journal of materials processing technology - michel perezmichel.perez.net.free.fr/bardel16a.pdf ·...

12
Journal of Materials Processing Technology 235 (2016) 1–12 Contents lists available at ScienceDirect Journal of Materials Processing Technology jo ur nal ho me page: www.elsevier.com/locate/jmatprotec Residual stresses induced by electron beam welding in a 6061 aluminium alloy D. Bardel a,b,c,, D. Nelias a , V. Robin c , T. Pirling d , X. Boulnat b , M. Perez b a Université de Lyon, INSA-Lyon, LaMCoS UMR CNRS 5259, F69621 Villeurbanne, France b Université de Lyon, INSA-Lyon, MATEIS UMR CNRS 5510, F69621 Villeurbanne, France c AREVA NP, Departement d’ingenierie mecanique, Lyon, France d Institut Laue Langevin, ILL-Grenoble, F 38042 Grenoble, France a r t i c l e i n f o Article history: Received 19 October 2015 Received in revised form 8 April 2016 Accepted 9 April 2016 Available online 11 April 2016 PACS: 81.40.Gh 81.05.Bx 61.05.fm 02.70.Dh 81.05.Rm 81.40.z Keywords: Thermo-metallurgical analysis 6061 Aluminium alloy Neutron diffraction Finite elements Residual stresses EBSD a b s t r a c t Electron beam welding fusion line was performed on 6061-T6 aluminium plates. The thermal histories encountered in the heat affected zone were measured to calibrate a thermal finite elements model. This model has been used as entry parameter of a metallurgical model that predicts the precipitation dissolution induced softening, as well as residual elastic strains. Local deformations measured with a neutron diffraction experiment show a good agreement with the coupled modelling approach for all strain components and the “M” shaped residual strain curves, characteristic of age hardening alloys weld joints, is well reproduced. © 2016 Elsevier B.V. All rights reserved. 1. Introduction The modelling of welding processes is complex because it involves many coupled phenomena at various scales as described in Debroy and David (1995) work (fluid dynam- ics, heat transfer, solidification, precipitation, etc). Not only the molten zone (MZ) is affected by the welding process, but also many microstructural transformations may occur in the so- called heat affected zone (HAZ) inducing important consequences on the final properties of the welded parts. Among all these properties, residual stresses strongly affect the distortion and fatigue life of structures (Costa et al., 2010), the toughness and the corrosion resistance in welds (Deplus et al., 2011). The Corresponding author. E-mail addresses: [email protected] (D. Bardel), [email protected] (D. Nelias). prediction of residual stresses involves a fine coupling of all these approaches. The simulation of the dynamics of the MZ uses various phys- ical fields such as fluid dynamics (Traidia and Roger, 2011), heat transfer, chemistry and electromagnetism (Traidia et al., 2013) to predict the shape of the MZ and the amount of energy absorbed by the sample to consequently estimate the size of the HAZ. Microstructural models (i.e. solidification Rappaz and Gandin, 1993 or precipitation Perez et al., 2008) can be used to predict the solidification patterns Mokadem et al. (2007), Wang et al. (2004) and also the precipitation state Simar et al. (2012) within the MZ and the HAZ. To the best of authors knowledge, despite their fine description of microstructural features, multi-physical models do not go so far as to predict residual stresses. This is due to high computational cost and/or wide range of experimental data needed to validate their consistency. http://dx.doi.org/10.1016/j.jmatprotec.2016.04.013 0924-0136/© 2016 Elsevier B.V. All rights reserved.

Upload: others

Post on 28-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Ra

    Da

    b

    c

    d

    a

    ARRAA

    P886088

    KT6NFRE

    1

    idimmcopft

    d

    h0

    Journal of Materials Processing Technology 235 (2016) 1–12

    Contents lists available at ScienceDirect

    Journal of Materials Processing Technology

    jo ur nal ho me page: www.elsev ier .com/ locate / jmatprotec

    esidual stresses induced by electron beam welding in a 6061luminium alloy

    . Bardela,b,c,∗, D. Neliasa, V. Robinc, T. Pirlingd, X. Boulnatb, M. Perezb

    Université de Lyon, INSA-Lyon, LaMCoS UMR CNRS 5259, F69621 Villeurbanne, FranceUniversité de Lyon, INSA-Lyon, MATEIS UMR CNRS 5510, F69621 Villeurbanne, FranceAREVA NP, Departement d’ingenierie mecanique, Lyon, FranceInstitut Laue Langevin, ILL-Grenoble, F 38042 Grenoble, France

    r t i c l e i n f o

    rticle history:eceived 19 October 2015eceived in revised form 8 April 2016ccepted 9 April 2016vailable online 11 April 2016

    ACS:1.40.Gh1.05.Bx1.05.fm2.70.Dh1.05.Rm1.40.−z

    a b s t r a c t

    Electron beam welding fusion line was performed on 6061-T6 aluminium plates. The thermal historiesencountered in the heat affected zone were measured to calibrate a thermal finite elements model.This model has been used as entry parameter of a metallurgical model that predicts the precipitationdissolution induced softening, as well as residual elastic strains. Local deformations measured with aneutron diffraction experiment show a good agreement with the coupled modelling approach for allstrain components and the “M” shaped residual strain curves, characteristic of age hardening alloys weldjoints, is well reproduced.

    © 2016 Elsevier B.V. All rights reserved.

    eywords:hermo-metallurgical analysis061 Aluminium alloyeutron diffractioninite elementsesidual stressesBSD

    . Introduction

    The modelling of welding processes is complex becauset involves many coupled phenomena at various scales asescribed in Debroy and David (1995) work (fluid dynam-

    cs, heat transfer, solidification, precipitation, etc). Not only theolten zone (MZ) is affected by the welding process, but alsoany microstructural transformations may occur in the so-

    alled heat affected zone (HAZ) inducing important consequencesn the final properties of the welded parts. Among all these

    roperties, residual stresses strongly affect the distortion andatigue life of structures (Costa et al., 2010), the toughness andhe corrosion resistance in welds (Deplus et al., 2011). The

    ∗ Corresponding author.E-mail addresses: [email protected] (D. Bardel),

    [email protected] (D. Nelias).

    ttp://dx.doi.org/10.1016/j.jmatprotec.2016.04.013924-0136/© 2016 Elsevier B.V. All rights reserved.

    prediction of residual stresses involves a fine coupling of all theseapproaches.

