ionenstrahllabor hahn-meit summer school 05 1 heinrich ...uc.jinr.ru/3summerschool/homeyer.pdf ·...

70
Heinrich Homeyer Summer School 05 1 Ionenstrahllabor Hahn-Meitner-Institut Berlin

Upload: others

Post on 31-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Heinrich HomeyerSummer School 05 1Ionenstrahllabor Hahn-Meitner-Institut Berlin

Heinrich HomeyerSummer School 05 2Ionenstrahllabor Hahn-Meitner-Institut Berlin

Fast Light and Heavy Ions in Medicine, Materials Analysis and Materials Modifications

IntroductionISL Facility

AcceleratorsIons & Energies

Proton TherapyOcular MelanomaGeneral Remarks

Analytical ToolsERDAPIXE

Industrial ApplicationsIrradiation of PolymerFoilSingle Event Effects

Conclusions

Student Summer SchoolDubna

July 2005

H. HomeyerHahn-Meitner Institut Berlin

Heinrich HomeyerSummer School 05 3Ionenstrahllabor Hahn-Meitner-Institut Berlin

Introduction: Accelerator Tree

CommercialAccelerators

(Industrial Production, industrial research &

clinics

4 Synchrotrons4 HE Zyklotrons

300 Zyklotrons2000 v.d. Graaffs7000 Implanters

Medical Applications,Isotope PET

Mikro-Structures

Lithography

Nuclear Physics

IonImplantation

Semi-conductors

PIXE ERDA

StorageRings

RBS

AMS

Linacs

Medical Applications,

Radiation-Therapy

1995

1985

1975

1965

Electrostatic Accelerators

Cyclotrons

1930

Heinrich HomeyerSummer School 05 4Ionenstrahllabor Hahn-Meitner-Institut Berlin

Introduction: Features of “Fast Ions”

targetprojectile sample

sample

sampleprojectile

Fast ionsproduce radioisotopes

Radiotracers forMedical DiagnosticsRadiotherapyTribology

analysis of local structures in solids

are scattered bynuclei (Rutherford scattering)

Materials AnalysisThin LayersElasticRecoilDetectionAnalysis

RutherfordBackScattering

most likely byelectrons Thick Samples

ProtonInducedX-rayEmission

energy loss of fast ions due to electronic excitations!

Heinrich HomeyerSummer School 05 5Ionenstrahllabor Hahn-Meitner-Institut Berlin

Introduction: The Electronic Energy Loss

HC Ne

Ar

KrXe

Au

20 40 60 8010-1

100

101

102

LET

in S

i (M

eV/(m

g/cm

2 ))

Ener

gy/A

tom

ic M

ass

(MeV

/u)

Ion Atomic Number

RFQ-cyclotron combination

0.5

100.0

CB

Large variation of the electronic energy loss with particles` nuclear charge and energy !

Heinrich HomeyerSummer School 05 6Ionenstrahllabor Hahn-Meitner-Institut Berlin

Introduction: Properties of Energetic Heavy Ions

high electronic excitation10-17 - 10-13 s, 20 eV/atom

heating and particle emission 10-13 - 10-11 s

frozen-in atomic rearrangements> 103 s, 10 nm Ø

Energy deposition- large- fast- local

Straight-linedPath

Large penetration depth 104

105

103

102

101

1

visiblelight

electrons

heavyions

x-rays

Aspect Ratio ion track

µm - mm

~10 nm

Heinrich HomeyerSummer School 05 7Ionenstrahllabor Hahn-Meitner-Institut Berlin

ISL Facility: Overview

Eye-Tumour-Therapy

ERDA

PIXEFoil IrradiationRFQ

Magnetic SpectrometerRecoil Implantation

Dual-Beam Line BIBER

200 kV Platformwith ECR-ion Source

5.5 Mv van de Graaff

High Dose IrradiationX-ray DiffractometerElectron SpectrometerLaser

RBSβ-NMR

Dedicated Facility for Fast Ions in Medicine, Materials Analysis & Modifications

Heinrich HomeyerSummer School 05 8Ionenstrahllabor Hahn-Meitner-Institut Berlin

ISL: Separated Sector Cyclotron

Sectors 4Dees 2Bending Limit k=135Frequency 10-20 MHzHarmonics 2-8Inner Radius 40 cmExtraction Radius 172 cmMax. Average Field 1.2 Tesla

