iraudamp11

35
www.irf.com Page 1 of 35 IRAUDAMP11 REV 1.0 IRAUDAMP11 120W x 3 Channel Class D Audio Power Amplifier Using the IRS2053M and IRF6665 By Jun Honda, Liwei Zheng CAUTION: International Rectifier suggests the following guidelines for safe operation and handling of IRAUDAMP11 Demo board; Always wear safety glasses whenever operating Demo Board Avoid personal contact with exposed metal surfaces when operating Demo Board Turn off Demo Board when placing or removing measurement probes

Upload: lowenzo-carp

Post on 22-Oct-2014

46 views

Category:

Documents


1 download

TRANSCRIPT

www.irf.com Page 1 of 35 IRAUDAMP11 REV 1.0

IRAUDAMP11

120W x 3 Channel Class D Audio Power Amplifier Using the IRS2053M and IRF6665

By

Jun Honda, Liwei Zheng

CAUTION:

International Rectifier suggests the following guidelines for safe operation and handling of IRAUDAMP11 Demo board;

Always wear safety glasses whenever operating Demo Board Avoid personal contact with exposed metal surfaces when operating Demo Board Turn off Demo Board when placing or removing measurement probes

www.irf.com Page 2 of 35 IRAUDAMP11 REV 1.0

TABLE OF CONTENTS PAGE

INTRODUCTION............................................................................................................................................... 3

SPECIFICATIONS............................................................................................................................................ 3

CONNECTION SETUP..................................................................................................................................... 5

CONNECTOR DESCRIPTION ......................................................................................................................... 5

TEST PROCEDURES....................................................................................................................................... 6

PERFORMANCE AND TEST GRAPHS .......................................................................................................... 7

CLIPPING CHARACTERISTICS.................................................................................................................... 10

SOFT CLIPPING............................................................................................................................................. 10

EFFICIENCY................................................................................................................................................... 12

THERMAL CONSIDERATIONS..................................................................................................................... 12

THERMAL INTERFACE MATERIAL’S PRESSURE CONTROL ................................................................................. 13

POWER SUPPLY REJECTION RATIO (PSRR)............................................................................................ 15

SHORT CIRCUIT PROTECTION RESPONSE .............................................................................................. 16

IRAUDAMP11 OVERVIEW ............................................................................................................................ 17

FUNCTIONAL DESCRIPTIONS..................................................................................................................... 19

IRS2053 GATE DRIVER IC ............................................................................................................................ 19 SELF-OSCILLATING FREQUENCY .................................................................................................................... 20 ADJUSTMENTS OF SELF-OSCILLATING FREQUENCY......................................................................................... 20 SELECTABLE DEAD-TIME................................................................................................................................ 21

PROTECTION SYSTEM OVERVIEW ............................................................................................................ 22

CLICK AND POP NOISE REDUCTION......................................................................................................... 24

BUS PUMPING............................................................................................................................................... 24

INPUT SIGNAL AND GAIN SETTING ........................................................................................................... 26

GAIN SETTING............................................................................................................................................... 26

IRAUDAMP11 FABRICATION MATERIALS................................................................................................. 28

IRAUDAMP11 HARDWARE .......................................................................................................................... 31

IRAUDAMP11 PCB SPECIFICATIONS......................................................................................................... 32

REVISION CHANGES DESCRIPTIONS........................................................................................................ 35

www.irf.com Page 3 of 35 IRAUDAMP11 REV 1.0

Introduction The IRAUDAMP11 Demo board is a reference design which uses only one IC (IRS2053M) to derive appropriate input signals, amplify the audio input, and achieve a three-channel 120 W/ch (4Ω, THD+N=1%) half-bridge Class D audio power amplifier. The reference design demonstrates how to use the IRS2053M Class D audio controller and gate driver IC, implement protection circuits, and design an optimum PCB layout using IRF6665 DirectFET MOSFETs. The reference design contains all the required housekeeping power supplies for ease of use. The three-channel design is scalable, for power and number of channels.

Applications

AV receivers Home theater systems Mini component stereos Powered speakers Sub-woofers Musical Instrument amplifiers Automotive after market amplifiers

Features

Output Power: 120W x 3 channels (4Ω, THD+N=1%)

or 170W x 3 channels (4Ω, THD+N=10%) Residual Noise: 220V, IHF-A weighted, AES-17 filter Distortion: 0.02% THD+N @ 60W, 4Ω Efficiency: 90% @ 120W, 4Ω, single-channel driven, Class D stage Multiple Protection Features: Over-current protection (OCP), high side and low side

Over-voltage protection (OVP), Under-voltage protection (UVP), high side and low side Over-temperature protection (OTP)

PWM Modulator: Self-oscillating half-bridge topology with optional clock synchronization

Specifications

General Test Conditions (unless otherwise noted) Notes / Conditions Supply Voltages ±35V Load Impedance 4Ω Self-Oscillating Frequency 400kHz No input signal, Adjustable Gain Setting 28dB 1Vrms input yields rated power

Electrical Data Typical Notes / Conditions IR Devices Used IRS2053M Audio Controller and Gate-Driver,

IRF6665 DirectFET MOSFETs Modulator Self-oscillating, second order sigma-delta modulation, analog input Power Supply Range ± 25V to ±35V Bipolar power supply Output Power CH1-3: (1% THD+N) 120W 1kHz, ±35V Output Power CH1-3: (10% THD+N) 170W 1kHz, ±35V

www.irf.com Page 4 of 35 IRAUDAMP11 REV 1.0

Rated Load Impedance 8-4Ω Resistive load Standby Supply Current +75/-95mA No input signal Total Idle Power Consumption 6W No input signal Channel Efficiency 90% Single-channel driven,

120W, Class D stage

. Audio Performance Class D

Output Notes / Conditions

THD+N, 1W THD+N, 10W THD+N, 60W THD+N, 100W

0.015% 0.01% 0.02% 0.03%

1kHz, Single-channel driven

Dynamic Range 101dB A-weighted, AES-17 filter, Single-channel operation

Residual Noise, 22Hz - 20kHzAES17 220V

Self-oscillating – 400kHz

Damping Factor 67 1kHz, relative to 4Ω load Channel Separation 75dB

75dB 70dB

100Hz 1kHz 10kHz

Frequency Response : 20Hz-20kHz : 20Hz-35kHz

±1dB ±3dB

1W, 4Ω - 8Ω Load

Physical Specifications Dimensions 3.94”(L) x 2.83”(W) x 0.85”(H)

100 mm (L) x 72 mm (W) x 21.5 mm(H) Weight 0.130kgm

www.irf.com Page 5 of 35 IRAUDAMP11 REV 1.0

Connection Setup

Fig 1 Typical Test Setup

Connector Description

CH1 IN CN1 Analog input for CH1 CH2 IN CN1 Analog input for CH2 CH3 IN CN1 Analog input for CH3 SUPPLY P1 Positive and negative supply (+B / -B) CH1 OUT P2 Output for CH1 CH2 OUT P2 Output for CH2 CH3 OUT P3 Output for CH3

250W, 4Ω, Non-inductive Resistors

Frequency adjustor VCC INDICATOR

IRF6665

CH1 CH2 CH3

IRS2053M

CH2 CH1 +B GND -B CH3Output

Input

G

DS1

35 V, 5 A DC supply

35 V, 5 A DC supply

Audio Signal Generator

Output

VR1

www.irf.com Page 6 of 35 IRAUDAMP11 REV 1.0

Test Procedures Test Setup:

1. Connect 4-200 W dummy loads to 3 output connectors (P2 and P3 as shown on Fig 1) and an Audio Precision analyzer (AP).