    The simulation of the dynamics of the MZ uses various phys-ical fields such as fluid dynamics (Traidia and Roger, 2011),heat transfer, chemistry and electromagnetism (Traidia et al.,2013) to predict the shape of the MZ and the amount of energyabsorbed by the sample to consequently estimate the size of theHAZ.

    Microstructural models (i.e. solidification Rappaz and Gandin,1993 or precipitation Perez et al., 2008) can be used to predict thesolidification patterns Mokadem et al. (2007), Wang et al. (2004)and also the precipitation state Simar et al. (2012) within the MZand the HAZ.

    To the best of authors knowledge, despite their fine description

    of microstructural features, multi-physical models do not go so faras to predict residual stresses. This is due to high computationalcost and/or wide range of experimental data needed to validatetheir consistency.

    dx.doi.org/10.1016/j.jmatprotec.2016.04.013http://www.sciencedirect.com/science/journal/09240136http://www.elsevier.com/locate/jmatprotechttp://crossmark.crossref.org/dialog/?doi=10.1016/j.jmatprotec.2016.04.013&domain=pdfmailto:[email protected]:[email protected]/10.1016/j.jmatprotec.2016.04.013

  • 2 D. Bardel et al. / Journal of Materials Proce

    Table 1Chemical composition of the 6061 aluminium alloy used for the weldingexperiments.

    Mg Si Cu Fe Cr Mn Oth.

    ecmeseg

    aedFht

    2

    2

    ctsamoa

    tTatw3r(Ttmmteri

    (5oi=p

    stTe(

    wt% 1.02 0.75 0.25 0.45 0.05 0.06 0.09at% 1.14 0.72 0.11 0.22 0.03 0.03 0.04

    At the other hand, mechanical approaches are based on thestimation of local constitutive laws by reproducing the thermalycle of a given region on a macroscopic sample (e.g. using ther-omechanical simulator). Finite element codes interpolate the

    xperimentally characterised constitutive laws to predict residualtresses (see the recent contribution of Chobaut et al., 2015). How-ver, these approaches depend on the geometry of the parts: a neweometry would require new set of mechanical characterisation.

    To by-pass this difficulty, a simple thermo-metallurgicalpproach is proposed in this paper: a thermal model based on thequivalent heat source Goldak et al. (1984) is first used to repro-uce the size of the MZ/HAZ and the evolution of the thermal field.rom this field, a microstructural model predicts the proportion ofard and soft phases that is, itself implemented in a FE softwarehat predict residual stresses.

    . Electron beam welding experiments

    .1. Materials and treatments

    6061 Alloy is a high strength aluminium alloy thanks to a spe-ific heat treatment (presented for example in Bardel et al., 2014)o obtain the largest density of hardening ˇ′′ precipitates (i.e. T6tate). The composition of the alloy, where several thermocouplesre fixed, is given in Table 1. In order to mimic real welding experi-ent and also get reproductible results, a fusion line was performed

    n two 6061-T6 plates: the first one was used for microstructurenalysis and the second one for residual stress analysis.

    The first objective of the modelling of the thermal field withinhe whole plate is the calibration of an equivalent heat source.he work of Zain-Ul-Abdein et al. (2010) has shown that only

    limited number of well placed thermocouples are required forhis calibration. Thus, 7 ThermoCouples (TC) (referred as TC1–TC7)ere positioned in the lower and upper surface of the plate and

    additional TC (referred as TC8–TC10) were used to check theeproducibility of the approach (see Fig. 1). K-type thermocouplesdiameter 80 �m) are micro-welded on upper and lower surfaces.hen, varnish is filled on the contact area to protect the connec-ion against mechanical stresses and to get more accurate thermal

    easurement by limiting radiation effects from the beam. The ther-ocouples are linked to a Nimtech FrontDAQ acquisition central

    hanks to air and electric-proof connections. To get accurate results,ven for fast heating rates, the acquisition frequency is 200 Hz. Theesponse time of the whole equipment have been measured and its 15 ms for a simulated increment of temperature �T = 400 ◦C.

    These experiments were performed at the IUT of CreusotFrance). The electron beam (EB) welding device has a power of.47 kW (U = 55.9 kV, I = 97.8 mA) with a vacuum pressure in the gunf about 10−5 hPa. The maximal dimensions for the welded platesn the chamber (where the vacuum pressure is 5 × 10−3 hPa) are

    180 × 200 mm (length and width) and they are laid on rectangulararallelepipeds.

    From 30 mm thickness cold rolled workpiece, upper and lowerurfaces have been machined (well lubricated) in order to get a

    hickness of 20 mm and thus assure full penetration of the welds.his protocol has been set to eliminate the shear texture surfaceffect resulting from rolling as described in Delannay and Mishin2013). Textured sample are indeed not well suited for residual

    ssing Technology 235 (2016) 1–12

    stresses measurement by diffraction methods, since too few grainsin the gauge volume (GV) may lead to no diffraction signal.

    To evaluate the influence of the welding velocity V on resid-ual stresses, several tests were performed with V = 0.45 m/min,V = 0.72 m/min and V = 0.9 m/min. For each velocity, one plate (theone used for diffraction) were instrumented with TC and the other(the one used for microstructure analysis) were welded in the exactsame conditions.

    In this paper, most of the experimental and numerical resultsare presented for the V = 0.45 m/min plate because this low velocityinduces more drastic changes in the precipitation state.

    The fusion line experiment is composed of four steps: (i) startingoutside the specimen with low velocity until the plate border, (ii)fusion line in the plate with a constant velocity and extinction out-side the sample, (iii) cooling in the vacuum chamber during ≈5 minand finally (iv) cooling in the lab environment.

