inverter detailed theory

Upload: bhawna

Post on 08-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Inverter Detailed Theory

    1/62

    Introduction to

    CMOS VLSIDesign

    MOS devices: static and

    dynamic behavior 

  • 8/19/2019 Inverter Detailed Theory

    2/62

    MOS equationsSlide 2CMOS VLSI Design

    Outline

    DC Response

    Logic Levels and Noise Margins

    Transient Response

    Delay Estimation

  • 8/19/2019 Inverter Detailed Theory

    3/62

    MOS equationsSlide 3CMOS VLSI Design

    Activity

    1)  If the width of a transistor increases the c!rrent will

    increase decrease not change 

    ")  If the length of a transistor increases the c!rrent will

    increase decrease not change

    #)  If the s!pply voltage of a chip increases the ma$im!mtransistor c!rrent will

    increase decrease not change

    %)  If the width of a transistor increases its gate capacitance will

    increase decrease not change

    &)  If the length of a transistor increases its gate capacitance will

    increase decrease not change

    ')  If the s!pply voltage of a chip increases the gate capacitanceof each transistor will

    increase decrease not change

  • 8/19/2019 Inverter Detailed Theory

    4/62

    MOS equationsSlide 4CMOS VLSI Design

    Activity

    1)  If the width of a transistor increases the c!rrent will

    increase decrease not change 

    ")  If the length of a transistor increases the c!rrent will

    increase decrease not change

    #)  If the s!pply voltage of a chip increases the ma$im!mtransistor c!rrent will

    increase decrease not change

    %)  If the width of a transistor increases its gate capacitance will

    increase decrease not change

    &)  If the length of a transistor increases its gate capacitance will

    increase decrease not change

    ')  If the s!pply voltage of a chip increases the gate capacitanceof each transistor will

    increase decrease not change

  • 8/19/2019 Inverter Detailed Theory

    5/62

    MOS equationsSlide 5CMOS VLSI Design

    DC Response

    DC Response( o!t vs* in for a gate

    E$( Inverter 

     + ,hen in - . /0 o!t - DD

     + ,hen in - DD  /0 o!t - . + In etween o!t depends on

    transistor si2e and c!rrent

     + 3y 4CL m!st settle s!ch that

    Idsn - 5Idsp5

     + ,e co!ld solve e6!ations

     + 3!t graphical sol!tion gives more insight

    Idsn

    Idsp

    o!t

    DD

    in

  • 8/19/2019 Inverter Detailed Theory

    6/62

    MOS equationsSlide 6CMOS VLSI Design

    ransistor Operation

    C!rrent depends on region of transistor ehavior 

    7or what in and o!t are nM89 and pM89 in

     + C!toff:

     + Linear: + 9at!ration:

  • 8/19/2019 Inverter Detailed Theory

    7/62

    MOS equationsSlide 7CMOS VLSI Design

    nMOS Operation

    Cutoff Linear Saturated

    gsn ; gsn 0

    dsn ;

    gsn 0

    dsn 0

    Idsn

    Idsp

    o!t

    DD

    in

  • 8/19/2019 Inverter Detailed Theory

    8/62

    MOS equationsSlide 8CMOS VLSI Design

    nMOS Operation

    Cutoff Linear Saturated

    gsn ; tn gsn 0 tn

    dsn ; gsn + tn

    gsn 0 tn

    dsn 0 gsn + tn

    Idsn

    Idsp

    o!t

    DD

    in

  • 8/19/2019 Inverter Detailed Theory

    9/62

    MOS equationsSlide 9CMOS VLSI Design

    nMOS Operation

    Cutoff Linear Saturated

    gsn ; tn gsn 0 tn

    dsn ; gsn + tn

    gsn 0 tn

    dsn 0 gsn + tn

    Idsn

    Idsp

    o!t

    DD

    in

    gsn - in

    dsn - o!t

  • 8/19/2019 Inverter Detailed Theory

    10/62

    MOS equationsSlide 10CMOS VLSI Design

    nMOS Operation

    Cutoff Linear Saturated

    gsn ; tn

    in ; tn

    gsn 0 tn

    in 0 tn

    dsn ; gsn + tn

    o!t ; in / tn

    gsn 0 tn

    in 0 tn

    dsn 0 gsn + tn

    o!t 0 in / tn

    Idsn

    Idsp

    o!t

    DD

    in

    gsn - in

    dsn - o!t

  • 8/19/2019 Inverter Detailed Theory

    11/62

    MOS equationsSlide 11CMOS VLSI Design

    pMOS Operation

    Cutoff Linear Saturated

    gsp 0 gsp ;

    dsp 0

    gsp ;

    dsp ;

