrategulum has two marginal apophyses withsmooth margin and blunt distal end (Fig. 6H). Tegulumwith a dentate, wide edge (Fig. 6F, G). Conductor witha spiniform apex and a small apophysis at posteriorpart, parallel with embolus (Fig. 6G). Embolus largelysclerotized, with a wide and flat opening, and distalembolus slightly sclerotized (Fig. 6G).

Figure 5. Ganthela jianensis Xu, Kuntner & Chensp. nov. A, female (XUX-2013-536). B, C, female genitalia(XUX-2013-534): B, dorsal view; C, ventral view; RC,receptacular cluster. Scale bar 0.5 mm.

INTEGRATIVE TAXONOMY OF GANTHELA 299

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 13: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Female (Fig. 6A). Carapace and opisthosoma of femalesimilar to male, except coloration lighter than male;chelicerae robust, with promargin of cheliceral groovewith between ten and 12 strong denticles of variablesize; legs with strong hairs and spines; opisthosomawith 12 tergites, similar to male; seven spinnerets.Measurements: BL 10.68–14.48, CL 5.48–7.05, CW 4.52–6.00, OL 5.77–7.62, and OW 4.13–5.68; ALE > PLE >PME > AME; palp 9.51 (3.40 + 1.70 + 2.00 + 2.41), leg I11.43 (3.85 + 1.95 + 2.08 + 2.25 + 1.30), leg II 11.08

(3.40 + 1.95 + 1.96 + 2.45 + 1.32), leg III 11.81(3.46 + 2.05 + 1.92 + 2.70 + 1.68), and leg IV 17.46(4.95 + 2.48 + 3.05 + 4.68 + 2.30).

Female genitaliaPosterior part of genital area rectangular (Fig. 6B–E), with pair of receptacular clusters with genital stalks(Fig. 6B, C), or with paired receptacular clusters fusedinto a big cluster (Fig. 6D, E).

Figure 6. Ganthela qingyuanensis Xu, Kuntner & Liu sp. nov. A, female (XUX-2013-139). B, C, female genitalia (XUX-2013-142). D, E, female genitalia (XUX-2013-148). B, D, dorsal view; C, E, ventral view. F–H, male (XUX-2012-228) palp:F, prolateral view; G, ventral view; H, retrolateral view. Abbreviations: Co, conductor; CT, contrategulum; E, embolus;PC, paracymbium; T, tegulum; Scale bars: B–E, 0.5 mm; F–H, 1 mm.

300 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 14: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

VariationFemale receptacular clusters show considerableintraspecific variation, with the pair of receptacularclusters fused.

DistributionFujian (Quanzhou) Province, China.

GANTHELA WANGJIANGENSIS XU, KUNTNER & LIU

SP. NOV. (FIG. 7)

HolotypeFemale (XUX-2013-159), Mount Wangjiang, HuangyangVillage, Zhuangbian Town, Hanjiang District, PutianCity, Fujian Province, China, 25.66°N, 118.87°E,680 m a.s.l., 10 July 2013, collected by F.X. Liu, X. Xu,and Z.T. Zhang. No male found.

Etymology‘Wangjiang’ refers to the type locality of this species,Mount Wangjiang.

DiagnosisFemales of G. wangjiangensis sp. nov. differ from allother Ganthela species by the W-shaped posterior partof the genital area, and can be further distinguishedfrom G. venus sp. nov. by the connected basal genitalstalks (Fig. 7A, B). Ganthela wangjiangensis sp. nov.differs from all other Ganthela species by the follow-ing unique nucleotide substitutions in the standard DNAbarcode alignment: G (54), C (101), C (179), C (320),A (336), T (372), C (386), C (422), G (476), T (512),and C (632).

DescriptionFemale (holotype). Carapace and opisthosoma lightbrown; tergites slightly dark brown; sternum narrow,length more or less twice of width; a few long pointedhairs running over ocular mound in a longitudinal row;chelicerae robust, with promargin of cheliceral groovewith 12 strong denticles of variable size; legs with stronghairs and spines; opisthosoma with 12 tergites, with

tergites 2–6 larger than others, and the with tergite 4being largest; seven spinnerets. Measurements: BL 11.50,CL 4.90, CW 4.30, OL 6.40, OW 5.55; ALE > PLE >PME > AME; palp 7.94 (2.78 + 1.50 + 1.48 + 2.18), leg I9.10 (3.05 + 1.35 + 1.70 + 1.80 + 1.20), leg II 9.50(2.80 + 1.67 + 1.71 + 2.02 + 1.30), leg III 10.00(2.75 + 1.76 + 1.57 + 2.45 + 1.47), and leg IV 13.62(3.83 + 1.92 + 2.28 + 3.52 + 2.07).