2. Connect the Audio Signal Generator to CN1 for CH1~CH3 respectively (AP). 3. Set up the dual power supply with voltages of ±35V; current limit to 5A. 4. TURN OFF the dual power supply before connecting to On of the unit under test (UUT). 5. Connect the dual power supply to P1. as shown on Fig 1

Power up:

6. Turn ON the dual power supply. The ±B supplies must be applied and removed at the

same time. 7. The Blue LED should turn ON immediately and stay ON 8. Quiescent current for the positive supply should be 75mA 10mA at +35V. 9. Quiescent current for the negative supply should be 95mA 10mA at –35V.

Switching Frequency test

10. With an Oscilloscope, monitor the switching waveform at test points VS1~VS3. Adjust VR1 to set the self oscillating frequency to 400 kHz 25 kHz when DUT in clock synchronize mode.

Functionality Audio Tests:

11. Set the signal generator to 1kHz, 20 mVRMS output. 12. Connect the audio signal generator to CN1(Input of CH1,CH2,CH3) 13. Sweep the audio signal voltage from 15 mVRMS to 1 VRMS. 14. Monitor the output signals at P2/P3 with an oscilloscope. The waveform must be a non

distorted sinusoidal signal. 15. Observe that a 1 VRMS input generates an output voltage of 25.52 VRMS(CH1/CH2). The

ratio, R4x/(R3x) and R30x/(R31x), determines the voltage gain of IRAUDAMP11. Test Setup using Audio Precision (Ap):

16. Use an unbalanced-floating signal from the generator outputs. 17. Use balanced inputs taken across output terminals, P2 and P3. 18. Connect Ap frame ground to GND at terminal P1. 19. Select the AES-17 filter(pull-down menu) for all the testing except frequency response. 20. Use a signal voltage sweep range from 15 mVRMS to 1 VRMS. 21. Run Ap test programs for all subsequent tests as shown in Fig 2- Fig 7below.

www.irf.com Page 7 of 35 IRAUDAMP11 REV 1.0

Performance and test graphs

ColorS weep Trace Line S ty le Thick Data A x is Com m ent

1 1 Red S olid 2 A nlr.THD+ N Ratio Left CH11 3 B lue S olid 2 A nlr.THD+ N Ratio Left CH22 3 Green S olid 2 A nlr.THD+ N Ratio Left

0.001

10

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

%

100m 200200m 500m 1 2 5 10 20 50 100

W

±B Supply = ±35V, 4 Ω Resistive Load

Fig 2 IRAUDAMP11, THD+N versus Power, Stereo, 4 Ω

.

-10

+4

-9

-8

-7

-6

-5

-4

-3

-2

-1

-0

+1

+2

+3

dBr A

20 200k50 100 200 500 1k 2k 5k 10k 20k 50k 100k

Hz

T

CH1-Blue; CH2-Yellow; CH3-Red ±B Supply = ±35V, 4 Ω Resistive Load

Fig 3 IRAUDAMP11, Frequency response

www.irf.com Page 8 of 35 IRAUDAMP11 REV 1.0

Red CH1, 10W Output Blue CH1, 50W Output

Fig 4 THD+N Ratio vs. Frequency

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Yellow Solid 2 Fft.Ch.1 Ampl Left CH21 2 Blue Solid 2 Fft.Ch.2 Ampl Left CH32 1 Red Solid 2 Fft.Ch.1 Ampl Left CH1

-100

+0

-80

-60

-40

-20

dBV

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Fig 5, 1V output Frequency Spectrum

www.irf.com Page 9 of 35 IRAUDAMP11 REV 1.0

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 Fft.Ch.1 Ampl Left CH11 2 Blue Solid 2 Fft.Ch.2 Ampl Left CH32 1 Yellow Solid 2 Fft.Ch.1 Ampl Left CH2

-150

+0

-125

-100

-75

-50

-25

dBV

10 20k20 50 100 200 500 1k 2k 5k 10k

Hz

No signal, Self Oscillator @ 400kHz Fig 6, IRAUDAMP11 Noise Floor

.

ColorS weep Trac e Line S ty le Thic k Data A x is Com m ent

1 1 Cy an S olid 2 A nlr.A m pl Left CH3_on;CH1_off3 1 Y ellow S olid 2 A nlr.A m pl Left CH1_on;CH3_off4 1 Red S olid 2 A nlr.A m pl Left CH2_on;CH3_off5 1 M agenta S olid 2 A nlr.A m pl Left CH3_on;CH2_off6 1 B lue S olid 1 A nlr.A m pl Left CH2_on;CH1_off7 1 Cy an S olid 1 A nlr.A m pl Left Ch1_on;CH2_off

-100

+ 0

-90

-80

-70

-60

-50

-40

-30

-20

-10

dBr

A

20 20k50 100 200 500 1k 2k 5k 10k

Hz

Fig 7, Channel separation vs. frequency

www.irf.com Page 10 of 35 IRAUDAMP11 REV 1.0

Clipping characteristics

60W / 4, 1kHz, THD+N=0.02% 174W / 4, 1kHz, THD+N=10%

Measured Output and Distortion Waveforms(CH1/CH2)

Fig 8 Clipping Characteristics

.

Soft Clipping IRS2053M has Clipping detection function, it monitors error voltage in COMP pin with a window comparator and pull an open drain nmos referenced to GND. Threshold to detect is at 10% and 90% of VAA-VSS. Each channel has independent CLIP outputs. Once IRS2053M detects Clipping, the CLIP pin will generate pulses to trigger soft clipping circuit as Fig 9, which limits output’s maximum power. Fig10 shows 20Hz and 20 kHz THD+N versus Power graph in CH3; it shows limitation of output’s power with different frequency.

Red Trace: Total Distortion + Noise Voltage Green Trace: Output Voltage

www.irf.com Page 11 of 35 IRAUDAMP11 REV 1.0

R3A 1K

GND

C5A10uF, 50V

Audio signal INPUT

S

G

D

Q6MMBFJ112

R28A1K

R29A220K

D3A1N4148

C15A10uF, 16V

Q5DTA144EKA

R27A

3.3K

R5A47K

R6A47K

C6A1uF,50V

R7A470K

10uF,50V

C0A

Soft Clipping

CLIP Detection

IN-

VSS

GND

VAA

Fig 9 Soft Clipping Circuit

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 Anlr.THD+N Ratio Left 20Hz2 1 Blue Solid 2 Anlr.THD+N Ratio Left 20kHz

0.001

10

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

%

100m 300200m 500m 1 2 5 10 20 50 100

W

±B Supply = ±35V, 4 Ω Resistive Load

Fig 10 IRAUDAMP11/CH3, THD+N versus Power, Stereo, 4 Ω

www.irf.com Page 12 of 35 IRAUDAMP11 REV 1.0

Efficiency Fig 11 shows efficiency characteristics of the IRAUDAMP11. The high efficiency is achieved by following major factors:

1) Low conduction loss due to the DirectFETs offering low RDS(ON)

2) Low switching loss due to the DirectFETs offering low input capacitance for fast rise and fall times

Secure dead-time provided by the IRS2053M, avoiding cross-conduction.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150

Output power (W)

Eff

icie

ncy

(%

)

AMP11 35V 4ohms

Fig 11, IRAUDAMP11 4 ohms load Stereo, ±B supply = ±35V

Thermal Considerations

With this high efficiency, the IRAUDAMP11 design can handle one-eighth of the continuous rated power, which is generally considered to be a normal operating condition for safety standards, without additional heatsinks or forced air-cooling.