Heinrich HomeyerSummer School 05 9Ionenstrahllabor Hahn-Meitner-Institut Berlin

ISL: Radio-Frequency-Quadrupole Injector

Specifications

Injector for Heavy Ions• Mass to charge ratio 5 to 8• Number of structures 2• Structure length 1.4 m• Operating frequency 85 - 120 MHz• Maximum electrode voltage 50 kV

Two Structures• Structure 1

Beam aperture diameter 4 mmEnergy gain factor 6

Structure 2 • Energy gain factor

• Transport mode 0• Acceleration mode 2

Output energy• RFQ alone (keV/A) 90 to 360• Cyclotron (MeV/A) 1.5 to 6

electrical fields betweenthe RFQ electrodes

Heinrich HomeyerSummer School 05 10Ionenstrahllabor Hahn-Meitner-Institut Berlin

ISL: Van de Graaff Injector 5.5 MV

Special Feature: Light Ion Injector– Terminal

• 5 GHz ECR-Ion Source• Fast High Voltage Regulation System• Buncher

– Beam• Low Energy Spread• Very Stable

Particles have to pass a stripper(gas or foil) before injection

0 100 200 300 4000,0

0,2

0,4

0,6

0,8

1,0

Bea

m In

tens

ity (µ

A)

Time (s)

Stability of the analysed beam

Heinrich HomeyerSummer School 05 11Ionenstrahllabor Hahn-Meitner-Institut Berlin

Introduction: The Electronic Energy Loss

HC Ne

Ar

KrXe

Au

20 40 60 8010-1

100

101

102

LET

in S

i (M

eV/(m

g/cm

2 ))

Ener

gy/A

tom

ic M

ass

(MeV

/u)

Ion Atomic Number

RFQ-cyclotron combination

0.5

100.0

CB

Large variation of the electronic energy loss with particles` nuclear charge and energy !

Heinrich HomeyerSummer School 05 12Ionenstrahllabor Hahn-Meitner-Institut Berlin

ISL Facility: Overview

Masses: 1 ... 200Energies: 1.5-6 MeV/amu (RFQ-Injector)

30 MeV/amu (light Ions)70 MeV Protons

LET: 0,5 ... 80 keV/nmDose Rate: 1 ... 1011 part/secTotal Dose: 1014/cm2

Area: 10-4 ... 102 cm2

Heinrich HomeyerSummer School 05 13Ionenstrahllabor Hahn-Meitner-Institut Berlin

ISL Facility: Location

Heinrich HomeyerSummer School 05 14Ionenstrahllabor Hahn-Meitner-Institut Berlin

Radiation Therapy: Basics

0,00

50,00

100,00

0 5 10 15 20 25Dose [arbitrary units]

Effe

ct [%

] Normal tissueTumorEfficiancy

Reduction of Side Effects : Concentration of the dose on tumor tissue

Heinrich HomeyerSummer School 05 15Ionenstrahllabor Hahn-Meitner-Institut Berlin

Radiation Therapy: Advantage of Protons

electrons γ-rays proton beam

rela

tive

dose

depthConcentration of dose with“conventional” radiationbest solution: IMRTComparison of different depth

dose distributions: Protons have an inverse depth dose profile!