Female genitaliaThe posterior part of genital area W-shaped (Fig. 7A,B), with a pair of receptacular clusters separated fromeach other, and with the basal parts of short genitalstalks fused (Fig. 7A, B).

DistributionFujian (Putian) Province, China.

RemarksGanthela wangjiangensis sp. nov. was collected within1 km of G. venus sp. nov., but at a higher altitude.

GANTHELA XIANYOUENSIS XU, KUNTNER & CHEN

SP. NOV. (FIG. 8)

HolotypeFemale (XUX-2013-153), Qingfengge, Dongshi Village,Yuanzhuang Town, Xianyou County, Putian City, FujianProvince, China; 25.24°N, 118.70°E, 336 m a.s.l.,10 July 2013; collected by F.X. Liu, X. Xu, and Z.T. Zhang.

ParatypesTwo females (XUX-2013-153/154) collected at the samelocality, 10 July 2013; collected by F.X. Liu, X. Xu, andZ.T. Zhang. No male found.

Etymology‘Xianyou’ refers to the type locality of this species.

DiagnosisFemales of G. xianyouensis sp. nov. can be distin-guished from all other Ganthela species by details of

Figure 7. Ganthela wangjiangensis Xu, Kuntner & Liu sp. nov. A, B, female genitalia (XUX-2013-159). A, dorsal view;B, ventral view. RC, receptacular cluster. Scale bar: 0.5 mm.

INTEGRATIVE TAXONOMY OF GANTHELA 301

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 15: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

the genitalia, with very short but slender genital stalks(Fig. 8B, C). Ganthela xianyouensis sp. nov. further differsfrom all other Ganthela species by the following uniquenucleotide substitutions in the standard DNA barcodealignment: G (96), G (146), C (277), C (314), T (338),C (393), C (428), and T (572).

DescriptionFemale (holotype) (Fig. 8A). Carapace and opisthosomalight brown; tergites dark brown; sternum narrow, lengthmore or less twice of width; a few long pointed hairsrunning over ocular mound in a longitudinal row;chelicerae robust, with promargin of cheliceral groovewith 11 or 12 strong denticles of variable size; legs withstrong hairs and spines; opisthosoma with 12 tergites,with tergites 2–6 larger than others, and with tergite 4being largest; seven spinnerets. Measurements:BL 13.60, CL 6.10, CW 4.96, OL 6.56, and OW 5.45;ALE > PLE >PME > AME; palp 9.48 (3.26 + 1.66 + 2.06 + 2.50), leg I11.58 (3.72 + 1.92 + 2.15 + 2.32 + 1.47), leg II 11.45(3.64 + 1.93 + 2.05 + 2.25 + 1.58), leg III 12.58(3.55 + 2.10 + 2.10 + 3.00 + 1.83), and leg IV 17.53(4.88 + 2.25 + 3.15 + 4.55 + 2.70).

Female genitaliaThe posterior part of genital area rectangular (Fig. 8B,C), with a pair of receptacular clusters close to eachother, and with very short but slender genital stalks(Fig. 8B, C).

DistributionFujian (Putian) Province, China.

GANTHELA VENUS XU SP. NOV. (FIG. 9)

HolotypeFemale (XUX-2013-160), Mount Wangjiang, HuangyangVillage, Zhuangbian Town, Hanjiang District, PutianCity, Fujian Province, China, 25.66°N, 118.88°E,459 m a.s.l., 11 July 2013, collected by F.X. Liu, X. Xu,and Z.T. Zhang. No male found.

EtymologyNamed after the Greek goddess of love, Venus.

DiagnosisFemales of G. venus sp. nov. can be distinguished fromG. wangjiangensis sp. nov. by details in the genitalia,which have separated stalks on the anterior part(Fig. 9A, B). Ganthela venus sp. nov. furthermore differsfrom all other Ganthela species by the following uniquenucleotide substitutions in the standard DNA barcodealignment: C (36), A (80), T (227), C (333), C (341), G(347), T (354), C (431), and T (539).