Efficiency (%)

www.irf.com Page 13 of 35 IRAUDAMP11 REV 1.0

Thermal Interface Material’s Pressure Control The pressure between DirectFET & TIM (Thermal Interface Material) is controlled by depth of Heat Spreader’s groove. Choose TIM which is recommended by IR. (Refer to AN-1035 for more details). TIM’s manufacturer thickness, conductivity, & etc. determine pressure requirement. Below shows selection options recommended:

Fig 12 TIM Information

www.irf.com Page 14 of 35 IRAUDAMP11 REV 1.0

Check the TIM’s compression deflection with constant rate of strain (example as Fig.13) base on manufacturer’s datasheet. According to the stress requirement, find strain range for the TIM. Then, calculate heat spreader groove depth as below: Groove Depth=DirectFET’s Height +TIM’s Thickness*strain **DirectFET’s height should be measured from PCB to the top of DirectFET after reflow. The average height of IRF6665 is 0.6mm.

Fig 13 compression deflection with constant rate of strain

www.irf.com Page 15 of 35 IRAUDAMP11 REV 1.0

Power Supply Rejection Ratio (PSRR) The IRAUDAMP11 obtains good power supply rejection ratio of -68 dB at 1kHz shown in Fig 14. With this high PSRR, IRAUDAMP11 accepts any power supply topology when the supply voltages fit between the min and max range.

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Magenta Solid 2 Anlr.Ampl Left

-90

+0

-80

-70

-60

-50

-40

-30

-20

-10

dBV

20 40k50 100 200 500 1k 2k 5k 10k 20k

Hz

Fig 14 Power Supply Rejection Ratio (PSRR)

www.irf.com Page 16 of 35 IRAUDAMP11 REV 1.0

Short Circuit Protection Response Figs 15-16 show over current protection reaction time of the IRAUDAMP11 in a short circuit event. As soon as the IRS2053M detects an over current condition, it shuts down PWM. After one second, the IRS2053M tries to resume the PWM. If the short circuit persists, the IRS2053M repeats try and fail sequences until the short circuit is removed.

Short Circuit in Positive and Negative Load Current

Fig 15 Positive and Negative OCP Waveforms

.

OCP Waveforms Showing CSD Trip and Hiccup

Fig 16 OCP Response with Continuous Short Circuit

Load current

CSD pin

VS pin

Load current

CSD pin

VS pin

Load current

CSD pin

Load current

VS pin

CSD pin

VS pin

Load current

VS pin

Load current

VS pin

Positive OCP Negative OCP

www.irf.com Page 17 of 35 IRAUDAMP11 REV 1.0

IRAUDAMP11 Overview

The IRAUDAMP11 features a 3CH self-oscillating type PWM modulator for the smallest space, highest performance and robust design. This topology represents an analog version of a second-order sigma-delta modulation having a Class D switching stage inside the loop. The benefit of the sigma-delta modulation, in comparison to the carrier-signal based modulation, is that all the error in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its operation. Also, sigma-delta modulation allows a designer to apply a sufficient amount of error correction. The IRAUDAMP11 self-oscillating topology consists of following essential functional blocks.

Front-end integrator PWM comparator Level shifters Gate drivers and MOSFETs Output LPF

Integrator Referring to Fig 17 below, the input operational amplifier of the IRS2053M forms a front-end second-order integrator with R3x, C2x, C3x, and R2x. The integrator that receives a rectangular feedback signal from the PWM output via R4x and audio input signal via R3x generates a quadratic carrier signal at the COMP pin. The analog input signal shifts the average value of the quadratic waveform such that the duty cycle varies according to the instantaneous voltage of the analog input signal. PWM Comparator The carrier signal at the COMP pin is converted to a PWM signal by an internal comparator that has a threshold at middle point between VAA and VSS. The comparator has no hysteresis in its input threshold. Level Shifters The internal input level-shifter transfers the PWM signal down to the low-side gate driver section. The gate driver section has another level-shifter that level shifts up the high-side gate signal to the high-side gate driver section.

www.irf.com Page 18 of 35 IRAUDAMP11 REV 1.0

Gate Drivers and DirectFETs The received PWM signal is sent to the dead-time generation block where a programmable amount of dead time is added into the PWM signal between the two gate output signals of LO and HO to prevent potential cross conduction across the output power DirectFETs. The high-side level-shifter shifts up the high-side gate drive signal out of the dead-time block. Each channel of the IRS2053M’s drives two DirectFETs, high- and low-sides, in the power stage providing the amplified PWM waveform. Output LPF The amplified PWM output is reconstructed back to an analog signal by the output LC LPF. Demodulation LC low-pass filter (LPF) formed by L1 and C13, filters out the Class D switching carrier signal leaving the audio output at the speaker load. A single stage output filter can be used with switching frequencies of 400 kHz and greater; a design with a lower switching frequency may require an additional stage of LPF.

Fig 17 Simplified Block Diagram of IRAUDAMP11 Class D Amplifier

www.irf.com Page 19 of 35 IRAUDAMP11 REV 1.0

Functional Descriptions

IRS2053M Gate Driver IC The IRAUDAMP11 uses the IRS2053M, a 3 Channel high-voltage (up to 200 V), high-speed power MOSFET driver with internal dead-time and protection functions specifically designed for Class D audio amplifier applications. These functions include OCP and UVP. The IRS2053M integrates bi-directional over current protection for both high-side and low-side MOSFETs. The dead-time can be selected for optimized performance according to the size of the MOSFET, minimizing dead-time while preventing shoot-through. As a result, there is no gate-timing adjustment required externally. Selectable dead-time through the DT pin voltage is an easy and reliable function which requires only two external resistors, R12 and R13 as shown on Fig 18 or Fig 24 below. The IRS2053M offers the following functions.

PWM modulator Dead-time insertion Over current protection Under voltage protection Level shifters

Refer to IRS2053M datasheet and AN-1158 for more details.

C4A1nF,50V

C2A 2.2nF,50V

R2A 120R

C3B

2.2nF,50V

C4B1nF,50V

C2C

2.2nF,50V

R7 10R

C6 4.7uF,10V

C74.7uF,10V

C2B

2.2nF,50V

R6 10R

R20A

22R

R9A

22R

R9B

22R

R9C

22R

R20C

22R

R20B

22R

R21

A10

R,1

W

C13

A0.