Heinrich HomeyerSummer School 05 16Ionenstrahllabor Hahn-Meitner-Institut Berlin

Proton Therapy: Advantage of Protons

0 10 20 300

20

40

60

80

100

Tiefe in Wasser [mm]

rela

tive

Dos

is [%

] SOBP Production of a homogeneous depthdose profile:Weighted adding of different energies

Simplest solution:Modulator wheel

Heinrich HomeyerSummer School 05 17Ionenstrahllabor Hahn-Meitner-Institut Berlin

Proton Therapy: General Layout

Passive Formation of the Radiation Field:ScatteringApertures, Range Shifter & Modulator

Heinrich HomeyerSummer School 05 18Ionenstrahllabor Hahn-Meitner-Institut Berlin

Proton Therapy of Ocular Melanomas

X-RayTube

PatientCollimatorr

Ta - Markerss

ProtonBeam

DoseRateMonitorr

FixationLightt

TumorRangeModulator

Monitor

X-RayScreen

RangeShifter

Heinrich HomeyerSummer School 05 19Ionenstrahllabor Hahn-Meitner-Institut Berlin

Tumor Therapy: Set-up

Range Shifter

Range Modulator

Patient Mask

Patient Aperture

Fixation Light

Heinrich HomeyerSummer School 05 20Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Preparation

Clinic:Diagnostics, Indication

Preparations Clip-Surgery, Image (CT, MRI, Ultrasound)

Localization:Mask Production, Clip Verification

Treatment Planning:Treatment Plan, Simulation

Heinrich HomeyerSummer School 05 21Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy Preparation: Tumor Identification

Fundus-ViewForm of TumourTumor SiteTumor-Macula-DistanceTumor-Optical Nerve-Distance

Eye-CT / MRTTumor SiteEye Geometry

Heinrich HomeyerSummer School 05 22Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Clip Clip SurgerySurgery

Heinrich HomeyerSummer School 05 23Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Fixing The Patient

BiteBite blockblock

MaskMask

Patient Patient chairchair

Heinrich HomeyerSummer School 05 24Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Localisation (Clip Verification)

XX--rayray

axial axial picturepicture

lateral lateral picturepicture

Heinrich HomeyerSummer School 05 25Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Treatment Planning

EYEPLAN:EYEPLAN:M. M. GoiteinGoitein, T. Miller, 1983, T. Miller, 1983

ClipsClips

Heinrich HomeyerSummer School 05 26Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Treatment Plan

Proton Beam

Direction to theFixing Light Iso-dose Oktopus

Iso-dose Lines Eyeplan

Heinrich HomeyerSummer School 05 27Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Patient Positioning

Transfer of ParametersTransfer of ParametersChair position Chair position

Fixing light positionFixing light position

Clip projectionClip projection

ApertureAperture

TREAT:TREAT:M. Fromme (HMI), 1998M. Fromme (HMI), 1998

Heinrich HomeyerSummer School 05 28Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Simulation

Direction to Direction to Fixation LightFixation Light

RangeRange

Modulation DepthModulation Depth

Heinrich HomeyerSummer School 05 29Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Treatment Fixation LightFixation Light

Beam Beam LineLine

ApertureAperture withwith WedgeWedge FilterFilterEye Lid Eye Lid

RetractorRetractor

Heinrich HomeyerSummer School 05 30Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Patient Positioning

Treatment PlanTreatment Plan

Transfer of ParametersTransfer of Parameters

XX--Ray Ray -- ControlControl

Heinrich HomeyerSummer School 05 31Ionenstrahllabor Hahn-Meitner-Institut Berlin

Therapy: Positioning

Heinrich HomeyerSummer School 05 32Ionenstrahllabor Hahn-Meitner-Institut Berlin

MisalignmentMisalignment

Position-Corrections

Angle-Correction

Simulation –1. Fraction

0,5 - 1 mm(up to 3 mm)

5°(up to 20°)

3. Fraction –4. Fraction 0 - 0,5 mm 0° - 2°

ReasonsReasons::

dayday--to day to day variationvariation of of sittingsitting

Eye Eye lidlid retractorretractor in in contactcontact withwith thethe eyeeye

PostPost--surgery swellingsurgery swelling of of the eyethe eye lidlid

Therapy: Positioning

Heinrich HomeyerSummer School 05 33Ionenstrahllabor Hahn-Meitner-Institut Berlin

Radiotherapy with protons

Start 19982004 first follow-up publication of 250 patients95% local tumor controlJun. 2005 total number of patients > 700

