irregular warfare analysis and validation with the social impact model

32
IRREGULAR WARFARE ANALYSIS AND VALIDATION WITH THE SOCIAL IMPACT MODEL Dr. Deborah Duong Mr. Gerald Pearman CPT Richard Brown

Upload: aristotle-alexander

Post on 31-Dec-2015

26 views

Category:

Documents


1 download

DESCRIPTION

Irregular Warfare Analysis and Validation with the Social Impact Model. Dr. Deborah Duong Mr. Gerald Pearman CPT Richard Brown. Purpose and Agenda. Purpose: To show the usefulness of the Social Impact Model (SIM) for Irregular Warfare (IW) analysis and validation. Agenda. SIM background. - PowerPoint PPT Presentation

TRANSCRIPT

IRREGULAR WARFARE ANALYSIS AND VALIDATION WITH THE SOCIAL IMPACT

MODEL

Dr. Deborah DuongMr. Gerald PearmanCPT Richard Brown

2Social Impact Model

Purpose: To show the usefulness of the Social Impact Model (SIM) for Irregular Warfare (IW)

analysis and validation

Purpose and Agenda

Agenda

• SIM background.

• Practical applications of the SIM.

• SIM’s enabling technologies.

• Proof of concept application to Tactical Wargame (TWG).

• Results.

• Summary.

3Social Impact Model

SIM Background

Background

• The Social Impact Model (SIM) performs adjudication, analysis and validation of social impact in US Army TRADOC Analysis Center’s (TRAC) Tactical Wargame (TWG).

‒ TWG and the models within the SIM are focal points of TRAC’s Irregular Warfare Analysis Capability (IWAC) initiative.

‒ IWAC is the one of the largest IW analysis efforts in the Department of Defense.

• The SIM is a federation of stand alone models and tools.

- The Cultural Geography (CG) model at the Population level (TRAC-Monterey).

- The Nexus Network Learner Model (NNL) at the Individual level (OSD,TRAC-Monterey).

- More models to be added in 2011.

- SIM middleware integrates and analyzes the models.

• SIM middleware extends the eXtensible Behavioral Model (XBM) framework (OUSDI, TRAC-Monterey, CTTSO).

• XBM implements basic versions of TRAC’s IW analysis designs.

• The models and tools of the SIM are designed to solve problems in IW adjudication, analysis, and validation.

• Each SIM component applies advanced artificial intelligence technologies to solve problems.

4Social Impact Model

SIM Components

• The models that comprise the SIM take a principled approach to IW modeling, enabled by advanced technologies.

• CG and NNL both include:– Cognitive Agent Based Modeling so that social phenomena is computed

from first principles and is emergent rather than hard coded.– Bayesian Networks so that data can be read into and tracked in the

model in a flexible manner.– Reinforcement Learning so that agents learn new behaviors from

motivations over time, the true causes of new social structure, rather than being pre-determined towards desired structures.

– Social Networks to emphasize the relational aspect of social structure.– Representation of the major schools of social theory (interpretive,

materialist).

• SIM middleware applies TRAC’s analysis and validation methods to the models, including:

– Combinatorial Game Theory.– Probabilistic Ontologies (with logical and Bayesian inference engines).– Information Theory for model comparison and validation.– Markov Processes.

5Social Impact Model

6Social Impact Model

Practical Applications of the SIM

7Social Impact Model

SIM enables you to…

• Apply wargame data to rigorous simulation analysis.

• Model an IW game of perceptions.

• Translate disparate data between IW models.

8Social Impact Model

SIM Can Apply Wargame Data to Rigorous Simulation Analysis

• SIM enables wargames to be run multiple times.– Most IW analyses incorporate wargames, but human-in-the-loop wargames are

resource intensive and cannot span the realm of possibilities.– Risk based analysis requires that the analyst considers the realm of possibilities

and their likelihoods.– Models can cover the possibilities if, when they are run out many times

stochastically, moves are entered as a human player would enter them.- Human players respond to enemy moves and to the environment.

– SIM enters moves using human player strategies from an actual wargame.- Both interviews and statistics on actual moves are used.

• SIM can apply player strategies to disparate models.– Strategies in SIM are represented separately from model moves and then

translated to models.– SIM can also translate strategic moves to models that were not used in the

wargame.

• SIM offers a rigorous method to improve wargames.– SIM enables measurement of the measurement space.

- SIM models player perception, enabling analysts to test the effect of what human players can (or cannot) observe.

– SIM exposes how to “game the game” .- Identifies design errors in models, helping analysts to improve models for

adjudicating human games and for multiple stochastic runs.

