introduction to particle physics

65
INTRODUCTION TO PARTICLE PHYSICS Physics 129, Fall 2010; Prof. D. Budker

Upload: talbot

Post on 23-Mar-2016

75 views

Category:

Documents


3 download

DESCRIPTION

Physics 129, Fall 2010; Prof. D. Budker . Introduction to particle physics. Some introductory thoughts. Reductionists’ science Identical particles are truly so (bosons, fermions) We will be using (relativistic) QM where initial conditions do not uniquely define outcome:. Units. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Introduction  to particle  physics

INTRODUCTION TO PARTICLE PHYSICS

Physics 129, Fall 2010; Prof. D. Budker

Page 2: Introduction  to particle  physics

Some introductory thoughts

Reductionists’ science Identical particles are truly so (bosons, fermions) We will be using (relativistic) QM where initial

conditions do not uniquely define outcome:

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

ee

%988.99

Page 3: Introduction  to particle  physics

Units We use Gaussian units, thank you, Prof. Griffiths!

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

)1( units atomicor 1 No

,41 :HL No

,4

1 :SI No

1371, :Gaussian Yes

221

221

0

2

221

ecrqqF

rqqF

ce

rqqF

Page 4: Introduction  to particle  physics

Useful resource:

Particle Data Group: http://pdg.lbl.gov/

The Particle Data Group is an international collaboration charged with summarizing Particle Physics, as well as related areas of Cosmology and Astrophysics. In 2008, the PDG consisted of 170 authors from 108 institutions in 20 countries.

Order your free Particle Data Booklet !

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 5: Introduction  to particle  physics

The Standard Model

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 6: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 7: Introduction  to particle  physics

The Standard Model

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 8: Introduction  to particle  physics

The Standard Model

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 9: Introduction  to particle  physics

The Standard Model

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 10: Introduction  to particle  physics

The Standard Model

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 11: Introduction  to particle  physics

Composite particles: it’s like Greek to me

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 12: Introduction  to particle  physics

In the beginning… First 4 chapters in Griffiths --- self review We will cover highlights in class Homework is essential! Physics Department colloquia and webcasts

Watch Frank Wilczek’s Oppenheimer lecture

Take advantage of being at Berkeley!

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 13: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 14: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 15: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Universe today: little do we know!

Page 16: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Particle PhysicsAtomic Physics

Cosmology

Nuclear Physics

CM Physics

Page 17: Introduction  to particle  physics

Particle colliders: the tools of discovery

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

CERN LHC videoPDG collider table

Page 19: Introduction  to particle  physics

Feynman diagrams

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 20: Introduction  to particle  physics

Feynman diagrams

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Professor Oleg Sushkov’s notes, pp. 36-42:http://www.phys.unsw.edu.au/PHYS3050/pdf/Particles_classification.pdf

Page 21: Introduction  to particle  physics

Feynman diagrams

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Oleg Sushkov

Page 22: Introduction  to particle  physics

Feynman diagrams

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Oleg Sushkov

Page 23: Introduction  to particle  physics

Feynman diagrams

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Oleg Sushkov

Page 24: Introduction  to particle  physics

Feynman diagrams

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Oleg Sushkov

Page 25: Introduction  to particle  physics

Running coupling constants

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Renormalization……unification?

* No hope of colliders at 1014 GeV ! need to learn to be smart!

Page 26: Introduction  to particle  physics

The atmospheric muon “paradox”

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Mean lifetime: = 2.19703(4)×10−6 s

c 6×104 cm = 600 m

How do muons reach sea level?

Relativistic time dilation

Page 27: Introduction  to particle  physics

Lorentz transformations

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 28: Introduction  to particle  physics

Lorentz transformations: adding velocities

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 29: Introduction  to particle  physics

By the way…

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

If we fire photons heads on, what is their relative speed?

Moving shadows, scissors,…

Garbage (IMHO): superluminal tunneling

Confusing terminology (IMHO): “fast light”

Page 30: Introduction  to particle  physics

Lorentz transformations: Griffiths’ 3 things to remember

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

• Moving clocks are slower (by a factor of > 1)

• Moving sticks are shorter (by a factor of > 1)

Page 31: Introduction  to particle  physics

Lorentz transformations: seen as hyperbolic rotations

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Rapidities:

t

x

αstationary

moving

Page 32: Introduction  to particle  physics

Symmetries, groups, conservation laws

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 33: Introduction  to particle  physics

Symmetries, groups, conservation laws

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

• Symmetry: operation that leaves system “unchanged”