47uF

, 400

VC

13C

0.47

uF, 4

00V

C13

B0.47

uF, 4

00V

C14

A

0.1u

F, 6

3V

CH3 OUTPUT

CH2 OUTPUT

CH1 OUTPUT

R15B

10K R16B

3.9K

R17B10K

R15C10K

R16C3.9K

R17C10K

D1C

1N41

48

D1B

1N4148

D2B1N4148

R18B

4.7R

R14B

4.7R

C9B10uF,16V

R16A

3.9K

D1A

1N41

48R15A10K R17A

10K

R14A 4.7R

C9A

10uF

,16V

R13

1K

R12

NC

R11

8.2K

R10

2.2K

R4A100K 1%

R2B

120R

R3B 5.6K

R1B 22K

R2C

120RR1C 22K

R4B100K 1%

R4C100K 1%

C4C 1nF,50V

C3C2.2nF,50V

R3A 1K

R1A 22K

C1A 100pF, 50V

R3C 5.6K

C3A 2.2nF,50V

D2A 1N4148

R18A

4.7R

D2C

1N4148

R18C

4.7R

R21

C10

R,1

W

R21

B10

R,1

W

C14

C

0.1u

F, 6

3V

C14

B

0.1u

F, 6

3V

CL

IP1

3

CL

IP2

2

CL

IP3

1

CSD48

GND41

GND40

DS37

IN339

VAA43

DC

P5

NC

27

OT

P330

NC

36

COMP245

NC16

LO117

CSH3 23

VS3

26

VB

28

OT

P128

VC

C32

COMP147

NC22

VR

EF

35

OC

SET

34

CSH115

LO321

VB3 24

HO

325

COM220

LO2 18

NC

6C

OM

31

HO

29

VS2

10

FAU

LT

4

NC

11

VS1

12

HO113

VB114

OT

P229

DT

33

IN244

IN146

CSH

27

VCC219

COMP338

VSS42

-B0

IC1

IRS2053

C19

A

0.1u

F,10

0V

R19

A

1R

R19

C

1R

C19

B

0.1u

F,10

0V

R19

B

1R

R2210R

D3

1N41

48

R22

C10

K

R22B 10K

Q1AIRF6665

Q2AIRF6665

Q2CIRF6665

Q1BIRF6665

Q2BIRF6665

Q1CIRF6665

C1B 100pF, 50V

C1C 100pF, 50V

GND

GND

GND

GND

CSD

GND

GND

GND

D41N4148

C5A 10uF, 16V

C5B 10uF, 16V

C5C 10uF, 16V

R24A 2.2K

R24C 2.2K

R24B 2.2K

R322k

C1

0.1uF,50V

VR110K

C40N/A

C41N/A

C8

10uF

, 16V

VCC1 OUT 5

SET3GND2

DIT 4

IC2LTC1799

R43

330R,1W

R44

510R,1W

C17B1000uF,35V

C17A1000uF,35V

C17C0.1uF,50V

C17D0.1uF,50V

R23B100k

R23A100k

1A1

1B2

2Y3

GND4

2A5

2B6

1Y7

VCC8

IC8TC7W00FFCT-ND

L5 220uH

C322.2uF, 50V

C37

22uF

, 16V

C330.1uF, 50V

C34

0.01uF, 25V

C352.2nF,50V

C360.01uF, 50V

R39100k

R40100k

R423.3k

R321k

R41120k

D7

R315.1k

DS1

Q1

FX491

Q2

MMBT5401

R3810R

R3747k

Z124V

Z2

15V

R36

5.1k

SW1

BST2

RCL3

RTN4

VIN8

VCC 7

RON/SD 6

FB 5

IC9

LM5007Q3

MM

BT

5551

Q4MMBT5551

R5410k

R5547k

R53

10k

R5747k

R5047k

R5847k

Z339V

Z418V

OVP UVP

+B

GND

-B

R46

33k

CH3 INPUT

CH2 INPUT

CH1 INPUT

1234

P2

1234

P3

123

P1

+BGND

-B

CH2 OUTPUT

CH1 OUTPUT

GNDGND

CH3 OUTPUTGNDGND

-5v

+5v

VCC

C12A

220pF

VSS

VAA-B

R22

A10

K

C19

C

0.1u

F,10

0V

SD

R5647k

CH2

CH1

C12B220pF

C12C

220pF

Q8 ZX5T853

Q9

ZX5T953

R45

33kZ55.6V

Z65.6V

R4 0R0 or N/A

R1

0R0 or N/A

GND GND

C61

0.01uF, 50V

R61 10k

R62 10k

For EMI

C62

0.01uF, 50V

R12AN/A

R12BN/A

R12CN/A

R26

C10

K

DSCDSB

R26

B10

K

PROT

R10

410

K

CH3 OUTPUT

CH2 OUTPUT

CH1 OUTPUT

R25A 100K

R25B 100K

R25C 100K

RpA 95C

123456

CN1

CH1GNDCH2GND

CH3GND

S

G

DQ6

MM

BFJ

112

R28A

1K

R29A220K

D3A

1N4148

1OUT11IN-2 1IN+

3 VDD4 2IN+5 2IN-6 2OUT7

3OUT8

4IN- 13

4OUT 14

3IN-9

4IN+12

3IN+10

GND11

IC3

TLC084

R30A 10KR31A 10K

R31B

10K

R31C

10K

R47

330R,1W

GND

GND

GND

VAA

R51 10k

R52 10k

Z7 39V

Z8 39V

+B

-BOVP

C15A

10uF, 16V

L1A

22uH

L1B

22uH

L1C

22uH

C10

A0.

1uF,

50V

C10B

0.1uF,50V

C10

C

0.1u

F,50

V

Q5

DTA144EKA

C9

100u

F,4V

R27A

3.3K

R1410R

C104.7uF,10V

DSA

R26

A10

K

GND

RpB 95C

RpC 95C

R30C 15K

R1510R

C114.7uF,10V

R30B

15K

GND

C16

B0.

01uF

R32B 10R

C16

C0.

01uF

R32C 10R

C16

A0.

01uF

R32A 10R

R49 10R

GND

R5A

47K

R6A

47K

C6A

1uF,50V

R7A

470K

Fig 18 System-level View of IRAUDAMP11

www.irf.com Page 20 of 35 IRAUDAMP11 REV 1.0

Self-Oscillating Frequency Self-oscillating frequency is determined by the total delay time along the control loop of the system; the propagation delay of the IRS2053M, the DirectFETs switching speed, the time-constant of front-end integrator (R2, R3, R4, C2, C3 ). Variations in +B and –B supply voltages also affect the self-oscillating frequency. The self-oscillating frequency changes with the duty ratio. The frequency is highest at idling. It drops as duty cycle varies away from 50%.

Adjustments of Self-Oscillating Frequency Use R2 to set different self-oscillating frequencies. The PWM switching frequency in this type of self-oscillating switching scheme greatly impacts the audio performance, both in absolute frequency and frequency relative to the other channels. In absolute terms, at higher frequencies, distortion due to switching-time becomes significant, while at lower frequencies, the bandwidth of the amplifier suffers. In relative terms, interference between channels is most significant if the relative frequency difference is within the audible range. Normally, when adjusting the self-oscillating frequency of the different channels, it is suggested to either match the frequencies accurately, or have them separated by at least 25kHz. Under the normal operating condition with no audio input signal, the switching-frequency is set around 400kHz in the IRAUDAMP11.

www.irf.com Page 21 of 35 IRAUDAMP11 REV 1.0

Selectable Dead-time The dead-time of the IRS2053 is set based on the voltage applied to the DT pin. Fig 19 lists the suggested component value for each programmable dead-time between 45 and 105 ns. All the IRAUDAMP11 models use DT1 (45ns) dead-time.

Dead-time Mode R1 R2 DT/SD Voltage DT1 <10k Open Vcc DT2 5.6k 4.7k 0.46 x Vcc

DT3 8.2k 3.3k 0.29 x Vcc

DT4 Open <10k COM

Recommended Resistor Values for Dead Time Selection

Vcc 0.57xVcc 0.36xVcc 0.23xVcc

105nS

85nS

65nS

45nS

VDT

Dead- time

Vcc

COM

DT

>0.5mA

R1

R2

IRS2053M

Fig 19 Dead-time Settings vs. VDT Voltage

www.irf.com Page 22 of 35 IRAUDAMP11 REV 1.0

Protection System Overview The IRS2053M integrates over current protection (OCP) inside the IC. The rest of the protections, such as over-voltage protection (OVP), under-voltage protection (UVP), and over temperature protection (OTP), are detected externally to the IRS2053M (Fig 20). The external shutdown circuit will disable the output by pulling down CSD pins, (Fig 21). If the fault condition persists, the protection circuit stays in shutdown until the fault is removed.