DescriptionFemale (holotype). Carapace and opisthosoma lightbrown; tergites slightly dark brown; sternum narrow,length more or less twice of width; a few long pointedhairs running over ocular mound in a longitudinal row;

Figure 8. Ganthela xianyouensis Xu, Kuntner & Chen sp. nov. A, female (XUX-2013-151). B, C, female genitalia (XUX-2013-153): B, dorsal view; C, ventral view. RC, receptacular cluster. Scale bar: 0.5 mm.

302 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 16: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

chelicerae robust, with promargin of cheliceral groovewith ten strong denticles of variable size; legs withstrong hairs and spines; opisthosoma with 12 tergites,with tergites 2–6 larger than others, and with tergite 4being largest; seven spinnerets. Measurements: BL 9.80,CL 4.38, CW 4.20, OL 5.6, and OW 5.00; ALE > PLE >PME > AME; palp 7.63 (2.50 + 1.31 + 1.65 + 2.17), leg Imissing, leg II 8.49 (2.71 + 1.50 + 1.68 + 1.50 + 1.10),leg III 9.34 (2.52 + 1.58 + 1.56 + 2.30 + 1.38), and leg IV13.70 (3.75 + 1.60 + 2.55 + 3.68 + 2.12).

Female genitaliaPosterior part of genital area W-shaped (Fig. 9A, B),with pair of receptacular clusters with short stalks onthe anterior part of genital separated from one another(Fig. 9A, B).

DistributionFujian (Putian) Province, China.

RemarksSee comments under G. wangjiangensis sp. nov.

ACKNOWLEDGEMENTS

We thank Chen Xu and Zengtao Zhang for assis-tance with fieldwork, Matjaž Gregoric, Nina Vidergar,and Ren-Chung Cheng for help and/or advice on mo-lecular resources and procedures, and the staff of theCentre for Behavioural Ecology and Evolution (CBEE,Hubei University) for all their help and support through-out this study, in particularly Bo Chen, Xiaoguo Jiao,Jie Liu, Yu Peng, Chen Xu, Long Yu, and ZengtaoZhang. This study was supported in part by funds fromChina [NSFC grant (31272324)], the Singapore Min-istry of Education (MOE) [AcRF Tier 1 grant (R-154-000-591-112)], and by the Slovenian Research Agency(grants P1-10236, MU-PROM/12-001 and J1-6729 to

MK). We thank Ingi Agnarsson and two anonymousreferees for their valuable input.

REFERENCES

Agnarsson I. 2010. The utility of ITS2 in spider phylogenetics?:notes on prior work and an example from Anelosimus. Journalof Arachnology 38: 377–382.

Agnarsson I, Kuntner M. 2007. Taxonomy in a changing world:seeking solutions for a science in crisis. Systematic Biology56: 531–539.

Arnedo MA, Ferrández MA. 2007. Mitochondrial markersreveal deep population subdivision in the European protect-ed spider Macrothele calpeiana (Walckenaer, 1805) (Araneae,Hexathelidae). Conservation Genetics 8: 1147–1162.

Barrett RDH, Hebert PDN. 2005. Identifying spiders throughDNA barcodes. Canadian Journal of Zoology 491: 481–491.

Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R,Winker K, Ingram KK, Das I. 2007. Cryptic species as awindow on diversity and conservation. Trends in Ecology andEvolution 22: 148–155.

Bishop SC, Crosby CR. 1932. A new species of the spiderfamily Liphistiidae from China. Peking Natural History Bul-letin 6: 5–8.

Blaxter ML, Mann J, Chapman T, Thomas F, Whitton C,Floyd R, Abebe E. 2005. Defining operational taxonomicunits using DNA barcode data. Philosophical Transactionsof the Royal Society of London B: Biological Sciences 360:1935–1943.

Bond JE, Hedin M. 2006. A total evidence assessment of thephylogeny of North American euctenizine trapdoor spiders(Araneae, Mygalomorphae, Cyrtaucheniidae) using Bayes-ian inference. Molecular Phylogenetics and Evolution 41: 70–85.

Bond JE, Hedin MC, Ramirez MG, Opell BD. 2001. Deepmolecular divergence in the absence of morphological andecological change in the Californian coastal dune endemictrapdoor spider Aptostichus simus. Molecular Ecology 10: 899–910.