9Social Impact Model

SIM can model an IW “Game of Perceptions”

• SIM enables the modeling of IW moves and countermoves.– SIM turns multiple model runs into games of strategy.– Kilcullen described IW conflict as “co-evolutionary,” capturing the

importance of moves and countermoves. His phrase, “Perception is Reality” depicts the idea that IW is a game of perception.

– The movie, “The Battle of Algiers,” captures the importance of the timing of moves and countermoves in IW showing how insurgents went from unpopular to widespread public support by forcing the hand of the host nation and making the nation appear oppressive.

• SIM enables the modeling of deception in Information Operations.– Automated players have mental models of the world that may be

incorrect, so that one automated player may deceive another.

• SIM enables the testing of IW doctrine and strategy.– Commander’s Intent, Goals, Decision Points, Branches and Sequels,

can be tested and compared.

10Social Impact Model

SIM Translates Disparate Data between IW Models

• SIM enables analysts to apply IW data from one unique situation in the world to a different but unique situation in a model.

– Input data, data traded between federated models, calibration data, and testing set data all have uncertainty of match as well as translation difficulties because of the different concepts used to arrange different data.

– SIM translates data to ensure one model “means the same thing” as another model. – If there is no exact match, SIM translates data probabilistically.

• SIM enables hybrid modeling.– Analysts can couple models “loosely” , at the level of general patterns, or tightly, at the level of details.– SIM can integrate models at different levels of aggregation, for example, “tactical” and

“operational/strategic”.

• SIM enables data to be compared “apples to apples”.– Validation needs to be at the level of statistical patterns rather than single

outcomes.- The real world is just one possible world, and simulations model many possible worlds.- We know a simulation is good if what is rare in the simulation is rare in the world, and what is

common in the simulation is common in the world (under right circumstances).

– SIM enables analysts to express data in statistical patterns and dynamics.- After SIM translates data to a common lexicon, SIM compares data at the level of statistical patterns

and dynamics to calculate a ‘distance’ score that measures the statistical distance between dynamic patterns.

- SIM’s distance score allows comparison of different versions of the same model, different scenarios, and models against data for a calibration or a validation score.

– SIM can validate a model against multiple real-world data sources with uncertain matches to the model.

11Social Impact Model

SIM’s Enabling Technologies

SIM Applies Advanced Technologies to IW Problems

• Combinatorial Game Theory models strategic games.

• Probabilistic Ontologies arrange and translate data.

• Information Theory finds relations in data and compares data.

• Markov Processes help analyze and validate models.

12Social Impact Model

Combinatorial Game Theory (Game Trees)

• SIM uses Strategic Data Farming (SDF), an application of combinatorial game theory to optimize player moves according to player’s goals and strategies to assess best courses of action (COA).

• Role players are modeled as automated agents that look ahead to results of moves assuming players are trying to achieve goals, in a simple, general cognitive model.

13Social Impact Model

Social Impact Model

Strategic Data Farming (SDF)

14

• SDF models aspects of the Military Decision Making Process (MDMP).

• Automated role players have the following as part of their COA strategy:

– Decision Points: Points at which players will consider a change to its COA (nodes of the game tree).

– COA Options: Options to consider at each decision point, specifying conditions under which it will be exercised and possible moves (branches of the game tree).

– Goals: Ways to evaluate the situation within the move selection algorithm. Goals can also be interpreted as measures of effectiveness (MOEs) (game tree leaf evaluation).

– Mental Models: Presumed strategy of other players (i.e., belief levels, decision points, COA options, move selection).

Social Impact Model 15

1. 2.GreenAction

RedReaction

3. 4. 3. 4.

Game Tree Example – Africa Use Case

Popular support levels (from Nexus):G = 0.57R = 1.0

Evaluation Function GE – (each side attempts to maximize their evaluation function):

GE = ((1-R)+G)/2 = 0.28

RE = 1-GE = 0.72

GE: 0.5GE: 0.35 (after looking ahead)

GE: 0.5GE: 0.25 (after looking ahead)

RE: 0.35 RE: 0.65 RE: 0.75 RE: 0.5

Disrupt alliancebetween tribe Jand tribe D. Conduct Civil Affairs.

Make tribe O, a green ally, appear to harm tribe J.

Make green appearto harm tribe J.

Without looking ahead, Green’s actions seem the same (both are .5). But by looking ahead to how Red would react, he finds action Disruption (action 1) (GE=1-.65=.35) is better than CA (action 2) (GE=1-.75=.25).

16Social Impact Model

Proof of Concept Application to TWG

17Social Impact Model

Player Strategy, Goals, Decision Points

• As a first step to determine player strategy/intent, goals, decision points, and moves, the study team assessed all role player surveys and actual moves.

• The matrix below is an excerpt of the assessment. The study team identified over 20 viable strategies from the surveys and moves.