Several projectsFor a dedicated 250 MeVproton cyclotron

Kluge, Heufelder, Cordini, Semiantonakis, Stark, Weber

Heinrich HomeyerSummer School 05 34Ionenstrahllabor Hahn-Meitner-Institut Berlin

Superconducting Cyklotron

ACCEL-Design

Advantage• Large pole gap• Low energy

consumption

• First patients are plannedby the end 2005

Heinrich HomeyerSummer School 05 35Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis with Ion BeamsScattering of ions from electrons or nuclei inside the

sample

Single event Analysis

ElectronsPIXE

Projectile E0

E1

Nucleus of anatom in thesample

E2

θ

φ

Mp

Mr

Mp

NucleiERDA

Heinrich HomeyerSummer School 05 36Ionenstrahllabor Hahn-Meitner-Institut Berlin

High-Energy-Elastic-Recoil-Detection-AnalysisProjektil E0

E1

Targetatom

E2

θ

φ

Mp

Mr

Mp

φ3

22

0

2

cos1

2dd

⎟⎟⎠

⎞⎜⎜⎝

⎛ +⎟⎟

⎜⎜

⎛=

r

rprprMMM

EeZZ

Ωσ

φ32

22

0

2

cos1

2dd

prrpr Z

MZ

EMe

Ωσ

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

⎛=⇒>> rp MM

2

2

)(

)(cos4

rp

rpr

MM

MMk

+=

φ02 EkE r=

Depth resolution: some nmTotal depth: some µm•Heavy Masses

•Sharp Bombarding Energy•Low Beam Emittance

Heinrich HomeyerSummer School 05 37Ionenstrahllabor Hahn-Meitner-Institut Berlin

High-Energy-Elastic-Recoil-Detection-Analysis

10 cm

17 cm 120 cm

Ion beam

channelplatestop detector

mirror channel platestart detector

SBenergy detector

Method of particle identification: time-of-flight (velocity) & energy

Advantages Isotopic resolutionLow energy threshold– Larger depth area

Exact energy calibration via time-of-flight– Better depth resolution

Heinrich HomeyerSummer School 05 38Ionenstrahllabor Hahn-Meitner-Institut Berlin

High-Energy-Elastic-Recoil-Detection-Analysis

Examples

350 MeV Au26+ aufZnSe/Cu(Ga,In)(S,Se)2/Mo/GlasSolar cell material:

Diffusion of In from the absorberinto the buffer layer

Heinrich HomeyerSummer School 05 39Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis: ERDA - Features

only absolute, standard free method for the concentration of all elements in thin layerslarge dynamic range in energy (depth) due to TOF methoddepth profiles for all elements in layers up to 3 µmalmost the same high sensitivity for all elements (0.001 at%)hydrogen sensitivity is enhanced by a factor of 4using heavy projectiles, no restrictions on the detectable mass rangedepth resolution up to 10 nm near the surface

Heinrich HomeyerSummer School 05 40Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis: PIXE - Principle

Proton Induced X-ray Emission

multi elemental analysis – in vacuum from Na, in air from K, no organic materials

– determination of the elements, not chemical bond

Coelin blue (CoO·nSnO2 - Azurite (blue) (2CuCO3·Cu(OH)2)Malachite (green) (CuCO3·Cu(OH)2

non-destructive: in air and at small beam intensities

standard technique: proton energies up to 4 MeVanalytical depth at these energies: max. 100 µm

Heinrich HomeyerSummer School 05 41Ionenstrahllabor Hahn-Meitner-Institut Berlin

Analysis: High-Energy PIXE

1 10 100 10000

5

10

15

20

25

0.00

0.05

0.10

0.15

0.20

0.25Protonen in Kupfer

Se, 70 MeV

Se, 3 MeV

σ KX 70 MeV

σ LX /103 MeV

Pb Lα1

E=10.5keVd(10%)

Pb Kα1 E=74.957keV

d(10%)

