intro rotor dynamics

Upload: zaeem-khan

Post on 13-Apr-2018

252 views

Category:

Documents


5 download

TRANSCRIPT

  • 7/27/2019 Intro Rotor Dynamics

    1/30

    Introduction to rotordynamics

    Mathias Legrand

    McGill University

    Structural Dynamics and Vibration Laboratory

    October 27, 2009

  • 7/27/2019 Intro Rotor Dynamics

    2/30

    Introduction Equations of motion Structural analysis Case studies References

    Outline

    2 / 27

    1 IntroductionStructures of interestMechanical componentsSelected topicsHistory and scientists

    2 Equations of motionInertial and moving framesDisplacements and velocitiesStrains and stressesEnergies and virtual worksDisplacement discretization

    3 Structural analysisStatic equilibriumModal analysis

    4 Case studiesCase 1: flexible shaft bearing systemCase 2: bladed disks

  • 7/27/2019 Intro Rotor Dynamics

    3/30

  • 7/27/2019 Intro Rotor Dynamics

    4/30

    Introduction Equations of motion Structural analysis Case studies References

    Structures of interest

    Structures of interest

    4 / 27

    Jet engines

    Electricity power plants

    Machine tools

    Gyroscopes

    I d i E i f i S l l i C di R f

  • 7/27/2019 Intro Rotor Dynamics

    5/30

    Introduction Equations of motion Structural analysis Case studies References

    Mechanical components

    Mechanical components

    5 / 27

    Terminology

    Supporting components

    Driving components

    Operating components

    supporting components

    operatingcomponents

    driving components

    Definitions

    Supporting components: journal bearings, seals, magnetic bearings

    Driving components: shaft

    Operating components: bladed disk, machine tools, gears

    I t d ti E ti f ti St t l l i C t di R f

  • 7/27/2019 Intro Rotor Dynamics

    6/30

    Introduction Equations of motion Structural analysis Case studies References

    Selected topics

    Selected topics

    6 / 27

    1 Driving components linear vs. nonlinear formulations constant vs. non-constant

    rotational velocities -dependent eigenfrequencies

    isotropic vs. anisotropiccross-sections

    rotational vs. reference frames stationary and rotating dampings gyroscopic terms external forcings and imbalances critical rotational velocities,

    Campbell diagrams, stability reduced-order models and modal

    techniques fluid-structure coupling bifurcation analyses,chaos

    2 Supporting components linear vs. nonlinear formulations constant vs. non-constant

    rotational velocities gyroscopic terms

    fluid-structure coupling3 Operating components

    linear vs. nonlinear formulations concept of axi-symmetry reduced-order models fluid-structure coupling critical rotational velocities,

    Campbell diagrams, stability fixed vs. moving axis of rotation centrifugal stiffening

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    7/30

    Introduction Equations of motion Structural analysis Case studies References

    History and scientists

    History and scientists

    7 / 27

    1869 Rankine

    On the centrifugal force on rotating shafts steam turbines notion of critical speed

    1895 Fppl, 1905 Belluzo, Stodola notion of supercritical speed

    1919 Jeffcott The lateral vibration of loaded shafts in the neighborhodof a whirling speed

    Before WWII: Myklestadt-Prohlmethod lumped systems cantilever aircraft wings precise computation of critical speeds

    Contemporary tools finite element method

    nonlinear analysis

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    8/30

    Introduction Equations of motion Structural analysis Case studies References

    Outline

    8 / 27

    1 IntroductionStructures of interestMechanical componentsSelected topicsHistory and scientists

    2

    Equations of motionInertial and moving framesDisplacements and velocitiesStrains and stressesEnergies and virtual worksDisplacement discretization

    3

    Structural analysisStatic equilibriumModal analysis

    4 Case studiesCase 1: flexible shaft bearing systemCase 2: bladed disks

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    9/30

    Introduction Equations of motion Structural analysis Case studies References

    Inertial and moving frames

    Inertial and moving frames

    9 / 27

    ex

    ey

    ez

    e1

    e2

    e3 s

    u

    O

    O

    M

    Rm

    Rg

    y

    Full 3D rotating motion of the dynamic frame Fixed (galilean, inertial) reference frame Rg Moving (non-inertial) reference frame Rm Rigid body large displacements Rm/Rg Small displacements and strains in Rm