Role PlayerIntent (from surveys and

actual moves)

Goal (Measurable evaluation function in SDF based on goal). Source is

surveys or most likely common sense from knowledge of TWG.

Decision Point (measurable) Moves Don't Do Moves Perceptions

CF Company Security Maximize Green and Blue OAB and

decrease Red OABGreen OAB decreases one step or if Red OAB increases one step.

Provide Security Provide Legal

Red: Red trying to disrupt infrastructure, intimidate the population and prove that Blue and Green cannot protect population centers.

Dismounted Patrol Hero Payments

Condolence Payments

Green OAB remains the same or Red OAB remains the same.

Dismounted Patrol Provide Legal

Provide Security Hero Payments

Condolence Payments

• The study team also assessed point-wise mutual information (PMI) scores to determine strategy, goals, and decision points. The study team calculated PMI scores to determine the co-occurrence of kinetic or non-kinetic strategies and popular support levels.

Social Impact Model

Using Point-wise Mutual Information (PMI)

18

Y-variable Move Categories (# of moves)

Blue kinetic

Blue non-kinetic

Green kinetic

Green non-kinetic

Red kinetic

Red non-kinetic Totals

X-variable popular support

observations

green OAB is PA 1958 776 2734green OAB is PP 450 112 562green OAB is NS 200 2674 2874green OAB is NP 151 753 904green OAB is NA This category never occurred. 0

Totals 0 0 2759 4315 0 0 7074

Y-variablePMI Scores

Blue kinetic

Blue non-kinetic

Green kinetic

Green non-kinetic

Red kinetic

Red non-kinetic

X-variable

green OAB is PA 0.473114 -0.346167 green OAB is PP 0.261096 -0.269841 green OAB is NS -0.48336 0.4339818 green OAB is NP -0.22043 0.1390841

• PMI is a concept from Information Theory. PMI tells how uniquely a sign, such as popular support score, is associated with another sign, such as an action. We used PMI to tell how players actually reacted to popular support scores.

• PMI quantifies the discrepancy between the probability of coincidence of two outcomes given their joint distribution and the probability of their coincidence given only their individual distributions, applying the equation1:

1 http://en.wikipedia.org/wiki/Pointwise_mutual_information.

Tally of Green Moves versus Green popular support category.

Resulting PMI Scores [-1, +1].-1 = never occurs together, 0 = independent, +1 = complete co-occurrence.

19

Scenario Definition

• Scenario 1 – TWG 2010 implementation. – Scenario 1 mimics TWG 2010 implementation. Specifically, blue, green, and red

role players attempted to maximize their own popularity. Blue and green wanted to become as popular as possible. Red was satisfied not to become unpopular.

• Scenario 2 – Excursion. Same as TWG 2010 implementation, except blue attempted to maximize green popularity vice blue popularity.

Social Impact Model

Scenario 2.

Role Player Goal Decision Point Strategy

Blue and Green Maximize green popularityGreen popularity increases Kinetic Action

Green popularity decreases Non-kinetic Action

Red Maximize red popularityRed popularity increases Non-kinetic Action

Red popularity decreases Kinetic Action

Scenario 1.

Role Player Goal Decision Point Strategy

Blue Maximize blue popularityBlue popularity increases Kinetic Action

Blue popularity decreases Non-kinetic Action

Green Maximize green popularityGreen popularity increases Kinetic Action

Green popularity decreases Non-kinetic Action

Red Maximize red popularityRed popularity increases Non-kinetic Action

Red popularity decreases Kinetic Action

20Social Impact Model

Iterative Hub and Spoke Architecture

CG Move Nexus Move

CG Ontology(Cultural Geography

Model)

Nexus Ontology(Nexus Model)

Pave/CG Mediation Ontology(Inference Engines:- Probabilistic Inference (Bayesian networks)- Logical Inference (Jena Micro OWL))

Pave/Nexus Mediation Ontology(Inference Engines: - Probabilistic Inference (Bayesian networks)- Logical Inference (Jena Micro OWL))

Legend:

Input / Output

Ontology

CG Adjudication

Updated Indicators

Nexus Adjudication

Updated Indicators

Hybrid Model

Inference Engine

Hybrid Model

Inference Engine

PaveHub

Ontology

Social Impact Model

TWG 2010 Probabilistic Ontologies

1. CG ontology. Defines CG moves.

2. Nexus ontology. Defines Nexus moves.

3. PAVE ontology. Hub ontology for model. Contains PAVE moves and role player strategies, goals, and decision points.

4. PAVE CG Mediation ontology. Performs dynamic translation of PAVE tasks to CG moves.

5. PAVE Nexus Mediation ontology. Performs dynamic translation of PAVE tasks to Nexus moves.

6. Tactical Wargame 2010 ontology. Maintains states of the automated role player, such as OAB level/popularity and state of individual move.