Stop

ping

Pow

er (M

eV/(m

g cm

2 ))

Wirk

ungs

quer

schn

itt (b

arn)

Tiefe (µm)

Comparison with low energy PIXE

Test of the method: Thin Au foil insidea 3mm thick lead glass

Heinrich HomeyerSummer School 05 42Ionenstrahllabor Hahn-Meitner-Institut Berlin

K Lines

Z> 50

large

range

L/Kratio

Analysis: Highenergy - PIXE

low risk for fragile or delicate Objects

at strongabsorption

thick layers

Information oninner structure

Volume-analysis

Small dE/dx

γLinie

(PIGE)

why70 MeV?

Heinrich HomeyerSummer School 05 43Ionenstrahllabor Hahn-Meitner-Institut Berlin

Provenienc

e

datin

gProduction process

Information from Element Identification

Ming orfake?(composition of colours)

Loss of copper in Silver coins

Indirect dating(pigments used)

Determination-of manufacture site(metals used)

compositionmassive? gilded?

Authenticity

Conservation/Restoration

Archeology/History of Art

Heinrich HomeyerSummer School 05 44Ionenstrahllabor Hahn-Meitner-Institut Berlin

PIXE: experimental set-up

beam exit: thin Kaptonfoilmoveable mirror inflects laser on beam axistwo detectors at 135°shielding against radiation from exit foilxy tablecamcorder surveys and documents beam spot

protons from accelerator

HPGeSi(Li)

moveablemirror

shielding

object

laser beam

foil

xy table

Heinrich HomeyerSummer School 05 45Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis: PIXE - Setup

object(3600 years old Egyptian coffin)

HPGe180eV

Si(Li)155eV

xy-table

camera(documentation)

shielding

beam exit:80 µm Kapton, 10 cm air∆E ~ 200 keV, 1mm Ø

moveable mirror:inflected laser beam

Heinrich HomeyerSummer School 05 46Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis: PIXE - Example

~ 6cm

630 - 660: disc brooches were used by noble ladies, iron objects with gold-or silver coloured decoration1940 - 1973: excavation of the grave field in Eltville, 646 graves, one of the largest in Germany1955 - 1975: restoration of objects state of the art technique at that time: stabilisation and corrosion prevention by plastic coveranalytical task: non-destructive identification of metals used for manufacture

rivet head

needle

iron inlay

ornamentsrivet cap

rivet

plastic cover

dose

Heinrich HomeyerSummer School 05 47Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis: PIXE - Example

removal of plastic (ca. 1mm) impossible !(destruction of objects)

analysis must look through thislayer

use of 68 MeV protonsenergy loss in 1 mm plastic (ρ ≈ 1 g/cm3): ~ 1 MeVprotons penetrate plastic, but: transmission a problem?after 1 mm:

Fe Kα 6.4 keV 20% Pb Lα 10.5 keV 69%Ag Kα 22.0 keV 93% Pb Kα 75.2 keV 99%

ideal task for high-energy PIXE

0 5depth (mm)

plas

ticco

pper

X-ray

protons

Heinrich HomeyerSummer School 05 48Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis: PIXE - Example

5 10 15 20 25 60 70 801

10

100

1000

10000Fe

Cu

Cu

Zn K

αZn

Kβ Sn

Sn

γ ba

ckgr

ound

Pb

L α

Pb

Pb

Lγ Pb

2 Pb

1

Pb

Kβ1

Pb

Kβ2

Pb

Sat

ellit

Ag

Ag

Inte

nsity

(arb

. uni

ts)

Energy (keV)5 10 15 20 25 60 70 80

1

10

100

1000

10000Fe

Cu

Cu

Zn K

αZn

Kβ Sn

Sn

Kβγ ba

ckgr

ound

Pb

Pb

Pb

Lγ Pb

2 Pb

1

Pb

Kβ1

Pb

Kβ2

Pb

Sat

ellit

Ag

Ag

Inte

nsity

(arb

. uni

ts)

