ivan bazarov cornell physics department / classe

20
Fourier Optics P3330 Exp Optics FA’2016 1 Fourier Optics Ivan Bazarov Cornell Physics Department / CLASSE Outline 2D Fourier Transform 4-f System Examples of spatial frequency filters Phase contrast imaging Matlab FFT

Upload: others

Post on 23-Nov-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20161

Fourier Optics

Ivan BazarovCornell Physics Department / CLASSE

Outline• 2D Fourier Transform• 4-f System• Examples of spatial frequency filters• Phase contrast imaging• Matlab FFT

Page 2: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20162

Properties of 2D Fourier Transforms

f(x, y) =

ZZF (f

x

, f

y

)ei2⇡(xfx+yf

y

)df

x

df

y

F (fx

, f

y

) =

ZZf(x, y)e�i2⇡(xf

x

+yf

y

)dxdy

Definitions:

Linearity:

Scaling:

Shift:

↵f(x, y) + �g(x, y) ! ↵F (fx

, f

y

) + �G(fx

, f

y

)

f

⇣x

a

,

y

b

⌘ ! |ab|F (af

x

, bf

y

)

f(x� x0, y � y0) ! F (fx

, f

y

)e�i2⇡(x0fx+y0fy)

Page 3: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20163

Properties of 2D Fourier Transforms (contd.)

Rotation:

Convolution:

Parseval’s theorem:

Slice theorem:

R

{f(x, y)} ! R

{F (fx

, f

y

)}

ZZf(x, y)g(x� x, y � y)dxdy ! F (f

x

, f

y

)G(fx

, f

y

)

ZZ|f(x, y)|2dxdy =

ZZ|F (f

x

, f

y

)|2dfx

df

y

Zf(x, y)dy ! F (f

x

, 0)

Page 4: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20164

4-f System

FFT FFT FFT FFT

Collimate Mask FT Filter IFT Out

“4-f system”Prepare input 1Input mask

f(x, y)

Take FT F

✓x

0

�FFT,

y

0

�FFT

◆ Filter mask F

✓x

0

�FFT,

y

0

�FFT

◆G

✓x

0

�FFT,

y

0

�FFT

Inverse FTZZ

f(x, y)g(x� x, y � y)dxdy

2D object f(x,y) has been filtered with 2D filter with impulse response g(x,y)

Page 5: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20165

Coordinate system after the lens: spatial frequency converter

Thus, the spatial frequency fx is related to coordinate x’ by scaling factor Fl

Page 6: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20166

Simple Fourier Transform

ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Simple optical Fourier transforms

49

Focal length F = 100 mm

Laser wavelength λ0 = 632 nm

µm 200=xλµm 316

200

632.0000,100

=

×=′x

µm8.282

µm 2002

=

×=

= yx λλµm 223

8.282

632.0000,100

=

×=

′=′ yx

•Lecture 4–Fourier optics

Amplitude cosine, aka diffraction grating

Rotate object by 45o

Page 7: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20167

Low pass filter (sharp cutoff)ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Low pass, sharp cutoff

50

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/500 µm-1

Filter cutoff position = 126.4 µmFocal length = 100 mmLaser wavelength = 632 nm

All plots show amplitude of E

•Lecture 4–Example

252.8 µm pinhole

Smoothed, but Gibbs ringing due to sharp filter edges

ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Low pass, sharp cutoff

50

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/500 µm-1

Filter cutoff position = 126.4 µmFocal length = 100 mmLaser wavelength = 632 nm

All plots show amplitude of E

•Lecture 4–Example

252.8 µm pinhole

Smoothed, but Gibbs ringing due to sharp filter edges

Page 8: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20168

Low pass filter (smooth cutoff)ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Low pass, smooth cutoff

51

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/500 µm-1

Filter cutoff position = 126.4 µmEdge smoothing = 132 µmFocal length = 100 mmLaser wavelength = 632 nm

•Lecture 4–Example

Now just nicely smoothed

ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Low pass, smooth cutoff

51

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/500 µm-1

Filter cutoff position = 126.4 µmEdge smoothing = 132 µmFocal length = 100 mmLaser wavelength = 632 nm

•Lecture 4–Example

Now just nicely smoothed

Page 9: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’20169

High pass (narrow band)ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

High pass, narrowband

52

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/1200 µm-1

Filter cutoff position = 52.6 µmEdge smoothing = 58.2 µmFocal length = 100 mmLaser wavelength = 632 nm

•Lecture 4–Example

Sharp filter used for clarity

Note sharp edges, darkening of large, uniform areas (~DC)

105.2 µm “dot”

ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

High pass, narrowband

52

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/1200 µm-1

Filter cutoff position = 52.6 µmEdge smoothing = 58.2 µmFocal length = 100 mmLaser wavelength = 632 nm

•Lecture 4–Example

Sharp filter used for clarity

Note sharp edges, darkening of large, uniform areas (~DC)

105.2 µm “dot”

Page 10: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201610

High pass (high band)ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

High pass, wideband

53

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/300 µm-1

Filter cutoff position = 210.6 µmEdge smoothing = 46.6 µmFocal length = 100 mmLaser wavelength = 632 nm

•Lecture 4–Example

Only edges remain. Almost a “line drawing”

ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

High pass, wideband

53

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/300 µm-1

Filter cutoff position = 210.6 µmEdge smoothing = 46.6 µmFocal length = 100 mmLaser wavelength = 632 nm

•Lecture 4–Example

Only edges remain. Almost a “line drawing”

Page 11: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201611

Vertical low pass (“smeers” vertically)ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Vertical low pass

54

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/200 µm-1

Filter cutoff position = 316 µmEdge smoothing = 93.6 µmFocal length = 100 mmLaser wavelength = 632 nm

Horizontal lines at edges of eyes goneVertical lines above nose remain.

•Lecture 4–Example

632 µm horiz. slit

Page 12: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201612

Horizontal low pass (“smeers” horizontally)ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Horizontal low pass

55

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/200 µm-1

Filter cutoff position = 316 µmEdge smoothing = 93.6 µmFocal length = 100 mmLaser wavelength = 632 nm

Horizontal lines at edges of eyes remain.Vertical lines above nose gone.

•Lecture 4–Example

632

µm vert. slit

Page 13: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201613

Simpler objects

ECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Simpler object

56

Original

Low-pass

High-pass

Low-pass, different cutoff in x&y

•Lecture 4–Example

A side note: this is how bandpass filters look like in the frequency (focus) domain.

Page 14: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201614

Phase contrast imagingECE 4606 Undergraduate Optics Lab

Robert R. McLeod, University of Colorado

Phase contrast

57

Multiplied by

=

REAL SPACE FOURIER SPACE

Filter cutoff frequency = 1/5000 µm-1

Filter cutoff position = 12.6 µmFocal length = 100 mmLaser wavelength = 632 nm

Phase has become amplitude.Zernike won the 1953 Nobel in Physics for this.

•Lecture 4–Phase contrast

( )Ansel

Anselj

e maxπ−

Knife edge

Page 15: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201615

Some MATLAB tips: 2D functions

• Create a matrix that evaluates 2D Gaussian: exp(-p/2(x2+y2)/s2)– >>ind = [-32:1:31] / 32;– >>[x,y] = meshgrid(ind,-1*ind);– >>z = exp(-pi/2*(x.^2+y.^2)/(.25.^2));– >>imshow(z)– >>colorbar

x’

y’

x

y

64x64 matrix

-1

0

31/32-1

Page 16: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201616

FFT “splits” low frequencies

1D Fourier Transform– >>l = z(33,:);– >>L = fft(l);

sample #

10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l

10 20 30 40 50 600

2

46

8

10

12

10 20 30 40 50 60-4

-2

0

2

4

sample #

phas

e (L

)ab

s (L

)

1 33 64

u0 fNfN/2

1 33 64

x [Matlab]0 xmax

low frequencies (aka shift theorem)

Page 17: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201617

Use FFTSHIFT prior to/after FFT or FFT2

Use fftshift for 2D functions– >>smiley2 = fftshift(smiley);

Page 18: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201618

If your FFT looks jagged…

f = zeros(30,30);f(5:24,13:17) = 1;imshow(f,'InitialMagnification','fit')

F = fft2(f);F2 = log(abs(F));imshow(F2,[-1 5],'InitialMagnification','fit');colormap(jet); colorbar

Discrete Fourier Transform Computed Without Padding

Page 19: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201619

Apply zero-padding!

F = fft2(f,256,256);imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar

Discrete Fourier Transform With Padding

“wrong” low frequency location!

% Apply FFTSHIFTF = fft2(f,256,256);F2 = fftshift(F);imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

Normal FT look

Page 20: Ivan Bazarov Cornell Physics Department / CLASSE

Fourier Optics P3330 Exp Optics FA’201620

Links/references

http://ecee.colorado.edu/~mcleod/teaching/ugol/lecturenotes/Lecture%204%20Fourier%20Optics.pdf

http://www.medphysics.wisc.edu/~block/bme530lectures/matlabintro.ppt

http://www.mathworks.com/help/images/fourier-transform.html