    2.2. Thermal results

    The temperature profile of all TC is reported in Fig. 12. Theseresults do not show the final cooling stage when vacuum is bro-ken. Thermal profiles are in phase for the upper and lower surfacesexcept for TC9/TC10 thermocouples that have been fixed at a dis-tance of 120 mm from the starting point unlike the others that arewelded at a distance of 60 mm (cf. Fig. 1). Temperature profiles ofTC9/TC10 are similar to TC6/TC7, which attests that steady stateconditions are fulfilled during welding.

    For a same transverse distance from the weld centre, the thermalgradients are more important in the upper surface. This demon-strates the energy gradient through the thickness and justify aconical repartition of the equivalent heat source.

    Heating (HR) and cooling (CR) rates are defined as the timelap between 50 ◦C and the maximum temperature, and the max-imum temperature and 150 ◦C, respectively. The highest gradientwas measured by TC4 (HR = 158 ◦C/s, CR = 32.9 ◦C/s), which has beenfixed at 3.5 mm from the weld centre (cf. Fig. 1).

    After approximately one minute from the beginning of the pro-cess there is no more significant temperature gradient in the plate.At this stage the cooling rate is low in the vacuum chamber (CR≈0.07 ◦C/s), then after opening the chamber CR increases by con-vection (CR ≈0.15◦C/s) and this effect is amplified when the plateis put outside the welding instrument.

    3. Experimental investigations

    3.1. Macrographic analysis

    To calibrate finite element (FE) thermal modelling (presented inthe next section), the size of the molten zone (MZ) must be deter-mined. Thus, to distinguish between the various zones in the welds,macrographic specimen were cut, polished and etched with Kellerreagent and then observed with a LEICA M420 optical microscope(zoom ×3). A picture is provided for each welding velocity in Fig. 2for samples collected in the central section of the plates.

    On the cross sections shown in Fig. 2, the MZ is clearlydistinguishable. Note that the transition between the HAZ andthe BM cannot be distinguished in such macrographies; only atransmission electron microscopy (TEM) study could bring moreinformation about the boundary of the HAZ from a precipitationpoint of view.

    3.2. Scanning electron microscopy

    To get more insight into the microstructural evolution in thewelds, a scanning electron microscopy (SEM) study was performed.A Field Emission Gun SEM Zeiss Supra 55VP (diaphragm diameter

  • D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12 3

    r the p

    6ta

    wwbbaiF(t

    ec

    Fig. 1. Thermocouples position fo

    0–120 �m) equipped with a secondary and backscattered elec-rons detector was used. Chemical analyses were performed usingn energy dispersive X-ray analyzer.

    SEM observations performed on different places around theeld (Fig. 3) highlight the presence of white and black objectsith various morphologies depending on the zone. These white and

    lack phases are finely distributed in the MZ (particularly at grainoundaries) compared to BM where there are coarser and moreligned. These phases have been identified as the intermetallicsron (white phase) and coarse Mg2Si precipitates (black phase) (seeig. 3). These phases are well known in the 6061 alloys. Shen et al.2013) show that their presence is detrimental to the toughness ofhe alloy.

    SEM measurements have been enriched with the support oflectron backscatter diffraction (EBSD) analysis. They have beenonducted on a narrow weld (lower part of the 0.9 m/min velocity

    Fig. 2. Macrographic cuts obtained by optical microsco

    late welded with V = 0.45 m/min.

    weld) to get pictures that show simultaneously the granular struc-ture of the MZ and the HAZ. During solidification, the velocity ofthe solid/liquid front and temperature gradients magnitude havea preponderant influence on the formation of the grain structure(see Hunt, 1984).

    Welding induces thermal gradients emphasised by characteris-tic columnar structure developed in the gradient direction. Withno gradient, an equiaxed structure is observed. In Fig. 4, the moltenzone exhibits a columnar structure (plus a few equiaxed grains), incontrast with the HAZ, where grains are large and equiaxed.

    The grains orientations shown in Fig. 4 do not reveal anylocal crystallographic texture. Moreover, the intragranular ori-entation gradient determined by kernel average misorientation

    (KAM) (Calcagnotto et al., 2010) (see example of maps in Boulnatet al. (2014)) is shown in Fig. 4: there is no pronounced misori-entation (linked to geometrically necessary dislocations). These

    py for plates welded at three different velocities.

  • 4 D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12

    Fig. 3. SEM micrographies showing intermetallics (white) and coarse precipitates (black) in: (a) both the heat affected zone (HAZ) and the molten zone (MZ) top view; (b)t ) Che

    rred

    3

    tmtiwbTait

    he BM; (c) the MZ. The white phases are much coarser in the BM than in the MZ. (d

    esults confirm the good disposition of the sample to measureesidual deformations: no texture nor significant intragranular het-rogeneities (which could lead to III order stresses unmeasured byiffraction).

    .3. Neutron diffraction

    Among all possible methods to estimate residual stresses (seehe review of Rossini et al., 2012), neutron diffraction (ND) have

    any advantages: it can easily scan welded plates through thehickness while having a fine resolution. Moreover, it is rathernsensitive to surface roughness. This direct residual strain method

    as performed in the Laue Langevin Institute (ILL) at Greno-le on the SALSA instrument presented in Pirling et al. (2006).

    his device uses a high neutrons flux and the measurementsre weakly affected by the background noise that is low on thisnstrument (Acevedo et al., 2012). SALSA is a neutron diffrac-ion instrument designed for the determination of lattice strains

    mical analysis performed on coarse phases.

    ε = (dhkl − d0hkl)/d0hkl relying on an accurate measurement of theinter-reticular distances dhkl which plays the role of deformationgauge for a material under stresses.

    When a neutron flux is projected into a material, neutron dif-fusion and interference lead to diffraction peaks at particular 2�angles with respect to the Bragg’s law:

    n� = 2dhkl sin(

    �)

    (1)

    where n is the diffraction order and � is the wavelength.To deduce the average inter-reticular distance dhkl from diffrac-

    tion angle 2�, two kinds of method are available: “polychromatictime of flight” and “monochromatic angular dispersive”. The firstis particularly suited for monitoring phase transformations. It con-sists in getting a multitude of diffraction peaks and the wavelength

    by the time of flight method. The second approach, that is used onSALSA and described in Withers (2007), is well suited to measuremacroscopic stresses: only one diffraction peak 2� is recorded witha monochromatic wavelength (here ≈1.64 Å). We chose the (311)

  • D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12 5

    Fig. 4. Top view of the weld performed at a depth of 16 mm. (a) Global illustration of the longitudinal section (b) with its associated EBSD cartography in inverse pole figure.(c) Zoom on the EBSD cartography in the MZ with, (d) its associated local intragranular misorientation (KAM). This sample is suitable for residual deformations measurement:no texture nor significant intragranular heterogeneities are observed.

