j. frieman et al- dark energy

Upload: muths999999

Post on 06-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 J. Frieman et al- Dark Energy

    1/35

    Dark Energy

    J. Frieman: Overview 30

    A. Kim: Supernovae 30

    B. Jain: Weak Lensing 30

    M. White: Baryon Acoustic Oscillations 30

    P5, SLAC, Feb. 22, 2008

  • 8/3/2019 J. Frieman et al- Dark Energy

    2/35

    Progress since last P5 ReportBEPAC recommends JDEM as highest-priority

    for NASAs Beyond Einstein program: joint AO

    expected 2008DES recommended for CD2/3a approval

    LSST successful Conceptual Design Review

    ESA Cosmic Visions Program: DUNE, SPACEConcept Advisory Team studying possible

    merger

  • 8/3/2019 J. Frieman et al- Dark Energy

    3/35

    3

    What is causing cosmic acceleration?

    Dark Energy:

    Gravity:

    Key Experimental Questions:

    1. Is DE observationally distinguishable from a cosmologicalconstant, for which w =1?

    2. Can we distinguish between gravity and dark energy?

    Combine distance with structure-growth probes

    3. Does dark energy evolve: w=w(z)?

    G"= 8#G[T

    "(matter)+ T

    "(dark energy)]

    DE equation of state : w = Tii /T0

    0< $1/ 3

    G"+ f(g

    ") = 8#GT

    "(matter)

  • 8/3/2019 J. Frieman et al- Dark Energy

    4/35

    4

    Probe dark energy through the history of the expansion rate:

    and the growth of large-scale structure:

    Four Primary Probes (DETF):

    Weak Lensingcosmic shear Distance r(z)+growth

    Supernovae Distance

    Baryon Acoustic Oscillations Distance+H(z)

    Cluster counting Distance+growth

    What is the nature of Dark Energy?

    H2 (z)

    H02

    ="m

    (1+ z)3+"

    DEexp 3 (1+ w(z))dln(1+ z)#[ ] + 1$"m $"DE( ) 1+ z( )

    2

    "# a( )#

    r(z) = Fdz

    H z( )"#

    $%

    &

    '(

    dV

    dzd)=

    r2(z)

    H(z)

  • 8/3/2019 J. Frieman et al- Dark Energy

    5/35

    5

    Probe dark energy through the history of the expansion rate:

    and the growth of large-scale structure:

    Four Primary Probes (DETF):

    Weak Lensingcosmic shear Distance r(z)+growth

    Supernovae Distance

    Baryon Acoustic Oscillations Distance+H(z)

    Cluster counting Distance+growth

    What is the nature of Dark Energy?

    H2 (z)

    H02

    ="m

    (1+ z)3+"

    DEexp 3 (1+ w(z))dln(1+ z)#[ ] + 1$"m $"DE( ) 1+ z( )

    2

    "# a( )#

    r(z) = Fdz

    H z( )"#

    $%

    &

    '(

    dV

    dzd)=

    r2(z)

    H(z)

  • 8/3/2019 J. Frieman et al- Dark Energy

    6/35

    6

    Model Assumptions

    Most current data analyses assume a simplified, two-

    parameter class of models:

    Future experiments aim to constrain (at least) 4-

    parameter models:

    Higher-dimensional EOS parametrizations possible

    Other descriptions possible (e.g., kinematic)

    "m,"

    DE,w(z) # either : "

    m,"

    DE(w = $1)

    or : "m, w (constant), flat : "

    m+"

    DE=1

    "m,"

    DE,w(a)= w

    0+ w

    a (1# a

    )

  • 8/3/2019 J. Frieman et al- Dark Energy

    7/35

    7

    Current

    Constraints onConstantDark

    Energy Equation

    of State

    2-parameter model:

    Data consistent with

    w=10.1

    Allen et al 07

    w, "m

  • 8/3/2019 J. Frieman et al- Dark Energy

    8/35

    8

    Current

    Constraints onConstantDark

    Energy Equation

    of State

    2-parameter model:

    Data consistent with

    w=10.1

    Allen et al 07

    Kowalski et al 08

    w, "m

  • 8/3/2019 J. Frieman et al- Dark Energy

    9/35

    9

    Curvature and Dark Energy

    WMAP3+

    SDSS+2dF+SN

    w(z)=constant

    3-parametermodel:

    Spergel etal 07

    w, "m

    , "k

  • 8/3/2019 J. Frieman et al- Dark Energy

    10/35

    10

    Much weaker

    current

    constraints on

    Time-varying

    Dark Energy

    3-parameter model

    marginalized overm

    Kowalski et al 08 Assumes flat Universe

    w(z) = w0 + wa (1" a)+ ...