Brower AVZ. 1994. Rapid morphological radiation and con-vergence among races of the butterfly Heliconius erato

Figure 9. Ganthela venus Xu sp. nov. A, B, female genitalia (XUX-2013-160): A, dorsal view; B, ventral view. RC, receptacularcluster. Scale bar: 0.5 mm.

INTEGRATIVE TAXONOMY OF GANTHELA 303

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 17: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

inferred from patterns of mitochondrial DNA evolution.Proceeding of the National Academy of Sciences 91: 6491–6495.

Camargo A, Sites JJ. 2013. Species delimitation: a decadeafter the renaissance. In: Pavlinov I, ed. The species problem– ongoing issues. New York: InTech, 225–247.

Candek K, Kuntner M. 2015. DNA barcoding gap: reliablespecies identification over morphological and geographicalscales. Molecular Ecology Resources 15: 268–277. doi:10.1111/1755-0998.12304.

Carstens BC, Pelletier TA, Reid NM, Satler JD. 2013. Howto fail at species delimitation. Molecular Ecology 22: 4369–4383.

Clement M, Posada D, Crandall KA. 2000. TCS: a com-puter program to estimate gene genealogies. Molecular Ecology9: 1657–1659.

Darriba D, Taboada GL, Doallo R, Posada D. 2012.jModelTest 2: more models, new heuristics and parallel com-puting. Nature Methods 9: 772.

Dayrat B. 2005. Towards integrative taxonomy. BiologicalJournal of the Linnean Society 85: 407–415.

Dellicour S, Flot J-F. 2015. Delimiting species-poor data setsusing single-molecular markers: a study of barcode gaps,haplowebs and GMYC. Systematic Biology. doi:10.1093/sysbio/syu130.

Derkarabetian S, Hedin M. 2014. Integrative taxonomy andspecies delimitation in harvestmen: a revision of the westernNorth American genus Sclerobunus (Opiliones: Laniatores:Travunioidea). PLoS ONE 9: e104982.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012.Bayesian phylogenetics with BEAUti and the BEAST 1.7.Molecular Biology and Evolution 29: 1969–1973.

Edwards DL, Knowles LL. 2014. Species detection and in-dividual assignment in species delimitation: can integra-tive data increase efficacy? Proceedings of the Royal SocietyB: Biological Sciences 281: 20132765.

Esselstyn JA, Evans BJ, Sedlock JL, Anwarali Khan FA,Heaney LR. 2012. Single-locus species delimitation: a testof the mixed Yule–coalescent model, with an empirical ap-plication to Philippine round-leaf bats. Proceedings of the RoyalSociety B: Biological Sciences 279: 3678–3686.

Ezard T, Fujisawa T, Barraclough TG. 2009. SPLITS: species’limits by threshold statistics. R Package Version 1.0-11.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994.DNA primers for amplification of mitochondrial cytochromec oxidase subunit I from diverse metazoan invertebrates. Mo-lecular Marine Biology and Biotechnology 3: 294–299.

Fouquet A, Cassini CS, Haddad CFB, Pech N, RodriguesMT. 2014. Species delimitation, patterns of diversificationand historical biogeography of the neotropical frog genusAdenomera (Anura, Leptodactylidae). Journal of Biogeogra-phy 41: 855–870.

Fujisawa T, Barraclough TG. 2013. Delimiting species usingsingle-locus data and the generalized mixed yule coalescentapproach: a revised method and evaluation on simulated datasets. Systematic Biology 62: 707–724.

Fujita MK, Leaché AD, Burbrink FT, McGuire JA, MoritzC. 2012. Coalescent-based species delimitation in an

integrative taxonomy. Trends in Ecology & Evolution 27: 480–488.

Funk DJ, Omland KE. 2003. Species-level paraphyly andpolyphyly: frequency, causes, and consequences, with in-sights from animal mitochondrial DNA. Annual Review ofEcology, Evolution, and Systematics 34: 397–423.

Gernhard T. 2008. The conditioned reconstructed process.Journal of Theoretical Biology 253: 769–778.

Hamilton CA, Formanowicz DR, Bond JE. 2011. Speciesdelimitation and phylogeography of Aphonopelma hentzi(Araneae, Mygalomorphae, Theraphosidae): cryptic diver-sity in North American tarantulas. PLoS ONE 6: e26207.