    Fig. 5. Illustration of (a) the Bragg’s law and typical results from SALSA instrument: (b) intersection of between diffracted cone and 2D detector, and (c) integrated intensitya

    pse(t

    afg

    3

    ddpt(

    long the y-axis.

    lanes because they do not accumulate significant inter-granulartresses and therefore exhibit the behaviour of bulk (see also Drezett al., 2012’s contribution). In addition, the 2� peak is close to 90◦

    see Fig. 5) leading to a gauge volume (GV) that can be assimilatedo a parallelepiped.

    From the diffraction peak, an average 2� position is recordednd deformations or stresses can be deduced by comparison with aree sample. Here, only first order stresses can be deduced (homo-eneous stress state on a grain aggregate).

    .4. Diffraction measurements

    Generally the diffraction vector K (cf. Fig. 6), which provides theirection of the strain is chosen in three orthogonal directions to

    educe the diagonal values of the strain tensor. Here, diffractioneaks are recorded in longitudinal, transverse and normal direc-ions of the weld (c.f. Fig. 6). The optimal size of the gauge volumeGV) depend on two main factors:

    • the strain gradient characteristic size, which is expected in thestructure. On the cross sections of Fig. 2, the size of the MZ is about0.5 mm close to weld root. Then, a classical section 2 mm × 2 mmfor the GV should be avoided.

    • the allocated beam time: the lower the GV is, the weaker thediffracted neutrons flux will be. However, to have a statisticallygood diffraction peak the count number on the detector (cf. Fig. 5)has to be as high as possible.

    From the size of the zones in Fig. 2, a 0.6 mm × 0.6 mm sec-tion was chosen for the GV in normal and transverse directions(then the resolution is about 0.849 mm). This section being verylow, the counting time to obtain a reliable diffraction peak is large(≈30–40 min for one direction). In addition, to capture strain gra-

    dients, overlap measurements were chosen. So it was decided tochose a beam width of 20 mm in order to reduce the acquisitiontime. This dimension may seem important, nevertheless in normaland transverse directions the width of the beam coincides with

  • 6 D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12

    F symbot ion an

    tqtqrnba

    lIBfbl

    ddttatt

    to the HAZ was observed (a dissolution of precipitates induces in

    ig. 6. (a) Lines scanned by the neutron beam for local strain measurement (cross he several gauge volume for each orientation of the place. S and w denote the sect

    he longitudinal x-direction of the weld joint (Fig. 6) for whichuasi steady state is expected (regarding stress distribution andhe boundary conditions that prevent rigid body motions). Thus auasi homogeneous mechanical behaviour is expected for a veryeasonable acquisition time (≈7 min per point). In the longitudi-al direction, the GV section is less restrictive but the width of theeam must remain moderate. Therefore, it was reduced to 15 mmnd a 2 mm × 2 mm × 15 mm GV was chosen (Fig. 6).

    Measurements obtained on the 2D SALSA detector were ana-ysed using the beam line software: LAMP. The diffracted intensities

    are integrated to obtain a unidirectional diffraction peak (I(2�)).ackground noise correction and a Gaussian fitting are then per-

    ormed to deduce the 2� position. For most of the results, the errorar provided by the adjustment procedure (given by LAMP) is very

    ow.For the sake of accuracy, in the longitudinal direction, three

    ifferent rotation angles (±1.5◦) have been used and diffractionata have been summed up. In spite of this particular procedure,he statistics related to the longitudinal direction remained poorer

    han the transverse and normal directions. This effect cannot bettributed to a crystalline texture effect, but is probably due to (i) aoo low counting time or, (ii) a columnar grain structure that limitshe number of diffracted grains (cf. Fig. 4)

    Fig. 7. Combs used for the reference stress free state and representation of the c

    ls are the beginning and the end of each investigated lines). (b) Representation ofd the width of the gauge volume.

    3.5. Residual elastic strains results

    To get the residual elastic deformations ε = �dhkl/d0hkl , thevariation of inter-reticular distance (or diffraction peak) must beperformed. On SALSA, the wavelength � can be assumed constant,the derivative of Bragg’s law provides:

    ε = − �2�2 tan(�)

    (2)

    where �2� is the peak displacement (from 2�0) for the same alloywithout stresses and with the same local composition. To havea good reference value �2�0 and to deduce �2�, measurementswere performed on a superposition of thin “combs” (thickness1 mm and width 1.5 mm), which were cut from a section in thewelded plate (see Fig. 7). This structure allows to relax residualstresses to get a reference that best approximates a mechani-cal stress free state. Then, measurements were performed in theMZ, HAZ and the BM of the combs to overcome the chemicalcomposition influence. An expansion of the lattice from the BM

    the matrix a homogeneous presence of many solutes atoms) anda slight compression from the HAZ to the MZ (probably due tothe smaller grain size whose boundaries traps many atoms and

    hemical effect on the peak position 2� for two identical reference samples.

  • D. Bardel et al. / Journal of Materials Proce

    Fig. 8. Residual elastic strains far from the weld for plates welded withV = 0.45 m/min and V = 0.9 m/min.

    F

    ie

    fdaTtip0

    iVipa

    rcciZia

    3

    g(t�

    4.2. Finite element model

    ig. 9. Representation of boundary conditions heat fluxes and internal heat source.

    ntermetallic (cf. Fig. 3) and therefore generates less intragranularxpansion).

    The elastic strain measurements in the normal direction per-ormed at a distance of y = 66 mm for the weld is shown in Fig. 8. Itemonstrates that residual deformations are not zero in the BM farway from the weld. This effect can be caused by rolling process.he numerical simulations presented in the next section suggestshat this residual strain state away from the weld should be zerof forming process is ignored. Thus, a weak shift on the diffractioneak (0.5% of the current value) was performed to have in average% strain far from the weld (see Figs. 8 and 9).