    Coordinates x: position vector ofM in Rm u: displacement vector ofM/Rm in Rm s: displacement vector ofO/Rg in Rg y: displacement vector ofM/Rg in Rg

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    10/30

    q y

    Displacements and velocities

    Displacements and velocities

    10 / 27

    ex

    ey

    ez

    e1

    e2

    e3

    eX

    eY

    eZ

    z

    1Y

    Rotation matricesR1 =

    cos z sin z 0

    sin z cos z 0

    0 0 1

    ; R2 =

    cos Y 0 sin Y

    0 1 0

    sin Y 0 cos Y

    ; R3 =

    1 0 0

    0 cos 1 sin 10 sin 1 cos 1

    R= R3R2R1

    Coordinates transformation absolute displacement y= s+ R(x+ u) angular velocity matrix | R= R

    Velocities Time derivatives of positions in Rg y= s+ Ru + R(x + u) =s + Ru+ R(x + u)

    =

    0 3(t) 2(t)3(t) 0 1(t)

    2(t) 1(t) 0

  • 7/27/2019 Intro Rotor Dynamics

    11/30

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    12/30

    Energies and virtual works

    Energies and virtual works

    12 / 27

    Kinetic energy

    EK=12

    V

    yTydV =12

    V

    uTudV+

    V

    uTudV+12

    V

    uT2udV

    V

    (uT uT)(RTs+ x)dV+12

    V

    sTs +2sTRx x2x dV

    Strain energy

    U=12

    V

    TCdV

    External virtual works

    Wext = VuTRfdV+

    SuTRtdS (f, t)expressed in Rm

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    13/30

    Displacement discretization

    Displacement discretization

    13 / 27

    Discretized displacement field

    Rayleigh-Ritz formulation

    Finite Element formulation u(x, t) =

    ni=1

    i(x)ui(t)

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    14/30

    Displacement discretization

    Displacement discretization

    13 / 27

    Generic equations of motion

    Mu + (D + G())u +

    K(u) + P() + N()

    u= R() + F

    Structural matrices mass matrix M= V

    TdV

    gyroscopic matrix G=V2

    T

    dV

    centrifugal stiffening matrix N=VT2dV

    angular acceleration stiffening matrix P=VTdV

    stiffness matrix K= V TdV = V

    T(u)C(u)dV nonlinear in u

    damping matrix D(several different definitions)

    External force vectors inertial forces R=

    VT(RTs+ x + 2x)dV

    external forces F= VTfdV+ SF TtdS

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    15/30

    Displacement discretization

    Displacement discretization

    13 / 27

    Generic equations of motion

    Mu + (D + G())u +

    K(u) + P() + N()

    u= R() + F

    Choice space functions and time contributions u order-reduced models or modal reductions 1D, 2D or 3D elasticity beam and shell theories (Euler-Bernoulli, Timoshenko, Reissner-Mindlin. . . ) complex geometries: bladed-disks

    Other simplifying assumptions constant velocity along a single axis of rotation no gyroscopic terms no centrifugal stiffening localized vs. distributed imbalance isotropy or anisotropy of the shaft cross-section

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    16/30

    Outline

    14 / 27

    1 IntroductionStructures of interestMechanical componentsSelected topicsHistory and scientists

    2 Equations of motionInertial and moving framesDisplacements and velocitiesStrains and stressesEnergies and virtual worksDisplacement discretization

    3 Structural analysisStatic equilibriumModal analysis

    4 Case studiesCase 1: flexible shaft bearing systemCase 2: bladed disks

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    17/30

    Static equilibrium

    Static equilibrium

    15 / 27

    Solution and pre-stressed configuration

    Find displacementu0, solution of:K(u0) + N()

    u0 =R() + F

    V0 V V(t)

    u0i,

    0ij,

    0ij u

    i ,

    ij,

    ij

    initialconfiguration

    pre-stressedconfiguration

    additional dynamicconfiguration

    Applications slender structures plates, shells shaft with axial loading radial traction and blade untwist