Energy (keV)

decorationcentral rivet

example:grave 437

all objects:no gold detectable

K/L X-rays:lead in rivethead

Ionenstrahllabor Hahn-Meitner-Institut Berlin

Chinese bowl: manufacturing date?

both reports based on art historical expertiseindirect dating: identification of pigments

(Cr in green: after 1850)

report 1 (Japan):

500 years old1 Mio. €

report 2 (Berlin):

100 years oldmax. 25 000 €

20 c

m

Heinrich HomeyerSummer School 05 50Ionenstrahllabor Hahn-Meitner-Institut Berlin

Chinese bowl: manufacturing date

green colour no informationyellow colour measured: Zn and Fe, no Sbabsence of Sb is indication for age:after ~1850

4 8 12 16 20 24 28 32

100

1000

Pb

Pb

Pb

Fe K

αFe

Cu

Cu

Zn K

αZn

Cr

Cr

γ Li

nie

Sn

Sn

Sb

Sb

Ba

yellow colour

Inte

nsity

(arb

. uni

ts)

Energie (keV)4 8 12 16 20 24 28 32

100

1000

Pb

Pb

Pb

Fe K

αFe

Cu

Cu

Zn K

αZn

Cr

Cr

γ Li

nie

Sn

Sn

Sb

Sb

Ba

white background

Inte

nsity

(arb

. uni

ts)

Energie (keV)

⇒ report 2 could beconfirmed

Heinrich HomeyerSummer School 05 51Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Analysis: High-Energy PIXE - Features

PIXE with 68 MeV protons+ analytical depth up to several mm+ large cross section for K lines of heavy elements

+ better separation of heavy elements+ cross section constant over large depth+ small energy loss

⇒ non-destructive analysis+ depth dependant information: intensity ratios+ large and bulky objects can be positioned in front

of the beam

- always radiation from complete material, also nuclear reactions, higher background

Heinrich HomeyerSummer School 05 52Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modifications

Energy transfer– Elektrons– Nuclei

– Lattice/sample– Modifications of

Structures

high electronic excitation10-17 - 10-13 s

heating and particle emission 10-13 - 10-11 s

frozen-in atomic rearrangements> 103 s

Heinrich HomeyerSummer School 05 53Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modification: Single Track Production

irradiation: faster etching rate along trackbest etching ratios for heavy ionsexact determination of pores/cm2

by beam currentexact determination by etching process(time)

form of track depends on etching solution,temperature)0 10 20 30 40 50

0

10

20

30

40

50PET Hostaphan, Au single trackEtched in 1 molar NaOH at 40°

Por

e S

ize

(nm

)

Etching Time (min)

104 105101

102

103

Etc

hing

Rat

io

(Zeff/v)2)

22Ne40Ar51V

∇ 59Co84Kr136Xe

Heinrich HomeyerSummer School 05 54Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modification: Filter ProductionIon Track Membrane

Polymer foil

high frequency magnetic field

horizontal deflection

Gore-Membraneresult: filter with defined structure

required for industrial production: variation beam intensitysmaller than variation in flow-rate

3 µm

Heinrich HomeyerSummer School 05 55Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modification: Foil Irradiation

Track density:10000/cm2 – 500000/cm2

Extreme Stability Requirements

Heinrich HomeyerSummer School 05 56Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modification: Ion Track Technology

counter for red blood particlessingle track, 3 µm < Ø < 5 µm

fuel cells constant charging of battery, lighter with longer live time (mobile in standby: 40 days)

particle filter – encapsuled electro motors – cell ”collection" for microbiology– dust free air in clean rooms

filling with metals, semiconductors .... miniaturised electronic (nano-electronic) nano-wires or nano-tubes

up-to-date research field Cu in ion tracks

Heinrich HomeyerSummer School 05 57Ionenstrahllabor Hahn-Meitner-Institut Berlin

Vertical Nanowire TransistorJ. Chen, R. Könenkamp, Appl. Phys. Lett.82(2003) 4782