    Figs. 14 and 15 show the results of residual elastic strainsn three different directions for two plates: V = 0.45 m/min and

    = 0.9 m/min. It is important to note that the error bars presentedn these figures represent only the error caused by the adjustmentrocedure and not the whole possible sources of errors (e.g. mis-lignment, microstructure “defects”, instrumental resolution).

    The transverse line results show a typical “M” profile for theesidual strain, as mentioned by Sonne et al. (2013). This profile isharacteristic of the softening induced by the dissolution of pre-ipitates close to the weld centre. The strain amplitude is lowern the normal and transverse directions. These results are close toain-Ul-Abdein et al. (2009) ones obtained during the laser weld-ng process of thin plates gotten by finite element simulations for

    6056 aluminum alloy.

    .6. Residual strains and stresses

    Strain measurements have been carried out in three ortho-onal directions in several areas of the weld. Using Hooke’s law

    �ij = �εkkıij + 2�εij) leads to the determination of the diagonalerms of the stress tensor �ij with the elastic Lame coefficients (�,) relying to longitudinal, transverse and normal residual strain

    ssing Technology 235 (2016) 1–12 7

    measured with neutron diffraction. Note that the shear compo-nents of the stress tensor cannot be determined.

    It should be noted that this strain to stress conversion can bea source of errors: (i) CFC structure is not isotropic; (ii) the possi-ble local texture (or large grain sampling) is not accounted in theisotropic elastic constants E and �, (iii) the stress calculation is per-formed from measurements with different accuracy and GV (i.e.longitudinal strain measurements are less accurate than normaland transverse measurements).

    This is why, in this work, only the residual elastic strains arecompared with the EB simulation results thanks to Sysweld soft-ware.

    4. Finite element thermal analysis

    4.1. Thermal analysis

    The first objective for the numerical simulation of welding isto predict the temperature field across the welded plate. Thus anequivalent heat source approach has been selected. This kind ofmethodology allows to reduce a complex multi-physical problemto a thermal problem that can be modelled by the following heatequation:

    (T)Cp(T)∂T∂t

    − ∇ · (�(T)∇T) − Qv = 0 (3)

    where , Cp, � and Qv are the density [kg m−3], the heat capacity[J kg−1 K−1], the thermal conductivity [W m−1 K−1] and an equiva-lent internal heat source [W m−3]. This equation can be written asa function of enthalpy H(T) =

    ∫ TT0

    Cp(u)du:

    ∂ ((T) · H(T))∂t

    − ∇ · (�(T) · ∇T) − Qv = 0 (4)

    Boundary conditions are used to model convective (when thevacuum is broken) and radiative losses such that the boundary fluxdensity qconv+rad is:

    qconv+rad(T) = hconv(T)(T − Tch) + �SB�(T4 − T4ch) (5)

    where T, Tch, hconv, �SB and � represent the temperature of thecomputed point [K], the temperature of the vacuum chamber (theinitial temperature is provided by thermocouples), the convectivecoefficient of air [W m−1 K−1] when the vacuum is broken, theStefan–Boltzmann constant (�SB = 5.67 × 10−8 J K−4 m−2 s−1) andthe emissivity of the aluminium surface. In this study, the con-vective coefficient hconv can be assumed constant because theconvection occur only at low temperatures.

    In the solidification range (between the solidus and the liq-uidus – Zain-Ul-Abdein et al., 2009 provides: 587–644 ◦C) the heatcapacity of the alloy undergoes a discontinuity (cf. Fig. 10), induc-ing a latent heat of fusion Lm

    f. During the computation, the liquid

    fraction fL provides an enthalpy contribution HS−L = fL · Lf in Eq.(4). For an aluminium alloy Lf it is about 4 × 105 J kg−1 accordingto Gandin (2000). To have a correct treatment of this disconti-nuity an enthalpy formulation is used in Sysweld FE software(rather the well know “Cp equivalent method”) and the non-linear resolution for this unstationary problem is solved relyingto an implicit backward Euler finite element time-discretisationand coupled Broyden–Fletcher–Goldfarb–Shanno/conjugate gradi-ent algorithm.

    The electron beam (EB) welding process induces thermal gradi-ent in and near the MZ, where a high mesh density is required. A

  • 8 D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12

    Fig. 10. Schematic representation of the “equivalent Cp” method and the enthalpic formulation. fS represents the fraction of solid during computation and Lmf the latent heatfusion.

    or the

    pmamdi

    wfi

    ceo

    Q[etatemch

    Q

    Z

    Fig. 11. Meshing used f

    rogressive meshing is used to reduce the mesh size where fine ele-ents are not required. A majority of hexahedral 8-nodes elements

    nd some linear prismatic 6-nodes element are used (Fig. 11). Theesh is composed of 519,565 elements and 487,321 nodes. The

    imensions of the smallest element are 0.5 mm × 0.5 mm × 0.5 mmn the MZ.

    Material’s data were obtained according to Simar et al. (2006)’sork while the convective and radiative coefficients were deduced

    rom Zain-Ul-Abdein et al. (2010) work on 6056 alloy: (i) hconv = 0n vacuum and 15−1 W K m−1 in air, (ii) � = 0.08 (polished surface).

    In view of cross sections of Fig. 2, an equivalent 3D volumetriconical heat source have been chosen (Fig. 13) as in Zain-Ul-Abdeint al. (2010). In this model, a Gaussian energy repartition is assumedn the upper surface with a linear decline through the thickness.