• Full set of symmetries for a given system GROUP

• Elements commute Abelian group

• Translations – abelian; rotations – nonabelian

• Physical groups – can be represented by groups of matrices

• U(n) – n n unitary matrices:

• SU(n) – determinant equal 1

• Real unitary matrices: O(n)

• SO(n) – all rotations in space of n dimensions

• SO(3) – the usual rotations (angular-momentum conservation)

*1 ~UU

OO ~1

Page 34: Introduction  to particle  physics

Angular Momentum

First, a reminder from Atomic Physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 35: Introduction  to particle  physics

35

Angular momentum of the electron in the hydrogen atom

Orbital-angular-momentum quantum number l = 0,1,2,…

This can be obtained, e.g., from the Schrödinger Eqn., or straight from QM commutation relations

The Bohr model: classical orbits quantized by requiring angular momentum to be integer multiple of

There is kinetic energy associated with orbital motion an upper bound on l for a given value of En

Turns out: l = 0,1,2, …, n-1

Page 36: Introduction  to particle  physics

36

Angular momentum of the electron in the hydrogen atom

(cont’d) In classical physics, to fully specify orbital angular

momentum, one needs two more parameters (e.g., two angles) in addition to the magnitude

In QM, if we know projection on one axis (quantization axis), projections on other two axes are uncertain

Choosing z as quantization axis:

Note: this is reasonable as we expect projection magnitude not to exceed

Page 37: Introduction  to particle  physics

37

Angular momentum of the electron in the hydrogen atom

(cont’d) m – magnetic quantum number because B-field can be

used to define quantization axis Can also define the axis with E (static or oscillating),

other fields (e.g., gravitational), or nothing Let’s count states:

m = -l,…,l i. e. 2l+1 states l = 0,…,n-1 1

2

0

1 2( 1) 1(2 1)2

n

l

nl n n

Page 38: Introduction  to particle  physics

38

Angular momentum of the electron in the hydrogen atom

(cont’d) Degeneracy w.r.t. m expected from isotropy of

space Degeneracy w.r.t. l, in contrast, is a special feature

of 1/r (Coulomb) potential

Page 39: Introduction  to particle  physics

39

Angular momentum of the electron in the hydrogen atom

(cont’d) How can one understand restrictions that QM puts on

measurements of angular-momentum components ? The basic QM uncertainty relation (*)

leads to (and permutations)

We can also write a generalized uncertainty relation

between lz and φ (azimuthal angle of the e): This is a bit more complex than (*) because φ is cyclic With definite lz , cos 0

Page 40: Introduction  to particle  physics

40

Wavefunctions of the H atom A specific wavefunction is labeled with n l m : In polar coordinates :

i.e. separation of radial and angular parts

Further separation:

Spherical functions

(Harmonics)

Page 41: Introduction  to particle  physics

41

Wavefunctions of the H atom (cont’d)

Legendre Polynomials

Page 42: Introduction  to particle  physics

42

Electron spin and fine structure

Experiment: electron has intrinsic angular momentum --spin (quantum number s)

It is tempting to think of the spin classically as a spinning object. This might be useful, but to a point

Experiment: electron is pointlike down to ~ 10-18 cm

cm 109.3 (1,2) Eqs. ,~ have weIf

(2) ~ocity linear vel hasobject theof surface Thefinite want we,Presumably

(1) ~

11

2

cmcrL

cωr

mrIL

Page 43: Introduction  to particle  physics

43

Electron spin and fine structure (cont’d)

Another issue for classical picture: it takes a 4π rotation to bring a half-integer spin to its original state. Amazingly, this does happen in classical world:

from Feynman's 1986 Dirac Memorial Lecture (Elementary Particles and the Laws of Physics, CUP 1987)

Page 44: Introduction  to particle  physics

44

Electron spin and fine structure (cont’d)

Another amusing classical picture: spin angular momentum comes from the electromagnetic field of the electron:

This leads to electron size

Experiment: electron is pointlike down to ~ 10-18 cm

Page 45: Introduction  to particle  physics

45

Electron spin and fine structure (cont’d)

s=1/2

“Spin up” and “down” should be used with understanding that the length (modulus) of the spin vector is >/2 !