    Idsn

    Idsp

    o!t

    DD

    in

  • 8/19/2019 Inverter Detailed Theory

    12/62

    MOS equationsSlide 12CMOS VLSI Design

    pMOS Operation

    Cutoff Linear Saturated

    gsp 0 tp gsp ; tp

    dsp 0 gsp + tp

    gsp ; tp

    dsp ; gsp + tp

    Idsn

    Idsp

    o!t

    DD

    in

  • 8/19/2019 Inverter Detailed Theory

    13/62

    MOS equationsSlide 13CMOS VLSI Design

    pMOS Operation

    Cutoff Linear Saturated

    gsp 0 tp gsp ; tp

    dsp 0 gsp + tp

    gsp ; tp

    dsp ; gsp + tp

    Idsn

    Idsp

    o!t

    DD

    in

    gsp - in / DD

    dsp - o!t / DD

    tp ; .

  • 8/19/2019 Inverter Detailed Theory

    14/62

    MOS equationsSlide 14CMOS VLSI Design

    pMOS Operation

    Cutoff Linear Saturated

    gsp 0 tp

    in 0 DD < tp

    gsp ; tp

    in ; DD < tp

    dsp 0 gsp + tp

    o!t 0 in / tp

    gsp ; tp

    in ; DD < tp

    dsp ; gsp + tp

    o!t ; in / tp

    Idsn

    Idsp

    o!t

    DD

    in

    gsp - in / DD

    dsp - o!t / DD

    tp ; .

  • 8/19/2019 Inverter Detailed Theory

    15/62

    MOS equationsSlide 15CMOS VLSI Design

    I!V Characteristics

    Ma=e pM89 is wider than nM89 s!ch that βn - βp

    gsn&

    gsn%

    gsn#

    gsn"

    gsn1

    gsp&

    gsp%

    gsp#

    gsp"

    gsp1

    DD

    /DD

    dsn

    /dsp

    /Idsp

    Idsn

    .

  • 8/19/2019 Inverter Detailed Theory

    16/62

    MOS equationsSlide 16CMOS VLSI Design

    Current vs" Vout# Vin

    in&

    in%

    in#

    in"

    in1

    in.

    in1

    in"

    in#

    in%

    Idsn

     5Idsp

    5

    o!t

    DD

  • 8/19/2019 Inverter Detailed Theory

    17/62

    MOS equationsSlide 17CMOS VLSI Design

    Load Line Analysis

    in&

    in%

    in#

    in"

    in1

    in.

    in1

    in"

    in#

    in%

    Idsn

     5Idsp

    5

    o!t

    DD

    7or a given in(

     + >lot Idsn Idsp vs* o!t

     + o!t m!st e where 5c!rrents5 are e6!al in

    Idsn

    Idsp

    o!t

    DD

    in

  • 8/19/2019 Inverter Detailed Theory

    18/62

    MOS equationsSlide 18CMOS VLSI Design

    Load Line Analysis

    in.

    in.

    Idsn

     5Idsp

    5

    o!t

    DD

    in - .

  • 8/19/2019 Inverter Detailed Theory

    19/62

    MOS equationsSlide 19CMOS VLSI Design

    Load Line Analysis

    in1

    in1I

    dsn 5I

    dsp5

    o!t

    DD

    in - .*"DD

  • 8/19/2019 Inverter Detailed Theory

    20/62

    MOS equationsSlide 20CMOS VLSI Design

    Load Line Analysis

    in"

    in"

    Idsn

     5Idsp

    5

    o!t

    DD

    in - .*%DD

  • 8/19/2019 Inverter Detailed Theory

    21/62

    MOS equationsSlide 21CMOS VLSI Design

    Load Line Analysis

    in#

    in#

    Idsn

     5Idsp

    5

    o!t

    DD

    in - .*'DD

  • 8/19/2019 Inverter Detailed Theory

    22/62

    MOS equationsSlide 22CMOS VLSI Design

    Load Line Analysis

    in%

    in%

    Idsn

     5Idsp

    5

    o!t

    DD

    in - .*?DD

  • 8/19/2019 Inverter Detailed Theory

    23/62

    MOS equationsSlide 23CMOS VLSI Design

    Load Line Analysis

    in&

    in.