    The net energy Q0 absorbed by the plate is given by:0 = �UI =

    QVdV where U, I, QV, and dV represents the voltage

    V], the intensity [A] of the welding device and the total volumetricnergy [W m−3]. The efficiency � has been adjusted: it representshe intrinsic energy loss in welding device but also by the MZ poolnd plasma movement, the reflection in the chamber, the heatransferred out of the plate (weld-through). Here, the volumetricnergy absorbed into the plate QV can be written as a function of theaximum energy density Qc for every plane z according to “trun-

    ated Gaussian” distribution of radius RC(z) (the radius is definedere by Qv(RC ) = 0.05 · Qc):

    V (r, z) = Qc · exp(

    − 3r2

    2

    )(6)

    rc(z)

    The conservation of energy provides in the source volume VS.ain-Ul-Abdein et al. (2010) show that the knowledge of the RC(z)

    thermal computation.

    expression based on the upper and lower radius source re − ri andthe distribution (r, z) of energy density QV provide:

    QV (r, z) =9�UI

    �(1 − exp(−3))exp

    (−3r2/rc(z)2

    )(ze − zi)(r2e + reri + r2i )

    (7)

    4.3. Thermal results

    The heat source modelled in Eq. (7) has been implemented inthe FE software Sysweld thanks to a Fortran subroutine. Thus, foreach time and integration point the volumetric heat source canbe integrated in the FE resolution. In Eq. (7), the quantity ze − zi isequal to the plate thickness, the electrical tension U and intensity Iare directly obtained from the experimental device parameters.

    The constants re, ri and � were fitted to get a MZ that is asidentical as in cross sections of Fig. 2 and also to have a best fitbetween numerical thermal histories and thermocouples measure-ments. Thus, one gets re = 0.9 mm, ri = 0.48 mm and � = 0.86.

    On the results shown in Fig. 13 the red colour represents thesolidus temperature, its shape have been plotted and confrontedwith the experimental contour in the same figure. We can see thatthe MZ is well represented in the lower half thickness but, in theupper part, a discrepancy occurs, probably due to surface tensioneffects (fluid flow is not explicitly taken into account in our simu-lations).

    Nevertheless, the time–temperature curves presented in Fig. 12show that the heating and cooling kinetics are very well repre-

    sented for the upper and lower surfaces. The heating rates andthe maximum temperature greatly dependent on material prop-erties and the calibration of the heat source. The maximum erroris obtained for TC4 (≈7% on maximal temperature) which is the

  • D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12 9

    Fig. 12. Comparison between time–temperature histories for the plate V = 0.45 m/min, (a) on the upper and (b) the lower surface. For exact positioning see Fig. 1.

    F experit nces t

    cc

    5

    5

    fmnhtocadetf

    where a = 0.394, b = 0.107, Qs = 30 kJ/mol, Qd = 130 kJ/mol, t∗r = 600 s

    ig. 13. (a) Equivalent conical heat source, (b) comparison between numerical and hermal results for a welded plate (V = 0.45 m/min). (For interpretation of the refere

    losest from the MZ. The cooling rate is dependent on boundaryonditions and this effect is well represented too.

    . Residual elastic strains

    .1. Model

    The approach used here is based on isokinetic dissolution modelrom Myhr and Grong (1991) work coupled with a hardening

    odel calibrated in a previous study (Maisonnette et al., 2015) onon-isothermal treatments (representative of time–temperatureistories given in Fig. 12). This approach uses two fictitious propor-ions of phases for the AA6061: a “hard” phase p1 (equal to 1 for theptimised precipitation T6 state) and a “soft” phase p2 = 1 − p1 asso-iated to the O state (state where the hardening precipitates ˇ′′ − ˇre dissolved). Note that, in the MZ, only the microstructural degra-

    ation due to the precipitation state is modelled. Indeed, Starinkt al. (2008) have shown that for age hardening aluminium alloys,he evolution of the precipitation state during welding is the mainactor influencing the strength drop (the grain size strengthening

    mental molten zone boundary and (c) associated macrography. Overview of the FEo colour in text, the reader is referred to the web version of the article.)

    is generally less than 10 MPa). A recent contribution of the authors(Bardel et al., 2016), where massive microhardness measurementswere performed in HAZ and MZ, confirm this study. According toMyhr and Grong (1991), the generation of the soft phase that canbe written as:

    ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

    ṗ2 =n · p(1−1/n)2

    t∗

    n = 0.5 − a · pb2

    t∗ = t∗r · exp[(

    QSnR

    + QdR

    ) (1T

    − 1Tr

    )](8)

    and Tr = 375 ◦C are some constants fitted in Hirose et al. (2000)thanks to hardness measurements. Thus, the thermo-mechanicalbehaviour �eq(T) can be deduced from the phase proportions thanksto a mixing law:

  • 10 D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12

    Fig. 14. Residual elastic deformation for a transverse weld line at 4 mm from the lower surface for the (a) longitudinal, (b) normal and (c) transverse direction. Confrontationb n. Addo e) nor

    wT

    etween numerical and experimental results for a welding velocity of V = 0.45 m/mif velocity. Same results at 10 mm from the lower surface for the (d) longitudinal, (

    eq(T) = p2 · �O(T) + (1 − p2) · �T6(T) (9)

    here �O(T) and �T6(T) are the tensile curves of the T6 and O states.hey are fitted in Maisonnette et al. (2015) by inverse method on

    itional experimental results are shown with V = 0.9 m/min to quantify the influencemal and (f) transverse direction.

    tensile tests to find the tensile behaviour of the AA6061-T6 alloy

    with temperature.

    The boundary conditions are chosen to prevent rigid bodymotion by blocking the displacements (cf. Fig. 11): Uy in the sym-metric plane, Uz for three extreme nodes in the lower surface and

  • D. Bardel et al. / Journal of Materials Processing Technology 235 (2016) 1–12 11

    Fig. 15. Residual elastic deformation for a transverse weld line at 16 mm from the lower surface for the (a) longitudinal, (b) normal and (c) transverse direction. Confrontationb n. Addo

    U1

    5

    emtltcuo

    fltditS

    i

    etween numerical and experimental results for a welding velocity of V = 0.45 m/mif velocity.

    x for the two extreme nodes of the lower line that is on the edge00 mm (position x = 0).

    .2. Results

    The thermo-metallurgical simulation is performed on the finitelement mesh (121,318 elements, 108,474 nodes and the smallestesh size is 1 m3) that have been chosen to reduce the computation

    ime while having acceptable results (only the numeric MZ root isess accurate). The same equivalent heat source boundary conditionhat the one presented in the previous paragraph is considered. Toompare the residual elastic deformations predicted by of the sim-lation with neutron diffraction results, an averaging was carriedut in accordance with the gauge volumes presented in Fig. 6.