Channels from 400-MeV Xe ions are etched and filled with semiconductor

I-V curve

0,0 0,5 1,0 1,50

200

400

600

800

1000

Sour

ce-D

rain

Cur

rent

(nA

)

Source-Drain Voltage (V)

VG=0 V VG=-0.5 V VG=-1.0 V VG=-1.5 V

Perspective: Diameter less than track radii ~ nm

Heinrich HomeyerSummer School 05 58Ionenstrahllabor Hahn-Meitner-Institut Berlin

Ion Track Based Nano Devices

Conducting Ion Track

Gate (poly-Si)

Electrode

(native) OxideSemiconductor

100 nm

AFM tip

Nano-transistor in diamond like carbon

Gate

Source

Drain

PET Foils CuSCN

Insulator

Nano-transistor in etched sandwich foil

Heinrich HomeyerSummer School 05 59Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modifications: Overlapping TracksKlaumünzer 1982Hammering Effect

Heavy IonsE = (1–5)MeV/AHighest LETHigh Total Dose

> 1014/cm2

Low Beam Emittance

A. Gutzmann, S. Klaumünzer et al., Phys. Rev. Lett. 74 (1995) 2256

Ion-beam-induced surface instabilities, ditches and dikes, on glassy Fe40Ni40B20

1015 ions/cm2 1013 ions/cm2

Heinrich HomeyerSummer School 05 60Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modifications: Overlapping TracksExample for ion beam induced self-organisationHigh doses: >1014/cm2

Bolse, Schattat, Feyh, Appl. Phys. A 77/1 (2003) 11

1 µm

a) φ = 1.7 × 1013/cm2

1 µm

b) φ = 3.4 × 1013/cm2

1 µm

d) φ = 8.5 × 1013/cm2

1 µm

f) φ = 7.6 × 1014/cm2

1 µm

c) φ = 5.1 × 1013/cm2

1 µm

e) φ = 1.7 × 1014/cm2

1 µm

Substrate

lamella structure on NiO/SiO2/Si-Wafer

Incidence angle 70° .height ≈ 1 µmwidth ≈ 100 nm260 MeV Kr

Heinrich HomeyerSummer School 05 61Ionenstrahllabor Hahn-Meitner-Institut Berlin

Materials Modification: Overlapping Tracks

Wave length depends on dE/dx (ion)Lighter ion – longer wave length

Rotation of the sample creates nano-towers

Heinrich HomeyerSummer School 05 62Ionenstrahllabor Hahn-Meitner-Institut Berlin

Conclusionfast ions are unique tools for

– research(materials analysis, development of new materials)

– modern technology(filter production, radiation hard electronics)

– Medicine(dosimetry, high precision therapy)

advantages of cyclotrons– variability in ions - even cocktails– energy– beam intensity – Stabilityconsequences:– keeping to schedule– diverse user community

Heinrich HomeyerSummer School 05 63Ionenstrahllabor Hahn-Meitner-Institut Berlin

CoworkersRFQ– W. Busse, O. Engels, B. Martin, A. Schempp, W. Pelzer,

F. HölleringECR-Sources– P. Arndt, J. Röhrich, A. Meseck

Control System – W. Busse, Ch. Rethfeld

Materials Analyses– W. Bohne, A. Denker, J. Röhrich

Modification of Materials– S. Klaumünzer, G. Schiwietz

Tumor Therapy– H. Fuchs, J. Heese, H. Kluge, H. Morgenstern,

I. Reng, Ch. Rethfeld, Thank you for your Attention

Heinrich HomeyerSummer School 05 64Ionenstrahllabor Hahn-Meitner-Institut Berlin

Ion Track Based Nano Devices

Substrate

gate electrode

base electrode

spacerConducting ion track in DLC

conductor

conductor

dot 5 nminsulator 5 nm

insulator 5 nm

AFM tip

8 nm

Field emission: Self aligned gate structure on ion track in diamond like carbon

ta-C

conducting substrate

ta-Cta-C:H

ta-C

ta-C:H

MFM tip

DLCcond. track

quantum-dot with Coulomb-blockade (diamond like carbon multilayer system)