HT 1OS5

VT 3GND 2

VCC4

IC6LM26CIM5-XHAR51

22k

D514.7V

R52

15k

Q5MMBT5551

R5922k

Q3

MM

BT

5551

Q4MMBT5551

R5410k

R5547k

R53

10k

R5747k

R5047k

R5847k

Z339V

Z418V

OVP UVP

SD

R5647k

R6015k

GND

OTP

-B Fig 20 DCP, OTP, UVP and OVP Protection Circuits

.

Fig 21 Simplified Functional Diagram of OCP

www.irf.com Page 23 of 35 IRAUDAMP11 REV 1.0

Over-Current Protection (OCP) Low-Side Current Sensing

The low-side current sensing feature protects the low side DirectFET from an overload condition from negative load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.

The voltage setting on the OCSET pin programs the threshold for low-side over-current sensing. When the VS voltage becomes higher than the OCSET voltage during low-side conduction, the IRS2053 turns the outputs off and pulls CSD down to -VSS.

High-Side Current Sensing

The high-side current sensing protects the high side DirectFET from an overload condition from positive load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level. High-side over-current sensing monitors drain-to-source voltage of the high-side DirectFET during the on state through the CSH and VS pins. The CSH pin detects the drain voltage with reference to the VS pin, which is the source of the high-side DirectFET. In contrast to the low-side current sensing, the threshold of the CSH pin to trigger OC protection is internally fixed at 1.2V. An external resistive divider R15, R16 and R17 are used to program a threshold as shown in Fig 20. An external reverse blocking diode D1 is required to block high voltage feeding into the CSH pin during low-side conduction. By subtracting a forward voltage drop of 0.6V at D1, the minimum threshold which can be set for the high-side is 0.6V across the drain-to-source.

Over-Voltage Protection (OVP) OVP is provided externally to the IRS2053M. OVP shuts down the amplifier if the bus voltage between GND and -B exceeds 39V. The threshold is determined by a Zener diode Z3. OVP protects the board from harmful excessive supply voltages, such as due to bus pumping at very low frequency-continuous output in stereo mode.

Under-Voltage Protection (UVP) UVP is provided externally to the IRS2053M. UVP prevents unwanted audible noise output from unstable PWM operation during power up and down. UVP shuts down the amplifier if the bus voltage between GND and -B falls below a voltage set by Zener diode Z4.

www.irf.com Page 24 of 35 IRAUDAMP11 REV 1.0

Offset Null (DC Offset) Adjustment The IRAUDAMP11 requires no output-offset adjustment. DC offsets are tested to be less than ±20 mV.

Over-Temperature Protection (OTP) A Preset Thermostat IC, IC6 in Fig 19, is placed in close proximity to the heatsink which has 6 DirectFETs under it; and monitors heatsink temperature. If the heatsink temperature rises above 100 C, the OTP shuts down all 3 channels by pulling down the CSD pins of the IRS2053M. OTP recovers once the temperature has cooled down.

Click and POP Noise Reduction Thanks to the click and pop elimination function built into the IRS2053M, the IRAUDAMP11 does not require any additional components for this function.

Power Supply Requirements For convenience, the IRAUDAMP11 has all the necessary housekeeping power supplies onboard and only requires a pair of symmetric power supplies. Or use the IRAUDPS1 reference design which is a 12 volt systems Audio Power Supply for automotive applications designed to provide voltage rails (+B and –B) for Class D audio power amplifiers . House Keeping Power Supply The internally-generated housekeeping power supplies include ±5V for analog signal processing, and +12V supply (VCC) referred to the negative supply rail -B for DirectFET gate drive. The gate driver section of the IRS2053M uses VCC to drive gates of the DirectFETs. VCC is referenced to –B (negative power supply). D2, R18 and C10 form a bootstrap floating supply for the HO gate driver. Bus Pumping When the IRAUDAMP11 is running in stereo mode, the bus pumping effect takes place with low frequency, high output. Since the energy flowing in the Class D switching stage is bi-directional, there is a period where the Class D amplifier feeds energy back to the power supply. The majority of the energy flowing back to the supply is from the energy stored in the inductor in the output LPF.

www.irf.com Page 25 of 35 IRAUDAMP11 REV 1.0

Usually, the power supply has no way to absorb the energy coming back from the load. Consequently the bus voltage is pumped up, creating bus voltage fluctuations. Following conditions make bus pumping worse:

1. Lower output frequencies (bus-pumping duration is longer per half cycle) 2. Higher power output voltage and/or lower load impedance (more energy transfers between

supplies) 3. Smaller bus capacitance (the same energy will cause a larger voltage increase)

The OVP protects IRAUDAMP11 from failure in case of excessive bus pumping. One of the easiest counter measures of bus pumping is to drive both of the channels in a stereo configuration out-of-phase so that one channel consumes the energy flow from the other and does not return it to the power supply. Bus voltage detection monitors only +B supply, assuming the bus pumping on the supplies is symmetric in +B and -B supplies.

Blue: VS of CH3;Cyan: VS of CH2;Magenta: Voltage of +B;Green:Current of C13A Fig 22 Auto-phase sync clock’s BUS Pumping when idling

www.irf.com Page 26 of 35 IRAUDAMP11 REV 1.0

Load Impedance Each channel is optimized for a 4 Ω speaker load in half bridge.

Input Signal and Gain Setting A proper input signal is an analog signal ranging from 20Hz to 20kHz with up to 3 VRMS amplitude with a source impedance of no more than 600 Ω. Input signal with frequencies from 30kHz to 60kHz may cause LC resonance in the output LPF, causing a large reactive current flowing through the switching stage, especially with greater than 8 Ω load impedances, and the LC resonance can activate OCP. The IRAUDAMP11 has an RC network called a Zobel network (R21 and C14) to damp the resonance and prevent peaking frequency response with light loading impedance. (Fig 23)

Fig 23 Output Low Pass Filter and Zobel Network

Gain Setting The ratio of resistors R4A~C/R1A~C in Fig 24 sets voltage gain. The IRAUDAMP11 has no on board volume control. To change the voltage gain, change the input resistor term R1A~C. Changing R4A~C affects PWM control loop design and may result poor audio performance.

www.irf.com Page 27 of 35 IRAUDAMP11 REV 1.0

C4A1nF,50V

C2A 2.2nF,50V

R2A 120R

C3B

2.2nF,50V

C4B1nF,50V

C2C

2.2nF,50V

R7 10R

C6 4.7uF,10V

C74.7uF,10V

C2B

2.2nF,50V

R6 10R

R20A

22R

R9A

22R

R9B

22R

R9C

22R

R20C

22R

R20B

22R

R21

A10

R,1

W

C13

A0.