Hamilton CA, Hendrixson BE, Brewer MS, Bond JE. 2014.An evaluation of sampling effects on multiple DNA barcodingmethods leads to an integrative approach for delimiting species:a case study of the North American tarantula genusAphonopelma (Araneae, Mygalomorphae, Theraphosidae). Mo-lecular Phylogenetics and Evolution 71: 79–93.

Harris DJ, Froufe E. 2005. Taxonomic inflation: species conceptor historical geopolitical bias. Trends in Ecology & Evolu-tion 20: 6–7.

Hart MW, Sunday J. 2007. Things fall apart: biological speciesform unconnected parsimony networks. Biology Letters 3: 509–512.

Haupt J. 2003. The Mesothelaea monograph of an exception-al group of spiders (Araneae: Mesothelae) (Morphology, be-haviour, ecology, taxonomy, distribution and phylogeny).Zoologica 154: 1–102.

Hausdorf B. 2011. Progress toward a general species concept.Evolution 65: 923–931.

Hausdorf B, Hennig C. 2010. Species delimitation using domi-nant and codominant multilocus markers. Systematic Biology59: 491–503.

Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003a.Biological identifications through DNA barcodes. Proceed-ings of the Royal Society B: Biological Sciences 270: 313–321.

Hebert PDN, Ratnasingham S, deWaard JR. 2003b.Barcoding animal life: cytochrome c oxidase subunit 1 di-vergences among closely related species. Proceedings of theRoyal Society B: Biological Sciences 270: S96–S99.

Hedin M. 2015. High-stakes species delimitation in eyelesscave spiders (Cicurina, Dictynidae, Araneae) from centralTexas. Molecular Ecology 24: 346–361.

Hendrixson BE, DeRussy BM, Hamilton CA, Bond JE.2013. An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae,Mygalomorphae, Theraphosidae, Aphonopelma). MolecularPhylogenetics and Evolution 66: 327–340.

Huang J, Zhang A, Mao S, Huang Y. 2013. DNA barcodingand species boundary delimitation of selected species of hineseAcridoidea (Orthoptera: Caelifera). PLoS ONE 8: e82400.

Jörger KM, Norenburg JL, Wilson NG, Schrödl M. 2012.Barcoding against a paradox? Combined molecular speciesdelineations reveal multiple cryptic lineages in elusivemeiofaunal sea slugs. BMC Evolutionary Biology 12: 245.

Jukes TH, Cantor CR. 1969. Evolution of protein mol-ecules. In: Munro HN, ed. Mammalian protein metabolism.New York: Academic Press, 21–32.

304 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 18: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Kekkonen M, Hebert PDN. 2014. DNA barcode-based de-lineation of putative species: efficient start for taxonomicworkflows. Molecular Ecology Resources 14: 706–715.

Kimura M. 1980. A simple method for estimating evolution-ary rates of base substitutions through comparative studiesof nucleotide sequences. Journal of Molecular Evolution 16:111–120.

Kuntner M, Agnarsson I. 2011. Biogeography and diversi-fication of hermit spiders on Indian Ocean islands (Nephilidae:Nephilengys). Molecular Phylogenetics and Evolution 59: 477–488.

Kuntner M, Arnedo MA, Trontelj P, Lokovšek T,Agnarsson I. 2013. A molecular phylogeny of nephilid spiders:evolutionary volutionary history of a model lineage. Molecu-lar Phylogenetics and Evolution 69: 961–979.

Longhorn SJ, Nicholas M, Chuter J, Vogler AP. 2007. Theutility of molecular markers from non-lethal DNA samplesof the cites ii protected ‘tarantula’Brachypelma vagans (Araneae,Theraphosidae). Journal of Arachnology 35: 278–292.

Masters BC, Fan V, Ross HA. 2011. Species delimitation –a geneious plugin for the exploration of species boundaries.Molecular Ecology Resources 11: 154–157.

Miralles A, Vences M. 2013. New metrics for comparison oftaxonomies reveal striking discrepancies among species-delimitation methods in Madascincus lizards. PLoS ONE 8:e68242.

Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M,Inward DJG, Lees DC, Ranaivosolo R, Eggleton P,Barraclough TG, Vogler AP. 2009. Accelerated species in-ventory on Madagascar using coalescent-based models ofspecies delineation. Systematic Biology 58: 298–311.

