joining the dots: integrating high throughput small molecule and rnai screens

46
Joining the Dots: Integra0ng High Throughput Small Molecule and RNAi Screens Rajarshi Guha NIH Chemical Genomics Center January 24, 2010 CCMB Seminar Series

Upload: rguha

Post on 10-May-2015

1.132 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Joining the Dots: Integra0ng High Throughput Small Molecule and 

RNAi Screens 

Rajarshi Guha NIH Chemical Genomics Center 

January 24, 2010 CCMB Seminar Series 

Page 2: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Background 

•  Primarily cheminforma0cs – Data mining, algorithm development, soHware – QSAR, diversity analysis, virtual screening, fragments, polypharmacology, networks 

– Work on a variety of Open Source projects 

•  Recently started moving into bioinforma0cs –  Suppor0ng RNAi screens 

•  Integrate small molecule informa1on & biosystems – systems chemical biology 

Page 3: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

NIH Chemical Genomics Center 

Biology  Chemistry 

Informa0cs  ACOM 

NCGC 

Assay development and op1miza1on 

Compound Op1miza1on 

Automa1on, Compound management 

SAR analysis, method & tool development 

Small Molecules 

Genome wide RNAi 

Page 4: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Outline 

•  Small molecule screening at NCGC •  The NCGC RNAi infrastructure •  Making connec0ons 

•  RNAi challenges 

Page 5: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Small Molecules 

Page 6: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Target Iden0fica0on 

Lead Discovery 

Lead Op0miza0on 

Clinical Development 

Hun0ng for Leads 

• Sensi0vity • Scaling 

Assay Op0miza0on 

• Fluorescence • High Content 

Primary Screening  • Select subset 

to follow up • Diversity 

Cherry Picking 

• Counter screen 

• Explore SAR 

Confirma0on 

HTS 

Page 7: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

The qHTS Paradigm 

•  Tradi0onal single point screens can miss useful hits 

•  qHTS involves concentra0on response assays on a high‐throughput scale 

•  The CRC allows us to  categorize hits in a more fine‐grained manner 

Inglese, J et al, Proc. Natl. Acad. Sci., 2006, 103, 11473‐11478 

Page 8: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Conc. Response Curves •  Heuris0c assessment of the significance of a 

concentra0on response curve 

•  We aggregate certain curve classes into “ac0ve”, “inconclusive” and “inac0ve” categories 

•  Inconclusive is a “catch all”  category (i.e., if it not clearly  ‘ac0ve’ or ‘inac0ve’) 

Inac1ve 

Ac1ve 

Inconclusive 

Page 9: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Annota0ons 

•  NCGC employs a variety of screening libraries – MLSMR (~ 300K) 

– LOPAC (~ 1300) – Prestwick, Sytravon, … – Beyond structures and vendor ID’s, not a whole lot of annota0on 

– This is a required step for integra0on with RNAi – Obviously not possible for large diverse libraries 

•  Use target predicBon models? 

Page 10: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

RNAi 

Page 11: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Trans‐NIH RNAi Ini0a0ve ‐ Mission 

•  Gene func0on •  Pathway analysis •  Target ID •  Compound MoA •  Drug antagonist/agonist 

To establish a state of the art RNAi screening facility to perform genome-wide RNAi screens with investigators in the intramural NIH community.

Page 12: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Current Status 

•  Using Qiagen libraries (Kinome & HDG) – Performing comparisons with other vendors 

•  Pilot phase, run 38 screens so far, ranging from 3 plates to 100 plates 

•  All screens are currently reporter based 

•  Will start up phenotypic screens this summer, with new robo0cs 

Plate Index

Z

0.2

0.4

0.6

0.8

0 20 40 60 80 100

!

!!!

!

!

!

!

!

!

!

!

!

!!!

!!

!

!

!

!!

!

!!!!

!

!

!

!

!

!!!

!

!

!!

!

!

!!

!

!!!

!

!!

!

!

!

!!

!!

!

!

!!!

!!

!

!!

!

!!

!!

!!

!!

!!

!!

!

!

!

!

!!

!!

!!

!

!!

!

!

cpt!hdg!20nm

!

!

!

!

!!

!

!!

!

!

!

!

!!!

!

!

!!

!

!

!

!!!!

!!!!!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!!!!!!

!

!

!

!

!

!!!

!

!

!!

!

!!!!!

!

!

cpt!hdg!5nm

0 20 40 60 80 100

!

!

!!!!!!!!!!!

!

!

!!!!!

cpt!hdg!followup

!

!

!!

!

!!!!!