    in1

    in"

    in#in%

    Idsn

     5Idsp

    5

    o!t

    DD

    in - DD

  • 8/19/2019 Inverter Detailed Theory

    24/62

    MOS equationsSlide 24CMOS VLSI Design

    Load Line Summary

    in&

    in%

    in#

    in"

    in1

    in.

    in1

    in"

    in#

    in%

    Idsn

     5Idsp

    5

    o!t

    DD

  • 8/19/2019 Inverter Detailed Theory

    25/62

    MOS equationsSlide 25CMOS VLSI Design

    DC rans$er Curve

    Transcrie points onto in vs* o!t plot

    in&

    in%

    in#

    in"

    in1

    in.

    in1

    in"

    in#

    in%

    o!t

    DD

    C

    o!t

    .

    in

    DD

    DD

     @ 3

    DE

    tn

      DD

    A" DD

  • 8/19/2019 Inverter Detailed Theory

    26/62

    MOS equationsSlide 26CMOS VLSI Design

    Operating Regions

    Revisit transistor operating regions

    C

    o!t

    .

    in

    DD

    DD

     @ 3

    DE

    tn   DDA" DD

  • 8/19/2019 Inverter Detailed Theory

    27/62

    MOS equationsSlide 27CMOS VLSI Design

    Operating Regions

    Revisit transistor operating regions

    C

    o!t

    .

    in

    DD

    DD

     @ 3

    DE

    tn   DDA" DD

  • 8/19/2019 Inverter Detailed Theory

    28/62

    MOS equationsSlide 28CMOS VLSI Design

    %eta Ratio

    If βp A βn ≠ 1 switching point will move from DDA" Called skewed  gate

    8ther gates( collapse into e6!ivalent inverter 

    o!t

    .

    in

    DD

    DD

    .*&

    1"

    10 p

    n

    β 

    β =

    0.1 p

    n

    β 

    β =

  • 8/19/2019 Inverter Detailed Theory

    29/62

    MOS equationsSlide 29CMOS VLSI Design

    &oise Margins

    Bow m!ch noise can a gate inp!t see efore it does

    not recogni2e the inp!t:

    Indeterminate

    Region

    NML

    NMB

    Inp!t Characteristics8!tp!t Characteristics

    8B

    DD

    8L

    ND

    IB

    IL

    Logical Bigh

    Inp!t Range

    Logical Low

    Inp!t Range

    Logical Bigh

    8!tp!t Range

    Logical Low

    8!tp!t Range

  • 8/19/2019 Inverter Detailed Theory

    30/62

    MOS equationsSlide 30CMOS VLSI Design

    Logic Levels

    To ma$imi2e noise margins select logic levels at

    DD

    in

    o!t

    DD

    βpAβ

    n 0 1

    in

      o!t

    .

  • 8/19/2019 Inverter Detailed Theory

    31/62

    MOS equationsSlide 31CMOS VLSI Design

    Logic Levels

    To ma$imi2e noise margins select logic levels at

     + !nity gain point of DC transfer characteristic

    DD

    in

    o!t

    8B

    DD

    8L

    IL

      IB

    tn

    nity ain >oints

    9lope - /1

    DD

    /

    5tp5

    βpAβ

    n 0 1

    in

      o!t

    .

  • 8/19/2019 Inverter Detailed Theory

    32/62

    MOS equationsSlide 32CMOS VLSI Design

    ransient Response

    DC analysis tells !s o!t if in is constant

    Transient analysis tells !s o!tt) if int) changes

     + Re6!ires solving differential e6!ations

    Inp!t is !s!ally considered to e a step or ramp + 7rom . to DD or vice versa

  • 8/19/2019 Inverter Detailed Theory

    33/62

    MOS equationsSlide 33CMOS VLSI Design

    Inverter Step Response

    E$( find step response of inverter driving load cap

    0( )

    (

    )

    )

    (

    o

    i

    ut 

    n

    out 

    V t t 

    =

    <   =

    =

    inEt)

    o!t

    Et)C

    load

    Idsn

    Et)

  • 8/19/2019 Inverter Detailed Theory

    34/62

    MOS equationsSlide 34CMOS VLSI Design

    Inverter Step Response

    E$( find step response of inverter driving load cap

    0

    0

    ( )