Spin valve structure

Heinrich HomeyerSummer School 05 65Ionenstrahllabor Hahn-Meitner-Institut Berlin

Ionen als Hammer

Anisotrope photonische KristalleVan Dillen 2001Klaumünzer 1982

2009 Schwerionenzyklotron?

Heinrich HomeyerSummer School 05 66Ionenstrahllabor Hahn-Meitner-Institut Berlin

IonenstrahlphysikStrukturforschung

– Erzeugung und – Analyse struktureller Veränderungen

technische Nutzung– Modifikation– Analytik– Strahlentherapie

Forderungen an Forschungsanlage• große Variabilität • hohe Zuverlässigkeit• hohe Stabilität• Reproduzierbarkeit

Heinrich HomeyerSummer School 05 67Ionenstrahllabor Hahn-Meitner-Institut Berlin

Aktivitäten weltweit

KP, IP, SEUH: 70 MeVU: 2-15 MeV/N

C-UUniversitätTexas/USAK=500 Cyclotron

SEU, MA,BT,MM, IP,

Wie ISLH-XEJAERITakasaki/JapanTiara

KP (Injektor),SEU. IP

H: 30 MeVU: bis 1.6 MeV/N

H-UBNLBrookhaven/USA

Tandem

KP, IP, SEUWie ISLH-ULBLBerkeley/USA88“Cyclotron

KP (RIB), IP, SEU, MM

H: bis 80 MeV,Hohe H-Ströme

H-KrUniversitätLouvain la Neuve/Belgien

Cyclone110Cyclone44

KP, SEU, IPH: 50 MeVsonst wie ISL

H-AuUniversitätFinnlandUniv. Jyväskylä

KP, MM, AP0.6-0.9 MeV/N4-13 MeV/N

C-UGanilCEA/CNRS

Caen/Frankreich

CIRIL

KP, MAH 20 MeV;Au 0.9 MeV/N

H-AuUniversitätMünchenTandem

KP MM, SEU

1.5-15 MeV/NC-UHGFDarmstadtGSI (nurUnilac)

MM, MA, ME, RS (SEU)

H: 72 MeV; He-Ne: 1.5-30 MeV/N

H-AuHGFBerlinISLAktivitätenEnergienIonenOrganisationStandortEinrichtung

Heinrich HomeyerSummer School 05 68Ionenstrahllabor Hahn-Meitner-Institut Berlin

Modification of Materials

destroyamorpheziseRauphen surfaces zersetzen

healkristallisieren

glättenkompaktieren

materialabhängig technisch nutzbar

Parameters Ion MassVelocityFluenceDoosIrradiation

Ionenstrahltechniken rechtfertigen sich durch

Anwendungen

Heinrich HomeyerSummer School 05 69Ionenstrahllabor Hahn-Meitner-Institut Berlin

Korrektur (rechnergestützt)Korrektur (rechnergestützt)

Neue Software:Neue Software:

ClipClip--SollpositionenSollpositionen(Bestrahlungsplan)(Bestrahlungsplan)

ClipClip--ErkennungErkennung(Röntgenaufnahme)(Röntgenaufnahme)

Vergleich beider AnordnungenVergleich beider Anordnungen

KorrekturvorschlagKorrekturvorschlag

2 Patientenlagerung

Heinrich HomeyerSummer School 05 70Ionenstrahllabor Hahn-Meitner-Institut Berlin

AufwandAufwand

Einstellungen 10 - 15 (max. 40)

Zeitaufwand 10 min (max. ½ h)

Anteile:Anteile: -- Herantasten bei Herantasten bei komplexen Korrekturenkomplexen Korrekturen-- Eingehen auf Eingehen auf Fähigkeit zur Fähigkeit zur FixationFixation-- Nachjustieren der Nachjustieren der LidhalterLidhalter-- Unruhe, Unruhe, ErschöpfungErschöpfung, Schmerzen, Schmerzen

2 Patientenlagerung