john-dylan haynes charité – universitätsmedizin berlin decoding … · charité –...

32
John-Dylan Haynes Charité – Universitätsmedizin Berlin Decoding and predicting intentions: A case study for MVPA applications OHBM 2014 Educational Course „Pattern Recognition for NeuroImaging“

Upload: vothuy

Post on 12-Apr-2018

220 views

Category:

Documents


4 download

TRANSCRIPT

John-Dylan Haynes Charité – Universitätsmedizin Berlin

Decoding and predicting intentions: A case study for MVPA applications

OHBM 2014 Educational Course „Pattern Recognition for NeuroImaging“

Haynes et al. Curr Biol 2007; Soon & Haynes Nat Neurosci 2008; Bode & Haynes Neuroimage 2009; Reverberi, Görgen & Haynes Cer Cor 2011; Bode et al. PLoS One 2011

Decoding intentions

receptors effectors receptors effectors

Task sets as mapping of receptors to effectors

Bode & Haynes Neuroimage 2009

Experimental paradigm “task sets”

Cue Delay Stimulus Response 1400ms 2800ms 4200ms 2800ms

Decoding target stimuli? Decoding mapping? Decoding response?

Trial types

TT1 TT2

TT3 TT4

Bode & Haynes Neuroimage 2009

Labels for decoding stimuli

Stimulus 1 Stimulus 2

Bode & Haynes Neuroimage 2009

Labels for decoding responses

Response „L“ Response „R“

Response „L“ Response „R“

Bode & Haynes Neuroimage 2009

Labels for decoding task sets

Task set A

Task set B

Bode & Haynes Neuroimage 2009

Whole-brain decoding Curse of dimensionality ( PCA) Biological plausibility?

Region of interest

Searchlight decoding Specific subspace Locality assumption Spatially unbiased

What to put into your classifier (space)

What to put into your classifier (time)

Singe volume activity (typically baseline corrected)

HRF-fitted single-trial parameter estimate

Runwise GLM parameter estimates

Practical implementation Raw data Run 1

Run 2

Run 3

Run 4

Test

Train For each

searchlight center

Spatial normalization can occur before or after classification. This flow chart shows „early“ normalization.

3 label groupings

GLM parameter estimate volumes

Gen

eral

line

ar m

odel

est

imat

ion,

he

re: 4

regr

esso

rs fo

r tria

l typ

es 1

…4

Run 1

Run 2

Run 3

Run 4

TT1 TT2 TT3 TT4

TT1 TT2 TT3 TT4

TT1 TT2 TT3 TT4

TT1 TT2 TT3 TT4

Pre

proc

essi

ng: M

otio

n co

rrect

ion,

slic

e tim

e

corre

ctio

n, n

orm

aliz

atio

n, re

slic

ing

Run 1

Run 2

Run 3

Run 4

Preprocessed data

Single subject local decoding accuracy map

„Leave one run out“

cross-validation

Classification loop This you can do e.g. in SPM

Averaging accuracy/information across subjects

Thresholded map of local decoding accuracy

FWE-threshold

(T-test, permutation test)

Average map of local decoding accuracy

One local decoding accuracy map per subject You can do this in SPM if you are ok with a T-test

Stimulus decoding

Bode & Haynes Neuroimage 2009

Note of caution: When using a searchlight

and a second level threshold these accuracies are not independent estimators

of effect size / information (for a related discussion

See Vul et al. 2009). For this you would need an

additional validation data set. The analysis primarily assesses the existence of information at

a specific location.

Response decoding

Bode & Haynes Neuroimage 2009

Decoding of stimulus-response mapping

Bode & Haynes Neuroimage 2009

Time

Decoding Across Time: Finite Impulse Response Functions

Accu

racy

or i

nfor

mat

ion

Canonical HRF

FIR separate estimate at each TR

Decoding Across Time: Finite Impulse Response Functions

N p

aram

eter

s

N parameter estimates

X

canonical HRF

FIR model basis functions

Estimate classifier seperately for each latency

Decoding across time

Bode & Haynes Neuroimage 2009

Reverberi , Görgen & Haynes (Cer Cortex 2012)

Hierarchy and compositionality: Cross-classification

Carlo Reverberi Postdoc

Carlo Reverberi Postdoc

Reverberi , Görgen & Haynes (Cer Cortex 2012)

Hierarchy and compositionality: Cross-classification

Chance

Chun Siong Soon PhD student

b k y p q h j

L R

q

h

j

?

... potential predictors ...

Soon, Brass, Heinze & Haynes Nature Neurosci 2008

Predicting decisions

b k y p q h j w x n t s z m

TR-2

Label = choice

Soon, Brass, Heinze & Haynes Nature Neurosci 2008

Decoding at various TRs relative to choice

Soon, Brass, Heinze & Haynes Nature Neurosci 2008

Decoding choice after decision

Dec

odin

g ac

cura

cy

Time [s]

Dec

odin

g ac

cura

cy

Time [s]

Dec

odin

g ac

cura

cy

Time [s]

Decoding choice before decision

Searchlight classification weights in frontopolar cortex

Early decision – late response?

Dec

odin

g ac

cura

cy

Time [s]

Dec

odin

g ac

cura

cy

Time [s]

Lateral FPC

Link to previous trial?

Dec

odin

g ac

cura

cy

Time [s]

Increases with distance from previous trial

No prediction of next trial

Sequential dependencies in detail

Allefeld et al. Arxiv 2013; see also Lages et al. 2013

Which model? Two “labelling” approaches

Soon et al. Frontiers (2014)

Pitfalls: Reaction times

Todd et al. Neuroimage 2013

One possible „fix“: Regress out reaction times before classification

Pitfalls: Statistical testing

Görgen & Haynes (in preparation)

Especially for chance accuracies other than p=0.5 better to use permutation tests.

Haynes & Rees

Bernstein Center for Neuroscience Berlin Center for Advanced Neuroimaging

Group members: Carsten Allefeld, Stefan Bode, Carsten Bogler, Thomas Christophel,

Radolaw Cichy, Kerstin Hackmack, Kai Görgen, Martin Hebart, Jakob Heinzle, Fatma Imamoglu, Adrian Imfeld, Thorsten Kahnt, Christian

Kalberlah, Ida Mommenejad, Fernando Ramirez, Carlo Reverberi, Chun Siong Soon, Anita Tusche,, Martin Weygandt, David Wisniewski

Collaborators:

Benjamin Blankertz, Matthias Schultze-Kraft, Tobias Donner, Aaron Schurger