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    18/30

    Modal analysis

    Modal analysis

    16 / 27

    Eigensolutions

    Defined with respect to the pre-stressed configuration V

    State-space formulation

    M D + G()0 M

    u

    u + 0 K(u0) + N()

    M 0 u

    u= 0

    0 (1) Consider:

    y=

    u

    u

    = Aet and find (y, )solution of (1)

    Comments -dependent complex (conjugate) eigenmodes and eigenvalues

    Right and left eigenmodes

    Whirl motions

    Campbell diagrams and stability conditions

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    19/30

    Modal analysis

    Modal analysis

    17 / 27

    Campbell diagrams

    Coincidence of vibration sources and -dependent natural resonances

    Quick visualisation of vibratory and design problems

    (Hz)

    backward whirl

    forward whirl

    frequency(Hz)

    0 2 4 6 8 10 120

    1

    2

    3

    4

    5

    6

    7

    8

    9

    (Hz)

    unstable

    ()

    0 2 4 6 8 10 12

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    Stability

    i | (i)>0 unstable

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    20/30

    Outline

    18 / 27

    1 IntroductionStructures of interestMechanical componentsSelected topicsHistory and scientists

    2 Equations of motionInertial and moving framesDisplacements and velocitiesStrains and stressesEnergies and virtual worksDisplacement discretization

    3 Structural analysisStatic equilibriumModal analysis

    4 Case studiesCase 1: flexible shaft bearing systemCase 2: bladed disks

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    21/30

    Case 1: flexible shaft bearing system

    Case 1: flexible shaft bearing system

    19 / 27

    Rotating shaft bearing system

    Constant velocity Small deflections Elementary slicerigid disk

    bearing 1bearing 2

    oil film

    Lb

    Y

    X

    Z shaft

    L

    Quantities of interest

    Kinetic Energy

    EK =S

    2

    L0

    (u2+ w2)dy+I

    2

    L0

    u

    y

    2+

    w

    y

    2dy+IL22I

    L0

    u

    y

    w

    ydy

    Strain Energy U= EI

    2

    L0

    2u

    y2

    2+

    2w

    y2

    2dy

    Virtual Work of external forces W =Fu+Gw

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    22/30

    Case 1: flexible shaft bearing system

    Case 1: flexible shaft bearing system

    20 / 27

    Z

    X

    journal

    bearing

    e

    ObOj(xj, zj)

    h(, t)

    Reynolds equation h journal/bearing clearance fluid viscosity angular velocity of the journal Router radius of the beam pfilm pressure

    y

    h3

    6p

    y

    +

    1R2

    h3

    6p

    =

    h

    +2

    h

    t

    Bearing forces

    Hj=1 Zjcos(+) +Xjsin(+) G=Zjsin(+) +Xjcos(+) 2

    Zjcos(+) Xjsin(+)

    Fx= R Lb

    3

    2c2

    0

    Gsin(+)

    Hj3 d; Fz=

    RLb3

    2c2

    0

    Gcos(+)

    Hj3 d

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    23/30

    Case 1: flexible shaft bearing system

    Case 1: flexible shaft bearing system

    21 / 27

    Linearization Equilibrium position Xe,Ze First order Taylor series of the nonlinear forces

    KXX = FXX

    e

    ; KXZ = FXZ

    e

    ; KZX = FZX

    e

    ; KZZ= FZZ

    e

    CXX= FX

    X

    e

    ; CXZ = FX

    Z

    e

    ; CZX = FZ

    X

    e

    ; CZZ = FZ

    Z

    e

    Field of displacement

    U(x, t) =

    Ni=1

    i(x)ui(t); W(x, t) =

    Ni=1

    i(x)wi(t) x= (u,w)T

    Linear equations of motion

    Mx + (G+ Cb)x + (K+ Kb)x= 0

    Introduction Equations of motion Structural analysis Case studies References

    C fl f

  • 7/27/2019 Intro Rotor Dynamics

    24/30

    Case 1: flexible shaft bearing system

    Case 1: flexible shaft bearing system

    22 / 27

    Linear equations of motion

    Mx + (G+ Cb())x+ (K+ Kb())x= FNL

    M=

    A + B 0

    0 A + B

    ; G=

    0 2B2B 0

    ; K=

    C 0

    0 C

    A= S

    L0

    Tdy; B= I

    L0

    ,Ty ,ydy; C= EI

    L0

    ,Tyy,yydy

    Comments

    Kbcirculatory matrix destabilizes the system Cbsymmetric damping matrix both matrices act on the shaft at the bearing locations (external virtual work)