  • 8/3/2019 J. Frieman et al- Dark Energy

    11/35

    11

    Dark Energy Task Force Report (2006)

    Defined Figure of Merit to compare expts andmethods:

    Highlighted 4 probes: SN, WL, BAO, CL

    Envisioned staged program of experiments:

    Stage II: on-going or funded as of 2006Stage III: intermediate in scale + time

    Stage IV: longer-term, larger scale

    LSST, JDEM

    FoM" 1

    #(w0)#(wa )

    "3

    "10

  • 8/3/2019 J. Frieman et al- Dark Energy

    12/35

    12

    Much weaker

    current

    constraints on

    Time-varying

    Dark Energy

    3-parameter model

    marginalized overm

    Kowalski et al 08

    w(z) = w0 + wa (1" a)

    ``Stage III

    ``Stage IV

    Theoretical

    prejudice

  • 8/3/2019 J. Frieman et al- Dark Energy

    13/35

    13

    Growth of Large-

    scale Structure

    Robustness of the

    paradigm recommends

    its use as a Dark

    Energy probe

    Price:additional

    cosmological and

    structure formation

    parameters

    Bonus:additional

    structure formation

    parameters

  • 8/3/2019 J. Frieman et al- Dark Energy

    14/35

    14

    Expansion History vs. Perturbation Growth

    Growth ofPerturbations

    probesH(z)

    and gravitymodifications

    Linder

  • 8/3/2019 J. Frieman et al- Dark Energy

    15/35

    15

    Expansion History vs. Perturbation Growth

    Growth ofPerturbations

    probesH(z)

    and gravitymodifications

    Linder

  • 8/3/2019 J. Frieman et al- Dark Energy

    16/35

    16

    Probing Dark Energy

    Primary Techniques identified by the

    Dark Energy Task Force report:

    Supernovae

    Galaxy Clusters

    Weak Lensing

    Baryon Acoustic Oscillations

    Multiple Techniques needed: complementary in systematics

    and in science reach

  • 8/3/2019 J. Frieman et al- Dark Energy

    17/35

    17

    Caveat:

    Representative list,

    not guaranteed to be

    complete or accurate

  • 8/3/2019 J. Frieman et al- Dark Energy

    18/35

    18

    Type Ia SN

    Peak Brightness

    as calibratedStandard Candle

    Peak brightness

    correlates with

    decline rate

    Variety of algorithms

    for modeling these

    correlations

    After correction,~ 0.15 mag(~7% distance error)

    Lumino

    sity

    Time

  • 8/3/2019 J. Frieman et al- Dark Energy

    19/35

    19

    2007

    Wood-Vasey etal 07

  • 8/3/2019 J. Frieman et al- Dark Energy

    20/35

    Large-scale Correlations of

    SDSS Luminous Red Galaxies

    Acoustic series in

    P(k) becomes a

    single peak in (r)

    Pure CDM model

    has no peak

    Eisenstein, etal

    05

    Redshift-

    space

    Correlation

    Function

    Baryon

    Acoustic

    Oscillations

    seen in

    Large-scale

    Structure

    "(r) =

    #(r

    x)#(r

    x+

    r

    r)

  • 8/3/2019 J. Frieman et al- Dark Energy

    21/35

    Cold Dark

    Matter Models

    Power Spectrum

    of the Mass

    Density

    " k( ) = d3# x $ eir

    k$r

    x"%x( )

    %

    " k1( )" k2( ) =

    2#( )3

    P k1( )"

    3r

    k1+

    r

    k2( )

  • 8/3/2019 J. Frieman et al- Dark Energy

    22/35

    22Tegmark etal 06

    SDSS

  • 8/3/2019 J. Frieman et al- Dark Energy

    23/35

    23

    Weak lensing: shear and mass

    Jain

  • 8/3/2019 J. Frieman et al- Dark Energy

    24/35

    Cosmic Shear Correlations

    Shear

    Amplitude

    VIRMOS-Descart Survey

    Signal

    Noise+systematics

    2x10-4

    10-4

    0

    ,()