7. Multi-Resolutional Bayesian ontology. Defines the macro and micro agents that are used to integrate multi-resolutional models.

8. TEO ontology. Defines events and outcomes.

9. Design of Experiment (DOE) ontology. Abstracts the concept of strategies, goals, and decision points in a doctrinal manner.

10. ProbOnt ontology. Holds the representation of the Bayesian networks that determine selection of events and outcomes.

11. Pakaf ontology. Holds the moves to the Helmand/PAKAF scenario.

12. PakafCgMediation. Automatically translates CG TWG moves to Helmand/PAKAF moves.

Social Impact Model

Probabilistic Ontology Relationships

DOE

TEO

PAVE

CGNexus

ProbOnt

MultiResolutionalBayes

PaveNexusMediation

ProbOnt

MultiResolutionalBayes

PaveCgMediation

Inheritance Hierarchy and Relationship Structureof SDF Probabilistic Ontologies

23Social Impact Model

Logical Inference Indicators in Action

• The logical inference engine (Jena Micro OWL) classified when decision points were triggered.

• Yellow portion in the ontologies below indicate inferred states for coalition forces player, calculated from indicator definitions.

24Social Impact Model

Implementation of Event Probabilities

• The study team implemented a probabilistic translation from the moves of one model to another using Bayesian networks.

• SIM added Bayesian Networks, such as the one below, directly to the probabilistic ontology representation.

reportingOfEvent

reportingOfEventTaskRecruit...reportingOfEventTaskRecruit...

95.05.00

receiveInformationFromCivilians

receiveInformationFromCivilia...receiveInformationFromCivilia...

85.015.0

targetOfCoercionReportsTheAttempted...

targetOfCoercionReportsThe...targetOfCoercionReportsThe...

50.050.0

oab

activeNegativepassiveNegativeneutralpassivePositiveactivePositive

20.020.020.020.020.0

payoff

payoffNotpayoff

9.0091.0

25Social Impact Model

Probabilistic Inference in Action

• The example below illustrates two probabilistic translations from the same PAVE move (‘CS_CF’ – cordon and search by coalition force).

– Micro agent #3 generated three CG events from the PAVE task, whereas micro agent #1 generated two CG events from the same PAVE task.

26Social Impact Model

Results

Scenario 1 (TWG 2010). Blue Moves/Green Popularity

04/19/2023 27

K U M U

M P N P

.10

Popularity of GreenP = PopularU = Unpopular

Level of Violence (blue player actions)K = KineticM = Medium KineticN = Non-Kinetic

.10

Level of Violence Kinetic Medium Kinetic Non-Kinetic

Lev

el o

f G

reen

Su

pp

ort

U

np

op

ula

rP

op

ula

r

Start Scenario

.70

.40

N U

K P

.10

.14

.40

.20

.36

.50

.21

.36

.29

.43

.07

.14

.50

Social Impact Model

Scenario 2 (Excursion). Blue Moves/Green Popularity

04/19/2023 28

K U M U

M P N P

.10

Popularity of GreenP = PopularU = Unpopular

Level of Violence (blue player actions)K = KineticM = Medium KineticN = Non-Kinetic

.10

Level of Violence Kinetic Medium Kinetic Non-Kinetic

Lev

el o

f G

reen

Su

pp

ort

U

np

op

ula

rP

op

ula

r

Start Scenario

.70

.14

.14

N U

K P

.10

.14

.28

.50

.43

.50

.57

.28

.71

.14

.14

Probabilistic Distance from Scenario 1: 0.09

Social Impact Model

• Apply Kullback-Leibler (KL) divergence to measure probabilistic distance between Markov processes:

• Score of 0 means exact same Markov process. Score of 1 means the most different Markov process possible. Example above generated KL score = 0.21.

Validation – Markov Processes from Model and Real World

29Social Impact Model

Popularity of GreenP = PopularU = Unpopular

Level of ViolenceK = KineticM = Medium KineticN = Non-Kinetic

State Definition

Model State Transitions Real World (Afghan Nationwide Quarterly Assessment Review)

30Social Impact Model

Summary

Social Impact Model

SIM IW Analysis and Validation Capabilities

‒ Flexibility to define state spaces (i.e. type of actions by role player –popularity level) that align with the study questions based on doctrine and cognitive-based measurement spaces.

‒ Ability to run out the wargame with perception based moves and countermoves keeping track of the likelihood of outcomes for risk based analysis.

‒ Ability to examine model dynamics vice simply end of run output via Markov processes to assess tipping points.

‒ Ability to compare data based on statistical patterns vice single outcomes.

‒ Flexibility to translate, compare, and surrogate data.

31

32Social Impact Model

Questions and Comments

POC: Deborah Duong [email protected]