Moritz C, Cicero C. 2004. DNA barcoding: promise and pit-falls. PLoS Biology 2: 1529–1531.

Nei M, Kumar S. 2000. Molecular evolution and phylogenetics.Oxford: Oxford University Press.

Ono H. 2000. Zoogeographic and taxonomic notes on spidersof the subfamily Heptathelinae (Araneae, Mesothelae,Liphistiidae). Memoirs of the National Science Museum Tokyo,Series A, Zoology 33: 145–151.

Opatova V, Arnedo MA. 2014. Spiders on a hot volcanic roof:colonisation pathways and phylogeography of the Canaryislands endemic trap-door spider Titanidiops canariensis(Araneae, Idiopidae). PLoS ONE 9: e115078.

Pante E, Schoelinck C, Puillandre N. 2015. From integra-tive taxonomy to species description: one step beyond. Sys-tematic Biology 64: 152–160.

Paz A, Crawford AJ. 2012. Molecular-based rapid inven-tories of sympatric diversity: a comparison of DNA barcodeclustering methods applied to geography-based vs clade-based sampling of amphibians. Journal of Biosciences 37: 887–896.

Platnick NI. 1993. Advances in spider taxonomy 1988–1991,with synonymies and transfers 1940–1980. New York: TheNew York Entomological Society.

Pons J, Barraclough T, Gomez-Zurita J, Cardoso A, DuranD, Hazell S, Kamoun S, Sumlin W, Vogler A. 2006.Sequence-based species delimitation for the DNA taxonomyof undescribed insects. Systematic Biology 55: 595–609.

Puillandre N, Lambert A, Brouillet S, Achaz G. 2012.ABGD, automatic barcode gap discovery for primary speciesdelimitation. Molecular Ecology 21: 1864–1877.

de Queiroz K. 2007. Species concepts and species delimita-tion. Systematic Biology 56: 879–886.

Rambaut A. 2012. FigTree v. 1.4.0. Available at: http://beast.bio.ed.ac.uk/FigTree

Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014.Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer

Rittmeyer EN, Austin CC. 2012. The effect of sampling ondelimiting species from multilocus sequence data. Molecu-lar Phylogenetics and Evolution 65: 451–463.

Robinson E, Blagoev G, Hebert P, Adamowicz S. 2009.Prospects for using DNA barcoding to identify spiders inspecies-rich genera. ZooKeys 16: 27–46.

Ronquist F, Teslenko M, van der Mark P, Ayres DL,Darling A, Höhna S, Larget B, Liu L, Suchard MA,Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesianphylogenetic inference and model choice across a large modelspace. Systematic Biology 61: 539–542.

Rubinoff D, Holland BS. 2005. Between two extremes:mitochondrial DNA is neither the panacea nor the nemesisof phylogenetic and taxonomic inference. Systematic Biology54: 952–961.

Satler JD, Carstens BC, Hedin M. 2013. Multilocus speciesdelimitation in a complex of morphologically conserved trap-door spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Sys-tematic Biology 62: 805–823.

Sauer J, Hausdorf B. 2012. A comparison of DNA-basedmethods for delimiting species in a Cretan land snail ra-diation reveals shortcomings of exclusively molecular tax-onomy. Cladistics 28: 300–316.

Shirley MH, Vliet KA, Carr AN, Austin JD. 2014. Rigor-ous approaches to species delimitation have significant im-plications for African crocodilian systematics and conservation.Proceeding of the Royal Society B: Biological Sciences 281:20132483.

Sites JW, Marshall JC. 2004. Operational criteria for de-limiting species. Annual Review of Ecology Evolution and Sys-tematics 35: 199–227.

Song H, Buhay JE, Whiting MF, Crandall KA. 2008. Manyspecies in one: DNA barcoding overestimates the number ofspecies when nuclear mitochondrial pseudogenes arecoamplified. Proceedings of the National Academy of Sci-ences 105: 13486–13491.

Sukumaran J, Holder MT. 2010. DendroPy: a Python libraryfor phylogenetic computing. Bioinformatics 26: 1569–1571.