47uF

, 400

VC

13C

0.47

uF, 4

00V

C13

B0.47

uF, 4

00V

C14

A

0.1u

F, 6

3V

CH3 OUTPUT

CH2 OUTPUT

CH1 OUTPUT

R15B

10K R16B

3.9K

R17B10K

R15C10K

R16C3.9K

R17C10K

D1C

1N41

48

D1B

1N4148

D2B1N4148

R18B

4.7R

R14B

4.7R

C9B10uF,16V

R16A

3.9K

D1A

1N41

48R15A10K R17A

10K

R14A 4.7R

C9A

10uF

,16V

R13

1K

R12

NC

R11

8.2K

R10

2.2K

R4A100K 1%

R2B

120R

R3B 5.6K

R1B 22K

R2C

120RR1C 22K

R4B100K 1%

R4C100K 1%

C4C 1nF,50V

C3C2.2nF,50V

R3A 1K

R1A 22K

C1A 100pF, 50V

R3C 5.6K

C3A 2.2nF,50V

D2A 1N4148

R18A

4.7R

D2C

1N4148

R18C

4.7R

R21

C10

R,1

W

R21

B10

R,1

W

C14

C

0.1u

F, 6

3V

C14

B

0.1u

F, 6

3V

CL

IP1

3

CL

IP2

2

CL

IP3

1

CSD48

GND41

GND40

DS37

IN339

VAA43

DC

P5

NC

27

OT

P330

NC

36

COMP245

NC16

LO117

CSH323

VS3

26

VB

28

OT

P128

VC

C32

COMP147

NC22

VR

EF

35

OC

SET

34

CSH115

LO321

VB324

HO

325

COM220

LO2 18

NC

6C

OM

31

HO

29

VS2

10

FAU

LT

4

NC

11

VS1

12

HO113

VB114

OT

P229

DT

33

IN244

IN146

CSH

27

VCC219

COMP338

VSS42

-B0

IC1

IRS2053

C19

A

0.1u

F,10

0V

R19

A

1R

R19

C

1R

C19

B

0.1u

F,10

0V

R19

B

1R

R2210R

D3

1N41

48

R22

C10

K

R22B 10K

Q1AIRF6665

Q2AIRF6665

Q2CIRF6665

Q1BIRF6665

Q2BIRF6665

Q1CIRF6665

C1B 100pF, 50V

C1C 100pF, 50V

GND

GND

GND

GND

CSD

GND

GND

GND

D41N4148

C5A 10uF, 16V

C5B 10uF, 16V

C5C 10uF, 16V

R24A 2.2K

R24C 2.2K

R24B 2.2K

R322k

C1

0.1uF,50V

VR110K

C40N/A

C41N/A

C8

10uF

, 16V

VCC1

OUT5

SET3

GND2

DIT4

IC2LTC1799

R43

330R,1W

R44

510R,1W

C17B1000uF,35V

C17A1000uF,35V

C17C0.1uF,50V

C17D0.1uF,50V

R23B100k

R23A100k

1A1

1B2

2Y3

GND4

2A5

2B6

1Y7

VCC8

IC8TC7W00FFCT-ND

L5 220uH

C322.2uF, 50V

C37

22uF

, 16V

C330.1uF, 50V

C34

0.01uF, 25V

C352.2nF,50V

C360.01uF, 50V

R39100k

R40100k

R423.3k

R321k

R41120k

D7

R315.1k

DS1

Q1

FX491

Q2

MMBT5401

R3810R

R3747k

Z124V

Z2

15V

R36

5.1k

SW1

BST2

RCL3

RTN4

VIN8

VCC7

RON/SD 6

FB5

IC9

LM5007Q3

MM

BT

5551

Q4MMBT5551

R5410k

R5547k

R53

10k

R5747k

R5047k

R5847k

Z339V

Z418V

OVP UVP

+B

GND

-B

R46

33k

CH3 INPUT

CH2 INPUT

CH1 INPUT

1234

P2

1234

P3

123

P1

+BGND

-B

CH2 OUTPUT

CH1 OUTPUT

GNDGND

CH3 OUTPUTGNDGND

-5v

+5v

VCC

C12A

220pF

VSS

VAA-B

R22

A10

K

C19

C

0.1u

F,10

0V

SD

R5647k

CH2

CH1

C12B220pF

C12C

220pF

Q8 ZX5T853

Q9

ZX5T953

R45

33kZ55.6V

Z65.6V

R4 0R0 or N/A

R1

0R0 or N/A

GND GND

C61

0.01uF, 50V

R61 10k

R62 10k

For EMI

C62

0.01uF, 50V

R12AN/A

R12BN/A

R12CN/A

R26

C10

K

DSCDSB

R26

B10

K

PROT

R10

410

K

CH3 OUTPUT

CH2 OUTPUT

CH1 OUTPUT

R25A 100K

R25B 100K

R25C 100K

RpA 95C

123456

CN1

CH1GNDCH2GND

CH3GND

SG

DQ6

MM

BFJ

112

R28A

1K

R29A220K

D3A

1N4148

1OUT1

1IN-2

1IN+3 VDD4

2IN+5

2IN-6

2OUT7

3OUT8

4IN-13

4OUT14

3IN-9

4IN+12

3IN+10

GND11

IC3

TLC084

R30A 10KR31A 10K

R31B

10K

R31C

10K

R47

330R,1W

GND

GND

GND

VAA

R51 10k

R52 10k

Z7 39V

Z8 39V

+B

-BOVP

C15A

10uF, 16V

L1A

22uH

L1B

22uH

L1C

22uH

C10

A0.

1uF,

50V

C10B

0.1uF,50V

C10

C

0.1u

F,50

V

Q5

DTA144EKA

C9

100u

F,4V

R27A

3.3K

R1410R

C104.7uF,10V

DSA

R26

A10

K

GND

RpB 95C

RpC 95C

R30C 15K

R1510R

C114.7uF,10V

R30B

15K

GND

C16

B0.

01uF

R32B 10R

C16

C0.

01uF

R32C 10R

C16

A0.

01uF

R32A 10R

R49 10R

GND

R5A

47K

R6A

47K

C6A

1uF,50V

R7A

470K

Fig 24 IRAUDAMP11 Schematic

Schematic

www.irf.com Page 28 of 35 IRAUDAMP11 REV 1.0

IRAUDAMP11 Fabrication Materials

Table 1 IRAUDAMP11 Electrical Bill of Materials Quantity Value Description Designator Part Number Vender