!!!

!

!

!!!

!!!

!

!!

!

!

!

!!!!!!

!!

!!!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!!!

!

!

!

!

!

!

!!

!

!!

!!!!

!!

!!

!!

!

!

!

!

!

!!!

!

!!!

!

!

!!

!

cpt!hdg!redo!20nm

!

!

!

!!

!

!

!

!

!!

!!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!!

!!!!!

!

!

!!!!!!!

!!!!

!!

!

!!!

!

!!

!!

!

!

!

!

!!

!!

!

!

!

!

!!!!!!!

!

!!

!

!

!

!!

!

!!

!

!!

!

!

!!

cpt!hdg!redo!5nm

!

!

!!!!!!!

!!!!!!

!

!!!!

!

!!!

!!

!!

!

!!!

!

!!!!

!!

!

!

!

!

!!

!

!!!!!!!!

!

!

!

!

!

!!!!!!!

!

!

!

!!!

!

!!!

!

!!

!!

!

!

!!

!

!!

!

!

!!

!

!!

!

cpt!hdg!redo!vo

!!!

!!

!

!

!

!

!!!

!

!!!!!

!!!!!!!!!!!!!

!!!

!

!

!

!

!

!!

!!!

!

!!!!!!

!

!

!!

!!!!!

!

!

!!

!

!!

!

!

!

!

!!!

!!!

!

!

!

!

!

!!!!

!

!

!!

!!!!!

!

cpt!hdg!vo

0.2

0.4

0.6

0.8

!

!

!

cpt!mirna!20nm

0.2

0.4

0.6

0.8!

!!

cpt!mirna!5nm

!!!

cpt!mirna!vo

!

!

!

!!

!

!

indeno!776!10

!

!

!

!!!!!

indeno!776!20

!

!!

!!!!!

indeno!998!40

0 20 40 60 80 100

!

!

!

!!

!

!!

indeno!998!80

0.2

0.4

0.6

0.8

!

!

!!

!

!

!

!

indeno!vo

Page 13: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

RNAi Informa0cs Infrastructure 

Page 14: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

• Summary sta0s0cs 

• Correc0ons 

QC 

• Median • Quar0le • Background 

Normaliza0on • Thresholding • Hypothesis tes0ng 

• Sum of ranks 

Hit Selec0on 

• GO seman0c similarity 

• Pathways • Interac0ons 

Hit Triage 

RNAi Analysis Workflow 

Raw and Processed 

Data 

GO annota0ons Pathways Interac0ons 

Hit List Follow‐up 

Page 15: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

RNAi Informa0cs Toolset 

• Local databases (screen data, pathways, interac0ons, etc). 

• Commercial pathway tools.  

• Custom soHware for loading, analysis and visualiza0on. 

Page 16: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Back End Services 

•  Currently all computa0onal analysis performed on the backend 

•  R & Bioconductor code •  Custom R package (ncgcrnai) to support NCGC infrastructure –  Partly derived from cellHTS2 –  Supports QC metrics, normaliza0on, adjustments, selec0ons, triage, (sta0c) visualiza0on, reports 

•  Some Java tools for – Data loading –  Library and plate registra0on 

Page 17: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

User Accessible Tools 

Page 18: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

User Accessible Tools 

Page 19: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Deploying Data 

•  Small molecule HTS results are available via PubChem – RNAi data is also showing up in PubChem 

•  But what do we want to make available? 

•  How do we make it available? – Standardized format (MIARE) 

– cellHTS2 “format” – Custom viewers – Raw data? Calls? 

Page 20: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Challenge ‐ RNAi & Small Molecule Screens 

Goal: Develop systems level view of small molecule activity

•  Reuse pre-existing MLI data •  Develop new annotated libraries

TACGGGAACTACCATAATTTA 

CAGCATGAGTACTACAGGCCA 

•  Run parallel RNAi screen

What targets mediate activity of siRNA and compound

Pathway elucidation, identification of interactions

Target ID and validation

Link RNAi generated pathway peturbations to small molecule activities. Could provide insight into polypharmacology

Page 21: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

HTS for NF‐κB Antagonists 

•  NF‐κB controls DNA transcrip0on  

•  Involved in cellular responses to s0muli –  Immune response, memory forma0on 

–  Inflamma0on, cancer, auto‐immune diseases 

hnp://www.genego.com 

Page 22: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

HTS for NF‐κB Antagonists 

•  ME‐180 cell line •  S0mulate cells using TNF, leading to NF‐κB ac0va0on, readout via a β‐lactamase reporter 

•  Iden0fy small molecules and siRNA’s that block the resultant ac0va0on 

Page 23: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Small Molecule HTS Summary 

•  2,899 FDA‐approved compounds screened 

•  55 compounds retested ac0ve 

•  Which components of the NF‐κB pathway do they hit? – 17 molecules have target/pathway informa0on in GeneGO 

– Literature searches list a few more 

!9 !8 !7 !6 !5

!60

!40

!20

0

log Concentration (uM)

Activity

!