Talavera G, Dinca V, Vila R. 2013. Factors affecting speciesdelimitations with the GMYC model: insights from a butter-fly survey. Methods in Ecology and Evolution 4: 1101–1110.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M,Kumar S. 2011. MEGA5: molecular evolutionary geneticsanalysis using maximum likelihood, evolutionary distance,and maximum parsimony methods. Molecular Biology andEvolution 28: 2731–2739.

Tanikawa A. 2013. Taxonomic revision of the spider genusRyuthela (Araneae: Liphistiidae). Acta Arachnologica 62: 33–40.

INTEGRATIVE TAXONOMY OF GANTHELA 305

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306

Page 19: Integrative taxonomy of the primitively segmented …ezlab.zrc-sazu.si/uploads/2015/09/Xual2015_GanthelaTaxonomy.pdfIntegrative taxonomy of the primitively segmented spider genus Ganthela

Tanikawa A, Miyashita T. 2015. Discovery of a cryptic speciesof Heptathela from the northernmost part of OkinawajimaIs., Southwest Japan, as revealed by mitochondrial and nuclearDNA. Acta Arachnologica 63: 65–72.

Templeton AR, Crandall KA, Sing F. 1992. Cladistic analy-sis of phenotypic associations with haplotypes inferred fromrestriction endonuclease mapping and DNA sequence data.III. cladogram estimation. Genetics 132: 619–633.

Wang JF. 1989. A new species of spider of the genus Liphistiusfrom south China (Araneae: Liphistiidae). Acta ZootaxonomicaSinica 14: 30–32.

Weigand AM, Jochum A, Pfenninger M, Steinke D,Klussmann-Kolb A. 2011. A new approach to an oldconundrum–DNA barcoding sheds new light on phenotypicplasticity and morphological stasis in microsnails (Gastropoda,Pulmonata, Carychiidae). Molecular Ecology Resources 11:255–265.

Weigand AM, Jochum A, Slapnik R, Schnitzler J, ZarzaE, Klussmann-Kolb A. 2013. Evolution of microgastropods(Ellobioidea, Carychiidae): integrating taxonomic, phylogeneticand evolutionary hypotheses. BMC Evolutionary Biology 13:18.

Wiens JJ. 2007. Species delimitation: new approaches for dis-covering diversity. Systematic Biology 56: 875–878.

Wiens JJ, Penkrot TA. 2002. Delimiting species usingDNA and morphological variation and discordant specieslimits in spiny lizards (Sceloporus). Systematic Biology 51:69–91.

Will KP, Mishler BD, Wheeler QD. 2005. The perils of DNA

barcoding and the need for integrative taxonomy. System-atic Biology 54: 844–851.

World Spider Catalog. 2015. World spider catalog. Version16. Natural History Museum Bern. Available at: http://wsc.nmbe.ch accessed 6 March 2015.

Xu X, Liu FX, Chen J, Ono H, Li D, Kuntner M. 2015a.A genus-level taxonomic review of primitively segmentedspiders (Mesothelae, Liphistiidae). ZooKeys 488: 121–151.

Xu X, Liu FX, Cheng R-C, Chen J, Xu X, Zhang ZS, OnoH, Pham DS, Norma-Rashid Y, Arnedo MA, KuntnerM, Li D. 2015b. Extant primitively segmented spiders haverecently diversified from an ancient lineage. Proceeding ofthe Royal Society B: Biological Sciences 282: 20142486. http://dx.doi.org/10.1098/rspb.2014.2486

Yule GU. 1924. A mathematical theory of evolution, based onthe conclusions of Dr. J. C. Wills, F. R. S. Philosophical Trans-actions of the Royal Society of London, Biology 213: 21–87.

Zhang JX, Maddison WP. 2013. Molecular phylogeny, diver-gence times and biogeography of spiders of the subfamilyEuophryinae (Araneae: Salticidae). Molecular Phylogeneticsand Evolution 68: 81–92.

Zuckerkandl E, Pauling L. 1962. Molecular disease, evolu-tion, and genetic heterogeneity. In: Kasha M, Pullman B,eds. Horizons in biochemistry. New York: Academic Press,189–225.

Zwickl DJ. 2006. Genetic algorithm approaches for thephylogenetic analysis of large biological sequence datasetsunder the maximum likelihood criterion. Unpublished PhDTheses, The University of Texas at Austin.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher’s web-site:

Appendix S1. Aligned COI sequences used for species delimitation (separate nexus file).

306 X. XU ET AL.

© 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015, 175, 288–306