1 0.1uF,50V CAP CER .1UF 50V 10% X7R

0603 C1 490-1519-1-ND Murata Electronics

North America

3 100pF, 50V CAP CERAMIC 100PF 50V NP0

0603 C1A, C1B, C1C 399-1061-1-ND Kemet

7 2.2nF,50V CAP CER 2200PF 50V 10%

X7R 0603

C2A, C2B, C2C, C3A, C3B, C3C, C35 490-1500-1-ND

Murata Electronics North America

3 1nF,50V CAP 1000PF 50V

CERAMICX7R 0603 C4A, C4B, C4C 399-1082-1-ND Kemet

3 10uF, 16V CAP 10UF 16V HA ELECT SMD C5A, C5B, C5C PCE4179CT-ND Panasonic - ECG

4 4.7uF,10V CAP CERM 4.7UF 10V Y5V

0805 C6, C7, C10, C11 478-1429-1-ND AVX Corporation

1 1uF,50V CAP CER 1UF 50V X7R 0805 C6A 490-4736-1-ND Murata Electronics

North America

2 10uF, 16V CAP CER 10UF 16V X7R 20%

1206 C8, C15A 445-1601-1-ND TDK Corporation

1 100uF,4V CAP 100UF 4V ELECT WX

SMD C9 493-2079-1-ND Nichicon

2 10uF,16V CAP CER 10UF 16V Y5V 0805 C9A, C9B 490-3347-1-ND Murata Electronics

North America

3 0.1uF,50V CAP .10UF 50V CERAMIC X7R

0805 C10A, C10B, C10C 311-1140-1-ND Yageo

3 220pF CAP CER 220PF 50V 10% X7R

0603 C12A, C12B, C12C 490-1483-1-ND Murata Electronics

North America

3 0.47uF, 400V CAP .47UF 400V METAL

POLYPRO C13A, C13B, C13C 495-1315-ND EPCOS Inc

3 0.1uF, 63V CAP FILM MKP .1UF 63VDC

2% C14A, C14B, C14C BC2054-ND Vishay/BC

Components

4 0.01uF, 25V CAP 10000PF 25V CERM X7R

0603 C16A, C16B,

C16C,C34 PCC1763CT-ND Panasonic - ECG

2 1000uF,35V CAP 1000UF 35V ELECT SMG

RAD C17A, C17B 565-1086-ND United Chemi-Con

2 0.1uF,50V CAP .10UF 50V CERAMIC X7R

1206 C17C, C17D 399-1249-1-ND Kemet

3 0.1uF,100V CAP CER .10UF 100V X7R

10% 0805 C19A, C19B, C19C 445-1418-1-ND TDK Corporation

1 2.2uF, 50V CAP CER 2.2UF 50V X7R 1206 C32 490-3367-1-ND Murata Electronics

North America

1 0.1uF, 50V CAP CER .1UF 50V 10% X7R

0805 C33 490-1666-1-ND Murata Electronics

North America

1 0.01uF, 50V CAP CER 10000PF 50V 20%

X7R 0603 C36 490-1511-1-ND Murata Electronics

North America

1 22uF, 16V CAP CER 22UF 16V X7R 1210 C37 445-3945-1-ND TDK Corporation

2 N/A C40, C41 N/A

2 0.01uF, 50V CAP 10000PF 50V CERAMIC

X7R 0603 C61, C62 399-1091-1-ND Kemet

1 Header 6 TERMINAL BLOCK 3.5MM

6POS PCB CN1 ED1518-ND On Shore Technology

Inc

9 1N4148 DIODE SWITCH 100V 400MW

SOD-123

D1A, D1B, D1C, D2A, D2B, D2C,

D3, D3A, D4 1N4148W-FDICT-ND Diodes Inc

1 DIODE1 DIODE SCHOTTKY 100V 1.5A

SMA D7 10MQ100NPBFCT-ND Vishay/Semiconductors

4 BLUE LED LED 468NM BLUE CLEAR 0603

SMD DS1, DSA, DSB,

DSC 160-1646-1-ND Lite-On Inc

1 IRS2053 3ch Audio Class D Controller IC1 IR2053MPBF International Rectifier

1 LTC1799 IC OSCILLATOR RES SET

TSOT23-5 IC2 LTC1799CS5#TRMPBFCT-

ND Linear Technology

1 TLC084 IC OPAMP GP 10MHZ QUAD

14SOIC IC3 296-7287-1-ND Texas Instruments

www.irf.com Page 29 of 35 IRAUDAMP11 REV 1.0

1 TC7W00FFCT-

ND IC GATE NAND DUAL 2INPUT

8-SOP IC8 TC7W00FFCT-ND Toshiba

1 LM5007 IC BUCK ADJ .5A 8LLP IC9 LM5007SDCT-ND National

Semiconductor

3 22uH Class D inductor, 22uH L1A, L1B, L1C 7G14A-220M-B Inductors,Inc.

1 220uH POWER INDUCTOR 220UH

0.49A SMD L5 308-1538-1-ND SUMIDA AMERICA COMPONENTS INC

1 Header 3 CONN TERM BLOCK PCB

5.0MM 3POS P1 281-1415-ND Weidmuller

2 SP OUT TERMINAL BLOCK 3.5MM

4POS PCB P2, P3 ED1516-ND On Shore Technology

Inc

1 RED LED LED RED CLEAR 0603 SMD PROT 160-1181-1-ND Lite-On Inc

1 FX491 TRANS HP NPN 60V 1000MA

SOT23-3 Q1 FMMT491CT-ND Diodes/Zetex

6 IRF6665 MOSFET N-CH 100V 4.2A

DIRECTFET

Q1A, Q1B, Q1C, Q2A,

Q2B, Q2C IRF6665 International Rectifier

1 MMBT5401 TRANS PNP 150V 350MW

SMD SOT23-3 Q2 MMBT5401-FDICT-ND Diodes Inc

2 MMBT5551 TRANS NPN 160V 350MW

SMD SOT23-3 Q3, Q4 MMBT5551-FDICT-ND Diodes Inc

1 DTA144EKA TRAN DIGITL PNP 50V 30MA

SOT-346 Q5 DTA144EKAT146CT-ND Rohm Semiconductor

1 MMBFJ112 IC SWITCH ANALOG N-CH

SOT-23 Q6 MMBFJ112CT-ND Fairchild

Semiconductor

1 ZX5T853 TRANSISTOR 4.5A 100V SOT-

89 Q8 ZX5T853ZCT-ND Diodes/Zetex

1 ZX5T953 TRANSISTOR PNP 3.5A 100V

SOT-89 Q9 ZX5T953ZCT-ND Diodes/Zetex

1 0R0 RES 0.0 OHM 1/10W 0603 SMD R1 P0.0GCT-ND Panasonic - ECG

4 22K RES 22K OHM 1/10W 5% 0603

SMD R1A, R1B, R1C, R3 RHM22KGCT-ND Rohm Semiconductor

3 120R RES 120 OHM 1/10W 5% 0603

SMD R2A, R2B, R2C RHM120GCT-ND Rohm Semiconductor

3 1K RES 1.0K OHM 1/10W 5% 0603

SMD R3A, R13, R32 RHM1.0KGCT-ND Rohm Semiconductor

2 5.6K RES 5.6K OHM 1/10W 5% 0603

SMD R3B, R3C RHM5.6KGCT-ND Rohm Semiconductor

3 100K 1% RES 100K OHM 1/8W 1% 0805

SMD R4A, R4B, R4C RHM100KCRCT-ND Rohm Semiconductor

8 47K RES 47K OHM 1/10W 5% 0603

SMD

R5A, R6A, R37, R50, R55, R56,

R57, R58 RHM47KGCT-ND Rohm Semiconductor

10 10R RES 10 OHM 1/10W 5% 0603

SMD

R6, R7, R14, R15, R22,

R32A, R32B, R32C, R38, R49 RHM10GCT-ND Rohm Semiconductor

1 470K RES 470K OHM 1/10W 5%

0603 SMD R7A RHM470KGCT-ND Rohm Semiconductor

6 22R RES 22 OHM 1/10W 5% 0603

SMD

R9A, R9B, R9C, R20A,

R20B, R20C RHM22GCT-ND Rohm Semiconductor

1 2.2K RES 2.2K OHM 1/10W 5% 0603

SMD R10 RHM2.2KGCT-ND Rohm Semiconductor

1 8.2K RES 8.2K OHM 1/10W 5% 0603

SMD R11 RHM8.2KGCT-ND Rohm Semiconductor

1 NC R12 N/A

3 N/A R12A, R12B, R12C N/A

5 4.7R RES 4.7 OHM 1/10W 5% 0603

SMD R14A, R14B, R18A,

R18B, R18C RHM4.7GCT-ND Rohm Semiconductor

25 10K RES 10K OHM 1/10W 5% 0603

SMD

R15A, R15B, R15C, R17A, R17B,

R17C,R22A, R22B, R22C, R28A, R29A, R30A,R31A, R31B, R31C, R51, R52, RHM10KGCT-ND Rohm Semiconductor