!

!

!

! !

!

!

!

! !

!

!

!!

!9 !8 !7 !6 !5

!100

!60

!20

0

log Concentration (uM)

Activity

! ! !!

!

!

!

!

!

!! ! ! ! !

!9 !8 !7 !6 !5

!60

!40

!20

0

log Concentration (uM)

Activity

!

!

! !

!

!

! !

!

!!

!

!

!!

Most Potent Actives Proscillaridin A

Trabectidin

Digoxin

Miller, S.C. et al, Biochem. Pharmacol., 2010, ASAP 

Page 24: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

RNAi HTS Summary 

•  Qiagen HDG library – 6886 genes, 4 siRNA’s per gene 

•  A total of 567 genes were knocked down by 1 or more siRNA’s – We consider >= 2 as a “reliable” hit 

– 16 reliable hits – Added in 66 genes for  follow up via triage procedure 

Page 25: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

The Obvious Conclusion 

•  The ac0ve compounds target the 16 hits (at least) from the RNAi screen – Useful if the RNAi screen was small & focused 

•  But what if we’re inves0ga0ng a larger system? –  Is there a way to get more specific? 

– Can compound data suggest RNAi non‐hits? 

Page 26: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Small Molecule Targets 

•  Some small molecules interact with core components 

Bortezomib (proteosome inhibitor)

Daunorubicin (IκBα inhibitor)

!9 !8 !7 !6 !5

!100

!80

!60

!40

!20

0

log Concentration (uM)

Activity

! !

!

!

!

! !

!

!

!

!

!!

!!

!9 !8 !7 !6 !5

!120

!80

!60

!40

!20

0

log Concentration (uM)

Activity

! ! !

!

!

! !! !

!

!

!

!

!

!

Page 27: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Small Molecule Targets 

•  Others are ac0ve against upstream targets 

•  We also get an idea of off ‐target effects 

Montelukast (LDT4 antagonist)

!9 !8 !7 !6 !5

!100

!80

!60

!40

!20

0

log Concentration (uM)

Activity

! !

! !

!!

!

!!

!

! !

!

!

!

Page 28: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Compound Networks ‐ Similarity 

•  Evaluate fingerprint‐based similarity matrix for the 55 ac0ves 

•  Connect pairs that  exhibit Tc> 0.7  

•  Edges are weighted by the Tc value  

•  Most groupings are obvious 

Page 29: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

A “Dic0onary” Based Approach 

•  Create a small‐ish annotated library – “Seed” compounds 

•  Use it in parallel small molecule/RNAi screens 

•  Use a similarity based approach to priori0ze larger collec0ons, in terms of an0cipated targets – Currently, we’d use structural similarity – Diversity of priori0zed structures is dependent on the diversity of the annotated library 

Page 30: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Compound Networks ‐ Targets 

•  Predict targets for the ac0ves using SEA •  Target based compound network maps nearly iden0cally to the  similarity based network  

•  But depending on the  predicted target quality we get poor (or no)  mappings to the  RNAi targeted genes 

Keiser, M.J. et al, Nat. Biotech., 2007, 25, 197‐206 

Page 31: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Gene Networks ‐ Pathways 

•  Nodes are 1374 HDG genes contained in the NCI PID  

•  Edge indicates two genes/proteins are involved in the same pathway 

•  “Good” hits tend to be very highly connected 

Wang, L. et al, BMC Genomics, 2009, 10, 220 

Page 32: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

(Reduced) Gene Networks – Pathways 

•  Nodes are 526 genes with >= 1 siRNA showing knockdown  

•  Edge indicates two genes/proteins are involved in the same pathway 

Page 33: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Pathway Based Integra0on 

•  Direct matching of targets is not very useful •  Try and map compounds to siRNA targets if the compounds’ predicted target(s) and siRNA targets are in the same pathway – Considering 16 reliable hits, we cover 26 pathways – Predicted compound targets cover 131 pathways 

•  For 18 out of 41 compounds 

– 3 RNAi‐derived pathways not covered by compound‐derived pathways  •  Rhodopsin, alterna0ve NFkB, FAS 