    The results are compared with measurements in Figs. 14 and 15or transverse lines across the weld section. Note that the metal-urgical model proposed for the 6061-T6 alloy coupled with thehermal simulation provides a good correlation with the residualeformations given by the neutron diffraction technique for all

    nvestigated directions. Note that the drop close to the centre of

    he weld (typical “M” shape due to the softening by dissolution,onne et al., 2013) is well captured by the simulation.

    Nevertheless, it should be noted that even if the molten zones well represented by the thermal model (see Fig. 13) a slight

    itional experimental results are shown with V = 0.9 m/min to quantify the influence

    transverse shift was obtained in Figs. 14 and 15 between experi-ments and simulations.

    This effect can be due to several reasons:

    • the use of a rather crude and simple dissolution model, whichtend to reduce the HAZ,

    • a shift in the sample alignment, and• the evolution of the mechanical properties in the MZ (transition

    in the semi-solid zone) has not been considered (for more detailssee for example, Giraud et al., 2012): the mechanical propertiesof the solid fraction are computed thanks to (9) and the stressesare relaxed in the fluid part.

    In view of the symmetry of the results regarding to the weldcentre (0 point on the curves in Figs. 14 and 15) the second reasoncan be reasonably rejected. A possible improvement would there-fore be the replacement of the phenomenological Maisonnette et al.(2015) approach by a more physical model such as recently pro-posed by Bardel et al. (2014). The fitting of the heat source could alsobe improved by taking into account the effects of surface tension

    close to the surface of the welds. In addition, it should be noticedthat the work hardening model used in this study is assumedisotropic, but the thermal cycle introduce a mechanical cycle thatcould be apprehended for this alloy more accurately with the more

  • 1 s Proce

    a(

    6

    tslswcaa

    sdae

    teli

    A

    tatfiCaL

    R

    A

    B

    B

    B

    B

    C

    C

    2 D. Bardel et al. / Journal of Material

    dvanced mixed work hardening model presented by Bardel et al.2015).

    . Conclusions

    An investigation that aims to study the consequences of an elec-ron beam welding on a 6061 aluminium alloy (initially in the T6tate) has been presented. In this paper, an instrumented fusionine has been performed together with macrographs in order totudy the thermal field encountered during the process. These dataere used to calibrate a thermal finite elements model of the pro-

    ess. Then, scanning electron microscopy characterisations werelso performed to discuss the welding influence on grain size/shapes well as coarse precipitation state.

    A coupling between a simple metallurgical model (micro-tructural and mechanical evolution based on precipitatesissolution) and a thermal analysis has shown that an isokineticpproach can provide relatively good results in terms of residuallastic deformations for a single-pass welding process.

    This validation was performed by using a neutrons diffractionechnique on the SALSA device (ILL). The residual elastic strainsxhibit typical “M” profile (for age hardening aluminiums) in theongitudinal direction, which validates the measurement reportedn the literature where similar observations were performed.

    cknowledgements

    The authors gratefully acknowledge AREVA and SAFRAN for par-ial funding of this work within the framework of the “Life extensionnd manufacturing processes” teaching and research Chair andhe French Atomic Energy Commission (CEA) for industrial andnancial support, especially F. Bourlier, P. Gilles and J. Garnier. P.haudet, P.C. Shao and Z. Szaraz are also thanked for their technicaldvices. The authors would like to acknowledge the Institut Laueangevin, Grenoble, France, for the provision of beam time.

    eferences

    cevedo, C., Evans, A., Nussbaumer, A., 2012. Neutron diffraction investigations onresidual stresses contributing to the fatigue crack growth in ferritic steel tubularbridges. Int. J. Press. Vessel. Pip. 95, 31–38.

    ardel, D., Nelias, D., Chaise, T., Fontaine, M., Perez, M., Bourlier, F., Garnier, J.,2016. Mechanical properties of a 6061-T6 weld joint: finite elements basedon microstructure versus digital image correlation tensile test (submitted forpublication).

    ardel, D., Perez, M., Nelias, D., Dancette, S., Chaudet, P., Massardier, V., 2015. Cyclicbehaviour of a 6061 aluminium alloy: coupling precipitation and elastoplasticmodelling. Acta Mater. 83, 256–268.

    ardel, D., Perez, M., Nelias, D., Deschamps, A., Hutchinson, C., Maisonnette, D.,Chaise, T., Garnier, J., Bourlier, F., 2014. Coupled precipitation and yield strengthmodelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Mater.62, 129–140.

    oulnat, X., Perez, M., Fabregue, D., Douillard, T., Mathon, M.-H., de Carlan, Y., 2014.Microstructure evolution in nano-reinforced ferritic steel processed by mechan-ical alloying and spark plasma sintering. Metall. Mater. Trans. A 45A, 1485–1497.

    alcagnotto, M., Ponge, D., Demir, E., Raabe, D., 2010. Orientation gradients and geo-

    metrically necessary dislocations in ultrafine grained dual-phase steels studiedby 2D and 3D EBSD. Mater. Sci. Eng. A 527 (1011), 2738–2746.

    hobaut, N., Carron, D., Arsne, S., Schloth, P., Drezet, J.-M., 2015. Quench inducedresidual stress prediction in heat treatable 7xxx aluminium alloy thick platesusing Gleeble interrupted quench tests. J. Mater. Process. Technol. 222, 373–380.

    ssing Technology 235 (2016) 1–12

    Costa, J., Pires, J., Antunes, F., Nobre, J., Borrego, L., 2010. Residual stresses analysisof ND-YAG laser welded joints. Eng. Fail. Anal. 17, 28–37.

    Debroy, T., David, S., 1995. Physical processes in fusion welding. Rev. Mod. Phys. 67,85–112.

    Delannay, L., Mishin, O., 2013. Crystal plasticity modeling of the through-thicknesstexture heterogeneity in heavily rolled aluminum. Key Eng. Mater. 554,1189–1194.