    ( )

    ( )

    ( )

    ou

     DDin

    out 

    u t t V  

    t t 

    V t 

    =

    =<

    =

    inEt)

    o!t

    Et)C

    load

    Idsn

    Et)

  • 8/19/2019 Inverter Detailed Theory

    35/62

    MOS equationsSlide 35CMOS VLSI Design

    Inverter Step Response

    E$( find step response of inverter driving load cap

    0

    0(

    ( ))

    (

    (

    )

    )

     DD

     Do

    i

     D

    o t 

    n

    ut 

    u

    V t 

    u t t V  

    = −

    =<

    =

    inEt)

    o!t

    Et)C

    load

    Idsn

    Et)

  • 8/19/2019 Inverter Detailed Theory

    36/62

    MOS equationsSlide 36CMOS VLSI Design

    Inverter Step Response

    E$( find step response of inverter driving load cap

    0

    0

    ( )

    ( )

    ( )

    (

    (

    )

    )

     DD

     DD

    loa

    ou

    i

    o

    n

    ut    sn

    u t t V  

    t t 

    V t 

    dt C 

     I t 

    = −

    =

    = −

    <

    0

    ( ) DD t out 

    ou

    ds

    t    DD t 

    n I t    V V 

    V V    V 

    V t t ≤= > −

    < −

    inEt)

    o!t

    Et)C

    load

    Idsn

    Et)

  • 8/19/2019 Inverter Detailed Theory

    37/62

    MOS equationsSlide 37CMOS VLSI Design

    Inverter Step Response

    E$( find step response of inverter driving load cap

    0

    0

    ( )

    ( )

    ( )

    (

    (

    )

    )

     DD

     DD

    loa

    ou

    i

    o

    n

    ut    sn

    u t t V  

    t t 

    V t 

    dt C 

     I t 

    = −

    =

    = −

    <

    ( )0

    2

    2

    0

    2)

    )

    (( )

    ( DD DD t 

     DD

    out 

    out 

    out out     D t 

    n

    ds

     D

     I    V 

    t t 

    V V V V  

    V V V V  V 

    V t V t 

    β 

    β 

    = − > −      − − < −   ÷

     

    inEt)

    o!t

    Et)C

    load

    Idsn

    Et)

  • 8/19/2019 Inverter Detailed Theory

    38/62

    MOS equationsSlide 38CMOS VLSI Design

    Inverter Step Response

    E$( find step response of inverter driving load cap

    0

    0

    ( )

    ( )

    ( )

    (

    (

    )

    )

     DD

     DD

    loa

    ou

    i

    o

    n

    ut    sn

    u t t V  

    t t 

    V t 

    dt C 

     I t 

    = −

    =

    = −

    <

    ( )0

    2

    2

    0

    2)

    )

    (( )

    ( DD DD t 

     DD

    out 

    out 

    out out     D t 

    n

    ds

     D

     I    V 

    t t 

    V V V V  

    V V V V  V 

    V t V t 

    β 

    β 

    = − > −      − − < −   ÷

     

    o!t

    Et)

    inEt)

    t.

    t

    inEt)

    o!t

    Et)C

    load

    Idsn

    Et)

  • 8/19/2019 Inverter Detailed Theory

    39/62

    MOS equationsSlide 39CMOS VLSI Design

    Delay De$initions

    tpdr (

    tpdf (

    tpd(

    tr (

    tf ( fall time

  • 8/19/2019 Inverter Detailed Theory

    40/62

    MOS equationsSlide 40CMOS VLSI Design

    Delay De$initions

    tpdr ( rising propagation delay 

     + 7rom inp!t to rising o!tp!t crossing DDA"

    tpdf ( falling propagation delay 

     +7rom inp!t to falling o!tp!t crossing DDA"

    tpd( average propagation delay 

     + tpd - tpdr  < tpdf )A"

    tr ( rise time

     + 7rom o!tp!t crossing .*" DD to .*? DD

    tf ( fall time

     + 7rom o!tp!t crossing .*? DD to .*" DD

  • 8/19/2019 Inverter Detailed Theory

    41/62

    MOS equationsSlide 41CMOS VLSI Design

    Delay De$initions

    tcdr ( rising contamination delay 

     + 7rom inp!t to rising o!tp!t crossing DDA"

    tcdf ( falling contamination delay 

     + 7rom inp!t to falling o!tp!t crossing DDA" tcd( average contamination delay 

     + tpd - tcdr  < tcdf )A"

  • 8/19/2019 Inverter Detailed Theory

    42/62

    MOS equationsSlide 42CMOS VLSI Design

    Simulated Inverter Delay

    9olving differential e6!ations y hand is too hard

    9>ICE sim!lator solves the e6!ations n!merically

     + ses more acc!rate I/ models tooF

    3!t sim!lations ta=e time to write

     E)

    .*.