Page 34: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Pathway Based Integra0on 

•  S0ll not completely useful, as it only handled 18 compounds 

•  Depending on target predic0ons is probably not a great idea 

Page 35: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Integra0on Caveats 

•  Biggest bonleneck is lack of resolu0on •  Currently, both small molecule and RNAi data are 1‐D – Ac0ve or inac0ve, high/low signal – CRC’s for small molecules alleviate this a bit 

•  High content screens can provide significantly more informa0on and so bener resolu0on – Data size & feature selec0on are of concern 

Page 36: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Integra0on Caveats 

•  Compound annota0ons are key •  More comprehensive pathway data will be required 

•  RNAi and small molecule inhibi0on do not always lead to the same phenotype – Could be indica0ve of promiscuity 

– Could indicate true biological differences 

Weiss, W.A. et al, Nat. Chem. Biol., 2007, 12, 739-744

Page 37: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

CPT Sensi0za0on & “Central” Genes 

TOP1 poisons prevent DNA religation resulting in replication-dependent double strand breaks. Cell activates DNA damage response (e.g. ATR).

Yves Pommier, Nat. Rev. Cancer, 2006.

Page 38: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Screening Protocol

Screen conducted in the human breast cancer cell line MDA-MB-231. Many variables to optimize including transfection conditions, cell seeding density, assay conditions, and the selection of positive and negative controls.

Page 39: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Hit Selection Follow-Up Dose Response Analysis

CPT (Log M)

ATR

MAP3K7IP2

CPT (Log M)

Viab

ility

(%)

Viab

ility

(%)

siNeg siATR-A siATR-B siATR-C

siNeg siMAP3K7IP2-A siMAP3K7IP2-B siMAP3K7IP2-C siMAP3K7IP2-D

Multiple active siRNAs for ATR, MAP3K7IP2, and BCL2L1.

Screen #2

Screen #1

Sensitization Ranked by Log2 Fold Change

Sensitization Ranked by Log2 Fold Change

Page 40: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Are These Genes Relevant? 

•  Some are well known to be CPT‐sensi0zers •  Consider a HPRD PPI sub‐network corresponding to the Qiagen HDG gene set 

•  How “central” are these selected genes? – Larger values of betweenness indicate that the node lies on many shortest paths 

– Makes sense ‐ a number of  them are stress‐related 

– But some of them have very low betweenness values 

log Betweenness

log

Fre

qu

en

cy

0 2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Page 41: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Are These Genes Relevant? •  Most selected genes are densely connected 

•  A few are not – Generally did not reconfirm 

•  Network metrics  could be used to  provide confidence in selec0ons 

!

!

!

ACTC1

TWF1

BMPR2

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

COL4A1

CD44

PLG

LCN2

COL1A1

COL1A2

MMP9

MMP7

PRSS2

AREG

COL4A3

COL4A2

COL4A4

COL4A5

COL4A6

FN1

THBS1

IL8

CXCL1

HAPLN1

MMP10

THBS2

TIMP3

KISS1

PZP

BTC

RECK

MMP26

CXCL5

TFPI

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

SNCA

! PSEN1

CASP1

BCL2

BCAP31

TP53

MAPK8

IRS1

BCL2L1

CASP8

BAX

CYCS

IRS2

BCL2L11

CAPN1PSEN2

ANTXR1 BAD

FKBP8BAK1

CASP9

VDAC1

CRYAA

CRYAB

BAG1

SIVA1

PPP1CA

CFLAR

BNIP1

BNIP3

BIK

HRK

RAD9A

BECN1

BCL2L14

BMF

BCL2L10

RTN4

BNIP3L

PMAIP1

BCLAF1

MOAP1

NLRP1

IKZF3

TEGT

AVEN

BCL2L12

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

RB1

ACTB

CASP3

HD

ALDOA

TGM2

TUBB

FN1

ITGB1ITGB3

SPARC

HIST2H2BE

SERPINF2

GSTP1

LTBP1

ANXA1

RHOA

PLCD1

TMSB4X

MAP3K12

EIF5AS100A7

KPNA3KPNA4PPHLN1

HIST1H2BG

!

!

!

!

!

!

!

!

!

!

!

!

!