    0.6Mpc/h 6Mpc/h 30Mpc/h

    CDM

    55 sq deg

    z= 0.8

    Van

    Waerbeke

    etal 05

  • 8/3/2019 J. Frieman et al- Dark Energy

    25/35

    25

    Clusters and Dark Energy

    MohrVolume Growth

    (geometry)

    Number of clusters above observable mass threshold

    Dark Energy

    equation of state

    dN(z)

    dzd"=

    dV

    dz d"n z( )

    Requirements1.Understand formation of darkmatter halos

    2.Cleanly select massive dark matterhalos (galaxy clusters) over a range

    of redshifts3.Redshift estimates for each cluster

    4.Observable proxy O that can beused as cluster mass estimate:

    p(O|M,z)

    Primary systematic:

    Uncertainty in bias & scatter ofmass-observable relation

  • 8/3/2019 J. Frieman et al- Dark Energy

    26/35

    26

    Clusters form hierarchically

    z = 7 z = 5 z = 3

    z = 1 z = 0.5 z = 0

    5 Mpc

    dark matterdark matter

    timetime

    Kravtsov

  • 8/3/2019 J. Frieman et al- Dark Energy

    27/35

    27

    Theoretical Abundance of Dark Matter Halos

    Warren et al 05

    Warren etal

    n(z) = (dn /dlnM)dlnMMmin

    "

    #

  • 8/3/2019 J. Frieman et al- Dark Energy

    28/35

    28

    Cluster Selection

    4 Techniques for Cluster Selection:

    Optical galaxy concentration

    Weak Lensing

    Sunyaev-Zeldovich effect (SZE)

    X-ray

    Cross-compare selection to controlsystematic errors

  • 8/3/2019 J. Frieman et al- Dark Energy

    29/35

    29

    Photometric Redshifts

    Measure relative flux in

    multiple filters:

    track the 4000 A break

    Precision is sufficient

    for Dark Energy probes,

    providederror distributions

    well measured.

    Need deep spectroscopic galaxy

    samples to calibrate

    Redshifted Elliptical galaxy spectrum

  • 8/3/2019 J. Frieman et al- Dark Energy

    30/35

    30

    Photometric Redshifts

    Measure relative flux in

    multiple filters:

    track the 4000 A break

    Precision is sufficient

    for Dark Energy probes,

    providederror distributions

    well measured.

    Need deep spectroscopic galaxy

    samples to calibrate

    Redshifted Elliptical galaxy spectrum

  • 8/3/2019 J. Frieman et al- Dark Energy

    31/35

    31

    Cluster Mass Estimates

    4 Techniques for Cluster Mass Estimation:

    Optical galaxy concentration

    Weak Lensing

    Sunyaev-Zeldovich effect (SZE)

    X-ray

    Cross-compare these techniques to

    reduce systematic errors

    Additional cross-checks:

    shape of mass function; cluster

    correlations

  • 8/3/2019 J. Frieman et al- Dark Energy

    32/35

    32

    Calibrating the Cluster Mass-

    Observable Relation

    Weak Lensing by

    stacked SDSS Clusters

    insensitive toprojection effects

    Calibrate mass-

    richness

    Johnston, Sheldon, etal 07

  • 8/3/2019 J. Frieman et al- Dark Energy

    33/35

    33

    Current Constraints: X-ray clusters

    Mantz, et al 2007

  • 8/3/2019 J. Frieman et al- Dark Energy

    34/35

    34

    Systematic Errors

    Supernovae: uncertainties in dust and SN colors;

    selection biases; ``hidden luminosity evolution;

    limited low-z sample for training & anchoring

    BAO: redshift distortions; galaxy bias; non-

    linearities; selection biases

    Weak Lensing: additive and multiplicative shear

    errors; photo-z systematics; small-scale non-linearity

    & baryonic efffects

    Clusters: scatter & bias in mass-observable relation;

    uncertainty in observable selection function; small-

    scale non-linearity & baryonic effects

  • 8/3/2019 J. Frieman et al- Dark Energy

    35/35

    35

    Conclusions

    Excellent prospects for increasing the precision on DarkEnergy parameters from a sequence of increasingly complex

    and ambitious experiments over the next 5-15 years

    Exploiting complementarity of multiple probes will be key:

    we dont know what the ultimate systematic errorfloors for

    each method will be. Combine geometric with structure-

    growth probes to help distinguish modified gravity from dark

    energy.

    What parameter precision is needed to stimulate theoretical

    progress? It depends in large part on what the answer is.