www.irf.com Page 30 of 35 IRAUDAMP11 REV 1.0

R53, R54,R61, R62, R104, R26A, R26B,

R26C

3 3.9K RES 3.9K OHM 1/10W 5% 0603

SMD R16A, R16B, R16C RHM3.9KGCT-ND Rohm Semiconductor

3 1R RES 1.0 OHM 1/8W 5% 0805

SMD R19A, R19B, R19C RHM1.0ARCT-ND Rohm Semiconductor

3 10R,1W RES 10 OHM 1W 1% 2512

SMD R21A, R21B, R21C PT10AECT-ND Panasonic - ECG

7 100k RES 100K OHM 1/10W 5%

0603 SMD

R23A, R23B, R25A, R25B, R25C, R39,

R40 RHM100KGCT-ND Rohm Semiconductor

3 2.2K RES 2.2K OHM 1/8W 5% 0805

SMD R24A, R24B, R24C RHM2.2KARCT-ND Rohm Semiconductor

2 3.3K RES 3.3K OHM 1/10W 5% 0603

SMD R27A, R42 RHM3.3KGCT-ND Rohm Semiconductor

2 15K RES 15K OHM 1/10W 5% 0603

SMD R30B, R30C RHM15KGCT-ND Rohm Semiconductor

1 5.1k RES 5.1K OHM 1/8W 5% 0805

SMD R31 RHM5.1KARCT-ND Rohm Semiconductor

1 5.1k RES 5.1K OHM 1/10W 5% 0603

SMD R36 RHM5.1KGCT-ND Rohm Semiconductor

1 120k RES 120K OHM 1/10W 5%

0603 SMD R41 RHM120KGCT-ND Rohm Semiconductor

2 330R,1W RES 330 OHM 1W 5% 2512

SMD R43, R47 PT330XCT-ND Panasonic - ECG

1 510R,1W RES 510 OHM 1W 5% 2512

SMD R44 PT510XCT-ND Panasonic - ECG

2 33k RES 33K OHM 1/10W 5% 0603

SMD R45, R46 RHM33KGCT-ND Rohm Semiconductor

3 95C THERMISTOR PTC 470 OHM

95C SMD RpA, RpB, RpC 490-2465-1-ND Murata Electronics

North America

1 10K TRIM POT ST-32TB 10 KOHMS VR1 ST32ETB103CT-ND Vishay/BC

Components

1 24V DIODE ZENER 24V 500MW

SOD-123 Z1 BZT52C24-FDICT-ND Diodes Inc

1 15V DIODE ZENER 15V 500MW

SOD-123 Z2 BZT52C15-FDICT-ND Diodes Inc

3 39V DIODE ZENER 39V 500MW

SOD-123 Z3, Z7, Z8 BZT52C39-FDICT-ND Diodes Inc

1 18V DIODE ZENER 18V 500MW

SOD-123 Z4 BZT52C18-FDICT-ND Diodes Inc

2 5.6V DIODE ZENER 5.6V 500MW

SOD-123 Z5, Z6 MMSZ5V6T1GOSCT-ND ON Semiconductor

Table 2 IRAUDAMP11 Mechanical Bill of Materials Quantity Value Description Designator Digikey P/N Vendor

7 Washer #4 SS WASHER LOCK INTERNAL

#4 SS

Lock washer 1, Lock washer 2, Lock washer 3, Lock washer 4, Lock washer 5, Lock washer 6

Lock washer 7

H729-ND Building

Fasteners

1 PCB Print Circuit Board

IRAUDAM11 Rev 3.0 .PCB PCB 1 Custom

7 Screw 4-40X5/16

SCREW MACHINE PHILLIPS 4-40X5/16

Screw 1, Screw 2, Screw 3, Screw 4, Screw 5, Screw 6,

Screw 7, H343-ND

Building Fasteners

4 Stand off 0.5" STANDOFF HEX 4-40THR .500"L ALUM

Stand Off 1, Stand Off 2, Stand Off 3, Stand Off 4

1893K-ND Keystone Electro-

nics

1/16 AAVID 4880G THERMAL PAD .080" 4X4"

GAPPAD thermal pad under heatsink BER164-ND

Therm-alloy

www.irf.com Page 31 of 35 IRAUDAMP11 REV 1.0

IRAUDAMP11 Hardware

4.5 4.53 3

108 27 27

12 141.6

6

10.5

16

6

12

IRAUDAMP11 Heat Spreader

All thread holes are 4-40 X 8mm dip ,minimum

Note:All dimensions are in millimetersTolerances are ±0.1mmMaterial:ALUMINUM

Fig 25 Heat Spreader

.

Fig 26 Hardware Assemblies

Screw

Screw H343-ND

Screws H343-ND

Stand Off 31893K-ND

ScrewStand Off 4 1893K-ND

Lock washers H729-ND

Lock washer

Lock washer

Stand Off 11893K-ND

Stand Off 21893K-ND

Lock washer

Screw H343-ND

Lock washer

Screw H343-ND

Lock washer

ScrewH343-ND

Lock washer

Screw

Thermal Pad Th l d

www.irf.com Page 32 of 35 IRAUDAMP11 REV 1.0

IRAUDAMP11 PCB Specifications PCB:

1. Two Layers SMT PCB with through holes 2. 1/16 thickness 3. 2/0 OZ Cu 4. FR4 material 5. 10 mil lines and spaces 6. Solder Mask to be Green enamel EMP110 DBG (CARAPACE) or Enthone Endplate

DSR-3241or equivalent. 7. Silk Screen to be white epoxy non conductive per IPC–RB 276 Standard. 8. All exposed copper must finished with TIN-LEAD Sn 60 or 63 for 100u inches thick. 9. Tolerance of PCB size shall be 0.010 –0.000 inches 10. Tolerance of all Holes is -.000 + 0.003” 11. PCB acceptance criteria as defined for class II PCB’S standards.

Gerber Files Apertures Description: All Gerber files stored in the attached CD-ROM were generated from Protel Altium Designer Altium Designer 6. Each file name extension means the following:

1. .gtl Top copper, top side 2. .gbl Bottom copper, bottom side 3. .gto Top silk screen 4. .gbo Bottom silk screen 5. .gts Top Solder Mask 6. .gbs Bottom Solder Mask 7. .gko Keep Out, 8. .gm1 Mechanical1 9. .gd1 Drill Drawing 10. .gg1 Drill locations 11. .txt CNC data 12. .apr Apertures data

Additional files for assembly that may not be related with Gerber files:

13. .pcb PCB file 14. .bom Bill of materials 15. .cpl Components locations 16. .sch Schematic 17. .csv Pick and Place Components 18. .net Net List 19. .bak Back up files 20. .lib PCB libraries

www.irf.com Page 33 of 35 IRAUDAMP11 REV 1.0

Fig 27 IRAUDAMP11 PCB Top Overlay (Top View)

www.irf.com Page 34 of 35 IRAUDAMP11 REV 1.0

Fig 28 IRAUDAMP11 PCB Bottom Layer (Top View)

www.irf.com Page 35 of 35 IRAUDAMP11 REV 1.0

Revision changes descriptions

Revision Changes description Date Rev 1.0 Released Oct, 08 2010

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 01/29/2009