SPTB

FYN

PRNP

FGFR1L1CAM

NCAM1

BDNF

NCAN

ST8SIA2

ST8SIA4

ST8SIA3

GFRA1

GDNF

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

EP300

MDM2

TP53

DAXX

CDKN1A

HCK

AR

GGA3

GGA1

TSG101

DNMT1

DMAP1

HGS

AATF

PDCD6IP

UBA52

VPS28

VPS37A

LRSAM1

VPS37C

VPS37D

VPS37B

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

RAC1

PPP1R9A

MAPK1

CDC2

PPP1R9B

PPP2CA

PDPK1

AKT1

EIF4EBP1

CDC42

RPS6KB1

EEF2K

TERT

FRAP1

TRAF4

STK11

NCBP1

RPS6

NEK6

COASY

POLDIP3

!

!

!

!

!

!

!

!

!

EP300

CREBBP

PDC

CRX

BANF1

NR2E3

NRL

IPO13RAXL1

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

CHD4

TP53

BRCA1

KDR

E2F1

XRCC5

NBN

CHEK2

CLSPN

CHEK1

MSH2

ATR

TREX1

XPA

RHEB

FLT1

RAD17

EEF1E1

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

FYNGRB2

IFNAR1

LCK

PLCG1

SHC1

RASA1

PTPRC

MUC1

CRK

PTPN6

SOS1

CD79B

VAV1

CBL

ABL1

FCGR3A

CD5 CD3E

TUBB

SHB

PTK2B

LCP2

SH3BP2

LAT

CBLB

SIT1

SH2B3

PAG1

GAB2

LAX1

ACP1

TUBA4A

DEF6

CD247

PRLR

DUSP3

ZAP70

WIPF1

SLA

SLAMF6

SLA2

TYROBP

DBNL

PTPN3

FCRL3

NFAM1

CARD11

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

GNA12

YWHAG

THRAYWHAB

YWHAZ

GNAQ

ESR2

ESR1

YWHAE

PRKAR2A

PPARA

AKAP13

RHOA

RXRB

CTNNAL1

!

!

!

GP1BA

GP9

GP1BB

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

RB1

SRC

LEPR

PRKCA

PLCG1

HRAS

SNTA1

RBL1

RBL2

DMD

SNTB1

SNTB2

DGKZ

SNTG1

RASGRP1

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

STAT3

RELA

SMAD3

!

MAP2K4

MAPK14

EIF2AK2

MAPK8

MAP3K5

MAP4K4

NRIP1

MAP4K1

TRAF6

TRAF3IP2

FOS

CHUKIKBKB

PPM1B

IRAK1

HGS

MAP3K14

IL17RD

SMAD6

IKBKAP

BIRC4

PEBP1

HIPK2

MAP3K7

MAP2K6MAP3K7IP1

SMAD7

PELI3

MAP3K3

TNFRSF11ABIRC1

PPM1L

BCL10

ALS2CR2

CARD11

!

!

!

LEF1

ALX4

CART1

!

!

!

!

!

MC4R

GHRL

MC5R

MC3R

AGRP

Page 42: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Challenge ‐ miRNA Target ID 

•  Screened a set of 885 human miRNA’s for CPT sensi0za0on 

•  Iden0fied 23 sensi0zing miRNA’s •  But, we don’t have target informa0on 

–  Predic0ons aren’t par0cularly helpful –  Poor overlap with siRNA hits  

•  Link pathogenic miRNA’s to human  targets? 

miRAnda  TargetScan 

Page 43: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Challenge – RNAi Meta Analyses 

•  Building up a collec0on of screens – Across cell lines, species, … – Not necessarily “designed” 

•  What do we do with this? –  Iden0fy consistent markers  – Characterize differences between cell lines  

– Extrapolate from gene knockdown to pathway and higher level differences 

– Merge with gene expression data 

Page 44: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Challenge – Combinatorial RNAi 

•  Elegant way to probe gene interac0ons •  Extend to network interac0ons •  Requires efficient experimental design 

•  Could lead to enhanced target iden0fica0on for polypharmacology 

Nir, O. et al, Genome. Res., 2010, ASAP Sahin, O. et al, Proc. Natl. Acad. Sci., 2007,104, 6579-6584 Tischler, J. et al, Genome Biol., 2006, 7, R69

Page 45: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

Conclusions 

•  Building up a wealth of small molecule and RNAi data 

•  “Standard” analysis of RNAi screens rela0vely straighxorward 

•  Challenges involve integra0ng RNAi data with other sources 

•  Primary bonleneck is dimensionality of the data –  Simple flourescence‐based approaches do not provide sufficient resolu0on 

– High‐content is required 

Page 46: Joining the Dots: Integrating High Throughput Small Molecule and RNAi Screens

The People 

•  Scon Mar0n •  Pinar Tuzmen 

•  Dac Trung Nguyen •  Yuhong Wang 

•  Ruili Huang 

RNAi

Small Molecules