The square of the projection is always 1/4

Page 46: Introduction  to particle  physics

46

Electron spin and fine structure (cont’d)

Both orbital angular momentum and spin have associated magnetic moments μl and μs

Classical estimate of μl : current loop

For orbit of radius r, speed p/m, revolution rate is

Gyromagnetic ratio

Page 47: Introduction  to particle  physics

47

Electron spin and fine structure (cont’d)

In analogy, there is also spin magnetic moment :

Bohr magneton

Page 48: Introduction  to particle  physics

48

Electron spin and fine structure (cont’d)

The factor 2 is important ! Dirac equation for spin-1/2 predicts exactly 2 QED predicts deviations from 2 due to vacuum

fluctuations of the E/M field One of the most precisely measured physical

constants: 2=2 1:001 159 652 180 73 28 [0.28 ppt]

Prof. G. Gabrielse, Harvard

Page 49: Introduction  to particle  physics

49

Electron spin and fine structure (cont’d)

Page 50: Introduction  to particle  physics

50

Electron spin and fine structure (cont’d)

When both l and s are present, these are not conserved separately

This is like planetary spin and orbital motion On a short time scale, conservation of individual angular

momenta can be a good approximation l and s are coupled via spin-orbit interaction: interaction of

the motional magnetic field in the electron’s frame with μs

Energy shift depends on relative orientation of l and s, i.e., on

Page 51: Introduction  to particle  physics

51

Electron spin and fine structure (cont’d)

QM parlance: states with fixed ml and ms are no longer eigenstates

States with fixed j, mj are eigenstates Total angular momentum is a constant of motion of

an isolated system

|mj| j If we add l and s, j ≥ |l-s| ; j l+s s=1/2 j = l ½ for l > 0 or j = ½ for l = 0

Page 52: Introduction  to particle  physics

52

Vector model of the atom Some people really need pictures… Recall: for a state with given j, jz

We can draw all of this as (j=3/2) 0; = ( 1)x yj j j j 2j

mj = 3/2 mj = 1/2

Page 53: Introduction  to particle  physics

53

Vector model of the atom (cont’d)

These pictures are nice, but NOT problem-free Consider maximum-projection state mj = j

Q: What is the maximal value of jx or jy that can be measured ?

A: that might be inferred from the picture is wrong…

mj = 3/2

Page 54: Introduction  to particle  physics

54

Vector model of the atom (cont’d)

So how do we draw angular momenta and coupling ? Maybe as a vector of expectation values, e.g., ?

Simple

Has well defined QM meaning

BUT

Boring

Non-illuminating

Or stick with the cones ? Complicated Still wrong…

Page 55: Introduction  to particle  physics

55

Vector model of the atom (cont’d) A compromise :

j is stationary l , s precess around j

What is the precession frequency? Stationary state – quantum numbers do not change Say we prepare a state withfixed quantum numbers |l,ml,s,ms This is NOT an eigenstatebut a coherent superposition of eigenstates, each evolving as Precession Quantum Beats l , s precess around j with freq. = fine-structure splitting

Page 56: Introduction  to particle  physics

Angular Momentum addition

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Q: q + anti-q = meson; What is the meson’s spin? A:

0 = ½ - ½ pseudoscalar mesons (π, K, , ’, …)1 = ½ + ½ vector mesons (ρ, , …)

Can add 3 and more!

Page 57: Introduction  to particle  physics

57

Example: a two-electron atom (He) Quantum numbers:

J, mJ “good” no restrictions for isolated atoms

l1, l2 , L, S “good” in LS coupling ml , ms , mL , mS “not good”=superpositions

“Precession” rate hierarchy: l1, l2 around L and s1, s2 around S:

residual Coulomb interaction (term splitting -- fast)

L and S around J (fine-structure splitting -- slow)

Vector Model

Page 58: Introduction  to particle  physics

58

jj and intermediate coupling schemes

Sometimes (for example, in heavy atoms), spin-orbit interaction > residual Coulomb LS coupling

To find alternative, step back to central-field approximation Once again, we have energies that only depend on electronic

configuration; lift approximations one at a time Since spin-orbit is larger, include it first

Page 59: Introduction  to particle  physics

Angular Momentum addition

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Page 60: Introduction  to particle  physics

Flavor Symmetry

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Protons and neutrons are close in mass n is 1.3 MeV (out of 940 MeV) heavier than p Coulomb repulsion should make p heavier Isospin:

Not in real space! No Never mind terminology: isotopic, isobaric Strong interactions are invariant w.r.t. isospin

“projection”

10

01

np

Page 61: Introduction  to particle  physics

Flavor Symmetry

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Nucleons are isodoublet Pions are isotriplet:

Q: Does the whole thing seem a bit crazy? It works, somehow…

110111 0

Page 62: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Oleg Sushkov: Redundant slide

Page 63: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Oleg Sushkov:

110111 0

Redundant slide

Page 64: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Proton and neutron properties

Page 65: Introduction  to particle  physics

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Proton and neutron properties