    .*&

    1*.

    1*&

    "*.

     tEs).*. "..p %..p '..p ?..p 1n

    tpdf 

     - ''ps tpdr 

     - ?#psin

    o!t

  • 8/19/2019 Inverter Detailed Theory

    43/62

    MOS equationsSlide 43CMOS VLSI Design

    Delay 'stimation

    ,e wo!ld li=e to e ale to easily estimate delay + Not as acc!rate as sim!lation

     + 3!t easier to as= G,hat if:H

    The step response !s!ally loo=s li=e a 1st order RC

    response with a decaying e$ponential* se RC delay models to estimate delay

     + C - total capacitance on o!tp!t node

     + se effective resistance R

     + 9o that tpd - RC Characteri2e transistors y finding their effective R

     + Depends on average c!rrent as gate switches

  • 8/19/2019 Inverter Detailed Theory

    44/62

    MOS equationsSlide 44CMOS VLSI Design

    RC Delay Models

    se e6!ivalent circ!its for M89 transistors

     + Ideal switch < capacitance and 8N resistance

     + nit nM89 has resistance R capacitance C

     + nit pM89 has resistance "R capacitance C

    Capacitance proportional to width

    Resistance inversely proportional to width

    =g

    s

    dg

    s

    d

    =C=C

    =CRA=

    =g

    s

    d

    g

    s

    d

    =C

    =C

    =C

    "RA=

  • 8/19/2019 Inverter Detailed Theory

    45/62

    MOS equationsSlide 45CMOS VLSI Design

    '(ample: )!input &A&D

    9=etch a #/inp!t N@ND with transistor widths chosento achieve effective rise and fall resistances e6!al to

    a !nit inverter R)*

  • 8/19/2019 Inverter Detailed Theory

    46/62

    MOS equationsSlide 46CMOS VLSI Design

    '(ample: )!input &A&D

    9=etch a #/inp!t N@ND with transistor widths chosento achieve effective rise and fall resistances e6!al to

    a !nit inverter R)*

  • 8/19/2019 Inverter Detailed Theory

    47/62

    MOS equationsSlide 47CMOS VLSI Design

    '(ample: )!input &A&D

    9=etch a #/inp!t N@ND with transistor widths chosento achieve effective rise and fall resistances e6!al to

    a !nit inverter R)*

    #

    #

    """

    #

  • 8/19/2019 Inverter Detailed Theory

    48/62

    MOS equationsSlide 48CMOS VLSI Design

    )!input &A&D Caps

     @nnotate the #/inp!t N@ND gate with gate anddiff!sion capacitance*

    "   "   "

    #

    #

    #

  • 8/19/2019 Inverter Detailed Theory

    49/62

    MOS equationsSlide 49CMOS VLSI Design

    )!input &A&D Caps

     @nnotate the #/inp!t N@ND gate with gate anddiff!sion capacitance*

    "   "   "

    #

    #

    ##C

    #C

    #C

    #C

    "C

    "C

    "C

    "C

    "C

    "C

    #C

    #C

    #C

    "C   "C "C

  • 8/19/2019 Inverter Detailed Theory

    50/62

    MOS equationsSlide 50CMOS VLSI Design

    )!input &A&D Caps

     @nnotate the #/inp!t N@ND gate with gate anddiff!sion capacitance*

    C

    #C

    #C#

    #

    #

    """

    &C

    &C

    &C

  • 8/19/2019 Inverter Detailed Theory

    51/62

    MOS equationsSlide 51CMOS VLSI Design

    'lmore Delay

    8N transistors loo= li=e resistors

    >!ll!p or p!lldown networ= modeled as RC ladder 

    Elmore delay of RC ladder 

    R1

      R"

      R#

      RN

    C1

      C"

