jagdish k. tuli nndc brookhaven national laboratory upton, ny 11973, usa

28
Jag Tuli DDP-Workshop Bucharest, Romania, May 08 Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA Decay Scheme Normalization

Upload: taniel

Post on 13-Jan-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Decay Scheme Normalization. Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA. 1.Relative intensity is what is generally measured 2. Multipolarity and mixing ratio ( d ). 3. Internal Conversion Coefficients Theoretical Values: From BRICC. Experimental values: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Jagdish K. TuliNNDC

Brookhaven National LaboratoryUpton, NY 11973, USA

Decay Scheme Normalization

Page 2: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

1.Relative intensity is what is generally

measured

2. Multipolarity and mixing ratio ().

3. Internal Conversion Coefficients

• Theoretical Values:

• From BRICC

Page 3: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

• Experimental values:

For very precise values ( 3% uncertainty).

E = 661 keV ; 137Cs (K=0.0902 + 0.0008, M4)

Nuclear penetration effects.

233Pa - decay to 233U.

E = 312 keV almost pure M1 from electron

sub-shell ratios.

However K(exp) = 0.64 + 0.02.

(K th(M1)=0.78, K

th(E2)=0.07)

Page 4: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

For mixed E0 transitions (e.g., M1+E0).

227Fr - 227Ra

E = 379.1 keV (M1+E0); (exp) = 2.4 + 0.8

th(M1) = 0.40; th(E2) = 0.08

675.8

296.6

379.5

½-

½-

<10 ps

227Ra

Page 5: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 6: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 7: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Decay Scheme NormalizationRel. Int. Norm. Factor Abs. Int.

I NR BR %IIt NT Br %It

I NB BR %II NB BR %II NB BR %I

BR: Factor for Converting Intensity Per 100 Decays Through This Decay Branch, to Intensity Per 100 Decays of the Parent Nucleus

NR: Factor for Converting Relative I to I Per 100 Decays Through

This Decay Branch.

NT: Factor for Converting Relative TI to TI Per 100 Decays Through This Decay Branch.

NB: Factor for Converting Relative and Intensities to Intensities Per 100 Decays of This Decay Branch.

 

Page 8: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 9: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Absolute intensities

“Intensities per 100 disintegrations of the parent nucleus”

• Measured (Photons from -, ++, and decay)

Simultaneous singles measurements

Coincidence measurements

Page 10: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 11: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Normalization Procedures

1. Absolute intensity of one gamma ray is known (%I)

Relative intensity I + I

Absolute intensity %I + I

Normalization factor N = %I / IUncertainty N =[ (I%I)2+(IIx N

Then %Il = N x Il

Il = [(N/N)2 + (IIx Il

I1 I2

%I

Page 12: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

2. From Decay Scheme

IRelative -ray intensity; : total conversion coefficient

N x I x (1 + ) = 100%

Normalization factor N = 100/ I x (1 + )

Absolute -ray intensity % I = N x I00(1 +

)

Uncertainty % I= 100 x /(1 + )2

100%

I

Page 13: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Total intensity from transition-intensity balance

200

150

100

95

0

-

TI(7) = TI(5) + TI(3)

If (7) is known, then

I7 = TI(7) / [1 +

(7)]

I6I5 I4

I2 I3

I1

I7

Page 14: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 15: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 16: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Equilibrium Decay Chain

T0 > T1, T2 are the radionuclide half-lives,

For t = 0 only radionuclide A0 exists,

% I3, I3, and I1 are known.

Then, at equilibrium

% I1 = (% I3/I3) × I1× (T0/(T0 – T1) × (T0/(T0 – T2)

Normalization factor N = %I1/ I1

A0

A1

A2

A3

I1

I3

T0

T1

T2

Page 17: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 18: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 19: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 20: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 21: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 22: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 23: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 24: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 25: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Page 26: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

Normalization factor N = 100 / I1(1 + 1) + I3(1 + 3)

% I1 = N x I1 = 100 x I1 / I1(1 + 1) + I3(1 + 3)

% I3 = N x I3 = 100 x I3 / I1(1 + 1) + I3(1 + 3)

% I2 = N x I2 = 100 x I2 / I1(1 + 1) + I3(1 + 3)

Calculate uncertainties in %I1, % I2, and % I3. Use

3% fractional uncertainty in 1 and 3.

See Nucl. Instr. and Meth. A249, 461 (1986).

To save time use computer program GABS

- 100%

I3

I2

I1

Page 27: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

4. Annihilation radiation intensity is known

I(+) = Relative annihilation radiation intensity

Xi = Intensity imbalance at the ith level = (+ce) (out) – (+ce)

(in)

ri = i / +i theoretical ratio to ith level

Xi = i + +i = +

i (1 + ri), therefore +i = Xi / 1 + ri

2 [X0 / (1 + r0) + Σ Xi / (1 + ri)] = I(+) ……… (1)

[X0 + Σ Ii ( + ce) to gs ] N = 100 ………. (2)

Solve equation (1) for X0 (rel. gs feeding).

Solve equation (2) for N (normalization factor).

+ce) (in)

(+ce)(out)

(++)2

(++)1

(++)0

++

Page 28: Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA

Jag Tuli DDP-Workshop

Bucharest, Romania, May 08

5. X-ray intensity is known

IK = Relative Kx-ray intensity

Xi = Intensity imbalance at the ith level = (+ce) (out) – (+ce) (in)

ri = i / +i theoretical ratio to ith level

Xi = i + +i, so i = Xi ri / 1 + ri (atomic vacancies); K=K-fluorsc.yield

PKi = Fraction of the electron-capture decay from the K shell

IK= K [0×PK0 + Σ i× PKi]

IK = K [PK0× X0 r0 / (1 + r0) + Σ PKi× Xi ri / 1 + ri]…(1)

[X0 + Σ Ii( + ce) to gs] N = 100 …. (2)

Solve equation (1) for X0, equation (2) for N.

+ce) (in)

(+ce)(out)

(++)2

(++)1

(++)0

++