    Deplus, K., Simar, A., van Haver, W., de Meester, B., 2011. Residual stressesin aluminium alloy friction stir welds. Int. J. Adv. Manuf. Technol. 56,493–504.

    Drezet, J., Pirling, T., Jaquerod, C., 2012. Residual stresses in as-cast billets: neutrondiffraction measurement and thermomechanical modeling. In: Carlos, E., Suarez(Eds.), Light Metals 2012.

    Gandin, C.-A., 2000. From constrained to unconstrained growth during directionalsolidification. Acta Mater. 48, 2483–2501.

    Giraud, E., Suéry, M., Coret, M., 2012. High temperature compression behavior ofthe solid phase resulting from drained compression of a semi-solid 6061 alloy.Mater. Sci. Eng. A 532, 37–43.

    Goldak, J., Chakravati, A., Bibby, M., 1984. A new finite element model for weldingheat sources. Metall. Trans. 15B, 299–305.

    Hirose, A., Kobayashi, K., Yamaoka, H., Kurosawa, N., 2000. Evaluation of propertiesin laser welds of A6061-T6 aluminium alloy. Weld. Int. 14 (6), 431–438.

    Hunt, J., 1984. Steady state columnar and equiaxed growth of dendrites and eutectic.Mater. Sci. Eng. 65, 75–83.

    Maisonnette, D., Bardel, D., Nelias, D., Suery, M., 2015. Mechanical Behaviour atHigh Temperature as Induced During Welding of a 6xxx Series Aluminium Alloy(submitted for publication).

    Mokadem, S., Bezencon, C., Hauert, A., Jacot, A., Kurz, W., 2007. Laser repair of super-alloy single crystals with varying substrate orientations. Metall. Mater. Trans. A38A, 1500–1510.

    Myhr, O., Grong, O., 1991. Process modelling applied to 6082-T6 aluminium weld-ments: I. Reaction kinetics. Acta Metall. Mater. 39, 2963–2702.

    Perez, M., Dumont, M., Acevedo-Reyes, D., 2008. Implementation of the classicalnucleation theory for precipitation. Acta Mater. 56, 2119–2132.

    Pirling, T., Bruno, G., Withers, P., 2006. SALSA: advances in residual stress measure-ment at ILL. Mater. Sci. Forum 524-525, 217–222.

    Rappaz, M., Gandin, C., 1993. Probabilistic modelling of microstructure formation insolidification processes. Acta Metall. Mater. 2, 345–360.

    Rossini, N., Dassisti, M., Benyounis, K., Olabi, A., 2012. Methods of measuring residualstresses in components. Mater. Des. 35, 572–588.

    Shen, Y., Morgeneyer, T., Garnier, J., Allais, L., Helfen, L., Crépin, J., 2013. Three-dimensional quantitative in situ study of crack initiation and propagationin AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater. 61, 2571–2582.

    Simar, A., Bréchet, Y., de Meester, B., Denquin, A., Gallais, C., Pardoen, T., 2012.Integrated modeling of friction stir welding of 6xxx series al alloys: process,microstructure and properties. Prog. Mater. Sci. 57, 95–183.

    Simar, A., Lecomte-Beckers, J., Pardoen, T., de Meester, B., 2006. Effect of boundaryconditions and heat source distribution on temperature distribution in frictionstir welding. Sci. Technol. Weld. Join. 11, 170–177.

    Sonne, M., Tutum, C., Hattel, J., Simar, A., de Meester, B., 2013. The effect of hardeninglaws and thermal softening on modeling residual stresses in FSW of aluminumalloy 2024-T3. J. Mater. Process. Technol. 213, 477–486.

    Starink, M., Deschamps, A., Wang, S., 2008. The strength of friction stir welded andfriction stir processed aluminium alloys. Scr. Mater. 58, 377–382.

    Traidia, A., Roger, F., 2011. A computational investigation of different helium sup-plying methods for the improvement of GTA welding. J. Mater. Process. Technol.211, 1553–1562.

    Traidia, A., Roger, F., Schroeder, J., Guyot, E., Marlaud, T., 2013. On the effects ofgravity and sulfur content on the weld shape in horizontal narrow gap GTAW ofstainless steels. J. Mater. Process. Technol. 213, 1128–1138.

    Wang, N., Mokadem, S., Rappaz, M., Kurz, W., 2004. Solidification cracking of super-alloy single- and bi-crystals. Acta Mater. 52, 3173–3182.

    Withers, P., 2007. Mapping residual and internal stress in materials by neutrondiffraction. C.R. Phys. 8, 806–820.

    Zain-Ul-Abdein, M., Nelias, D., Jullien, J., Deloison, D., 2009. Prediction oflaser beam welding-induced distortions and residual stresses by numeri-cal simulation for aeronautic application. J. Mater. Process. Technol. 209,

    2907–2917.

    Zain-Ul-Abdein, M., Nelias, D., Jullien, J., Deloison, D., 2010. Experimental investi-gation and finite element simulation of laser beam welding induced residualstresses and distortions in thin sheets of AA 6056-T4. Mater. Sci. Eng. A 527,3025–3039.

    http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0005http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0010http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0015http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0020http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0025http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0030http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0035http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0040http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0045http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0050http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0055http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0060http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0065http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0070http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0075http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0080http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0085http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0090http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0095http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0100http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0105http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0110http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0115http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0120http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0125http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0130http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0135http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0140http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0145http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0150http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0155http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0160http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0165http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0170http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175http://refhub.elsevier.com/S0924-0136(16)30103-0/sbref0175

    Residual stresses induced by electron beam welding in a 6061 aluminium alloy1 Introduction2 Electron beam welding experiments2.1 Materials and treatments2.2 Thermal results

    3 Experimental investigations3.1 Macrographic analysis3.2 Scanning electron microscopy3.3 Neutron diffraction3.4 Diffraction measurements3.5 Residual elastic strains results3.6 Residual strains and stresses

    4 Finite element thermal analysis4.1 Thermal analysis4.2 Finite element model4.3 Thermal results

    5 Residual elastic strains5.1 Model5.2 Results

    6 ConclusionsAcknowledgementsReferences