    Introduction Equations of motion Structural analysis Case studies References

    C 1 fl ibl h f b i

  • 7/27/2019 Intro Rotor Dynamics

    25/30

    Case 1: flexible shaft bearing system

    Case 1: flexible shaft bearing system

    23 / 27

    Modal analysis

    Equilibrium position for each

    Cb, Kbfor each

    Modal analysis for each

    (Hz)

    ()

    0 5 10 15 20 25 30 35 40 45-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    (Hz)

    ()

    0 5 10 15 20 25 30 35-15

    -10

    -5

    0

    5

    10

    15

    Stability: linear vs. nonlinear models

    Frequency(Hz)

    (Hz)

    Amplitude

    0 50

    100 150

    200 250

    0

    100

    200

    3000

    1

    2

    3

    Introduction Equations of motion Structural analysis Case studies References

    C 1 fl ibl h ft b i t

  • 7/27/2019 Intro Rotor Dynamics

    26/30

    Case 1: flexible shaft bearing system

    Case 1: flexible shaft bearing system

    23 / 27

    Modal analysis

    Equilibrium position for each

    Cb, Kbfor each

    Modal analysis for each

    (Hz)

    (

    )

    0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5-2

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    (Hz)

    (

    )

    0 5 1 0 1 5 2 0 2 5 3 0 3 5-15

    -10

    -5

    0

    5

    10

    15

    Stability: linear vs. nonlinear models

    Frequency(Hz)

    (Hz)

    Amplitud

    e

    0 50

    100 150

    200 250

    0

    100

    200

    3000

    1

    2

    3

    Introduction Equations of motion Structural analysis Case studies References

    Case 1: flexible shaft bearing system

  • 7/27/2019 Intro Rotor Dynamics

    27/30

    Case 1: flexible shaft bearing system

    Case 1: flexible shaft bearing system

    24 / 27

    A few modes cylindrical modes

    conical modes

    Introduction Equations of motion Structural analysis Case studies References

    Case 2: bladed disks

  • 7/27/2019 Intro Rotor Dynamics

    28/30

    Case 2: bladed disks

    Case 2: bladed disks

    25 / 27

    Definition Closed replication of a sector Cyclic-symmetry

    Mathematical properties

    Invariant with respect to the axis of rotation Block-circulant mass and stiffness matrices Pairs of orthogonal modes with identical frequency

    Numerical issues No damping and gyroscopic matrices Determination ofMand K Notion of mistuning Constant

    Introduction Equations of motion Structural analysis Case studies References

    Case 2: bladed disks

  • 7/27/2019 Intro Rotor Dynamics

    29/30

    Case 2: bladed disks

    Case 2: bladed disks

    26 / 27

    Multi-stage configuration

    Closed replication of a "slice" Different number of blades No cyclic-symmetry

    Numerical issues No damping and gyroscopic matrices Determination ofMand K Notion of mistuning Constant

    Next-generation calculations

    Nonlinear terms Supporting+transmission+operating components Damping, gyroscopic terms, stiffening Time-dependent

    Introduction Equations of motion Structural analysis Case studies References

  • 7/27/2019 Intro Rotor Dynamics

    30/30

    References

    27 / 27

    [1] Giancarlo GentaDynamics of Rotating SystemsMechanical Engineering Series

    Springer, 2005

    [2] Michel Lalanne& Guy Ferraris

    Rotordynamics Prediction in EngineeringSecond Edition

    John Wiley & Sons, 1998

    [3] Jean-Pierre LanStructural Dynamics (in French)

    Lecture Notescole Centrale de Lyon, 2005