      C#

      CN

    ( ) ( )

    nodes

    1 1 1 2 2 1 2... ...

     pd i to source i

    i

     N N 

    t R C 

     R C R R C R R R C 

    − −≈

    = + + + + + + +∑

  • 8/19/2019 Inverter Detailed Theory

    52/62

    MOS equationsSlide 52CMOS VLSI Design

    '(ample: *!input &A&D

    Estimate worst/case rising and falling delay of "/inp!t N@ND driving h identical gates*

    h copies

    "

    "

    ""

    3

     @

    $

    J

  • 8/19/2019 Inverter Detailed Theory

    53/62

    MOS equationsSlide 53CMOS VLSI Design

    '(ample: *!input &A&D

    Estimate rising and falling propagation delays of a "/inp!t N@ND driving h identical gates*

    h copies'C

    "C"

    "

    ""

    %hC

    3

     @

    $

    J

  • 8/19/2019 Inverter Detailed Theory

    54/62

    MOS equationsSlide 54CMOS VLSI Design

    '(ample: *!input &A&D

    Estimate rising and falling propagation delays of a "/inp!t N@ND driving h identical gates*

    h copies'C

    "C"

    "

    ""

    %hC

    3

     @

    $

    J

    R

    E'

  • 8/19/2019 Inverter Detailed Theory

    55/62

    MOS equationsSlide 55CMOS VLSI Design

    '(ample: *!input &A&D

    Estimate rising and falling propagation delays of a "/inp!t N@ND driving h identical gates*

    h copies'C

    "C"

    "

    ""

    %hC

    3

     @

    $

    J

    R

    E'

  • 8/19/2019 Inverter Detailed Theory

    56/62

    MOS equationsSlide 56CMOS VLSI Design

    '(ample: *!input &A&D

    Estimate rising and falling propagation delays of a "/inp!t N@ND driving h identical gates*

    h copies'C

    "C"

    "

    ""

    %hC

    3

     @

    $

    J

  • 8/19/2019 Inverter Detailed Theory

    57/62

    MOS equationsSlide 57CMOS VLSI Design

    '(ample: *!input &A&D

    Estimate rising and falling propagation delays of a "/inp!t N@ND driving h identical gates*

    h copies'C

    "C"

    "

    ""

    %hC

    3

     @

    $

    J

     pdf  t    =E'

  • 8/19/2019 Inverter Detailed Theory

    58/62

    MOS equationsSlide 58CMOS VLSI Design

    '(ample: *!input &A&D

    Estimate rising and falling propagation delays of a "/inp!t N@ND driving h identical gates*

    h copies'C

    "C"

    "

    ""

    %hC

    3

     @

    $

    J

    ( ) ( )   ( )   ( )( )

    2 2 22 6 4

    7 4

     R R R pdf  t C h C  

    h RC 

    = + + + = +

    E'

  • 8/19/2019 Inverter Detailed Theory

    59/62

    MOS equationsSlide 59CMOS VLSI Design

    Delay Components

    Delay has two parts

     + Parasitic delay 

    K ' or RC

    K Independent of load

     + Effort delay 

    K %h RC

    K >roportional to load capacitance

  • 8/19/2019 Inverter Detailed Theory

    60/62

    MOS equationsSlide 60CMOS VLSI Design

    Contamination Delay

    3est/case contamination) delay can e s!stantiallyless than propagation delay*

    E$( If oth inp!ts fall sim!ltaneo!sly

    'C

    "C"

    "

    ""

    %hC

    3

     @

    $

    J

    R

    E'

  • 8/19/2019 Inverter Detailed Theory

    61/62

    MOS equationsSlide 61CMOS VLSI Design

    C

    #C

    #C#

    #

    #

    """

    #C

    "C"C

    #C#C

    IsolatedContacted

    Diff!sionMergedncontacted

    Diff!sion

    9haredContacted

    Diff!sion

    Di$$usion Capacitance

    we ass!med contacted diff!sion on every s A d* ood layo!t minimi2es diff!sion area

    E$( N@ND# layo!t shares one diff!sion contact

     + Red!ces o!tp!t capacitance y "C

     + Merged !ncontacted diff!sion might help too

  • 8/19/2019 Inverter Detailed Theory

    62/62

    Layout Comparison

    ,hich layo!t is etter:

     @

    DD

    ND

    3

    J

     @

    DD

    ND

    3

    J