kim buckling analysis of plates using two variable refined plate theory

Upload: nadji-chi

Post on 07-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    1/8

    Buckling analysis of plates using the two variable refined plate theory

    Seung-Eock Kim a, Huu-Tai Thai a, Jaehong Lee b,

    a Department of Civil and Environmental Engineering, Sejong University, 98 Kunja-dong Kwangjin-ku, Seoul 143-747, Republic of Koreab Department of Architectural Engineering, Sejong University, 98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Republic of Korea

    a r t i c l e i n f o

     Article history:

    Received 16 January 2008

    Received in revised form

    17 July 2008

    Accepted 5 August 2008Available online 19 September 2008

    Keywords:

    Refined plate theory

    Buckling analysis

    Isotropic plate

    Orthotropic plate

    Navier method

    a b s t r a c t

    Buckling analysis of isotropic and orthotropic plates using the two variable refined plate theory is

    presented in this paper. The theory takes account of transverse shear effects and parabolic distribution

    of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear

    correction factors. Governing equations are derived from the principle of virtual displacements. The

    closed-form solution of a simply supported rectangular plate subjected to in-plane loading has been

    obtained by using the Navier method. Numerical results obtained by the present theory are compared

    with classical plate theory solutions, first-order shear deformable theory solutions, and available exact

    solutions in the literature. It can be concluded that the present theory, which does not require shear

    correction factor, is not only simple but also comparable to the first-order shear deformable theory.

    &  2008 Elsevier Ltd. All rights reserved.

    1. Introduction

    The buckling of rectangular plates has been a subject of study

    in solid mechanics for more than a century. Many exact solutions

    for isotropic and orthotropic plates have been developed, most of 

    them can be found in Timoshenko and Woinowsky-Krieger   [1],

    Timoshenko and Gere [2], Bank and Jin  [3], Kang and Leissa  [4],

    Aydogdu and Ece  [5], and Hwang and Lee   [6]. In company with

    studies of buckling behavior of plate, many plate theories have

    been developed. The simplest one is the classical plate theory

    (CPT) which neglects the transverse normal and shear stresses.

    This theory is not appropriate for the thick and orthotropic plate

    with high degree of modulus ratio. In order to overcome this

    limitation, the shear deformable theory which takes account of 

    transverse shear effects is recommended. The Reissner  [7]   and

    Mindlin [8]  theories are known as the first-order shear deform-

    able theory (FSDT), and account for the transverse shear effects bythe way of linear variation of in-plane displacements through the

    thickness. However, these models do not satisfy the zero traction

    boundary conditions on the top and bottom faces of the plate, and

    need to use the shear correction factor to satisfy the constitutive

    relations for transverse shear stresses and shear strains. For these

    reasons, many higher-order theories have been developed to

    improve in FSDT such as Levinson  [9]  and Reddy [10]. Shimpi and

    Patel [11] presented a two variable refined plate theory (RPT) for

    orthotropic plates. This theory which looks like higher-order

    theory uses only two unknown functions in order to derive two

    governing equations for orthotropic plates. The most interesting

    feature of this theory is that it does not require shear correction

    factor, and has strong similarities with the CPT in some aspects

    such as governing equation, boundary conditions and moment

    expressions. The accuracy of this theory has been demonstrated

    for static bending and free vibration behaviors of plates by Shimpi

    and Patel [11],   therefore, it seems to be important to extend this

    theory to the static buckling behavior.

    In this paper, the two variable RPT developed by Shimpi and

    Patel   [11]   has been extended to the buckling behavior of 

    orthotropic plate subjected to the in-plane loading. Using the

    Navier method, the closed-form solutions have been obtained.

    Numerical examples involving side-to-thickness ratio and mod-

    ulus ratio are presented to illustrate the accuracy of the present

    theory in predicting the critical buckling load of isotropic and

    orthotropic plates. Numerical results obtained by the presenttheory are compared with CPT solutions, FSDT solutions with

    different value of shear correction factor.

    2. RPT for orthotropic plates

     2.1. Basic assumptions of RPT 

    Assumptions of the RPT are as follows:

    i. The displacements are small in comparison with the plate

    thickness h  and, therefore, strains involved are infinitesimal.

    ARTICLE IN PRESS

    Contents lists available at ScienceDirect

    journal homepage:  www.elsevier.com/locate/tws

    Thin-Walled Structures

    0263-8231/$ - see front matter  &  2008 Elsevier Ltd. All rights reserved.doi:10.1016/j.tws.2008.08.002

    Corresponding author. Tel.: +822 3408 3287; fax: +82 2 3408 4331.

    E-mail address:  [email protected] (J. Lee).

    Thin-Walled Structures 47 (2009) 455–462

    http://www.sciencedirect.com/science/journal/twsthttp://www.elsevier.com/locate/twshttp://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.tws.2008.08.002mailto:[email protected]:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.tws.2008.08.002http://www.elsevier.com/locate/twshttp://www.sciencedirect.com/science/journal/twst

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    2/8

    ii. The transverse displacement   w  includes two components of 

    bending wb and shear ws. Both these components are functions

    of coordinates x ,  y  and time  t  only.

    wð x; y; t Þ ¼ wbð x; y; t Þ þ wsð x; y; t Þ   (1)

    iii. The transverse normal stress   s z   is negligible in comparisonwith in-plane stresses  s x  and  s y.

    iv. The displacements u  in  x-direction and n  in  y-direction consist

    of extension, bending, and shear components

    u ¼  u0 þ  ub þ us; v ¼  v0  þ vb þ  vs   (2)

     The bending components ub and vb are assumed to be similarto the displacements given by the classical plate theory.

    Therefore, the expression for  ub  and  vb  can be given as

    ub  ¼  z qwbq x

      ;   vb  ¼  z qwbq y

      (3a)

      The shear components   us   and   vs  give rise, in conjunctionwith ws, to the parabolic variations of shear strains  g xz , g yz and hence to shear stresses s xz , s yz  through the thickness of the plate,  h, in such a way that shear stresses  s xz ,  s yz  arezero at the top and bottom faces of the plate. Consequently,

    the expression for  us  and  vs can be given as

    us  ¼  1

    4 z  

    5

    3 z 

      z 

    h

    2 qwsq x

      ;   vs  ¼  1

    4 z  

    5

    3 z 

      z 

    h

    2 qwsq y

      (3b)

     2.2. Kinematics

    Based on the assumptions made in the preceding section, the

    displacement field can be obtained using Eqs. (1)–(3b) as

    uð x; y; z ; t Þ ¼ u0ð x; y; t Þ  z qwbq x

      þ z   1

    4

    5

    3

     z 

    h

    2 qwsq x

    vð x; y; z ; t Þ ¼ v0ð x; y; t Þ  z 

    qwb

    q y   þ z 

      1

    4

    5

    3

     z 

    h 2 qws

    q y

    wð x; y; t Þ ¼ wbð x; y; t Þ þ wsð x; y; t Þ   (4)

    This displacement field accounts for zero traction on boundary

    conditions on the top and bottom faces of the plate, and the

    quadratic variation of transverse shear strains (and hence

    stresses) through the thickness. Thus, there is no need to use

    shear correction factors. The strain field obtained by using strain-

    displacement relations can be given as

     x  ¼  0 x  þ z kb

     x  þ  f ks

     x

     y  ¼  0 y  þ  z kb

     y  þ  f ks

     y

     z  ¼  0

    g xy  ¼  g0

     xy

     þ z kb

     xy

     þ f ks

     xy

    g yz  ¼  5

    4 5

      z 

    h

    2 qwsq y

    g xz  ¼  5

    4 5

      z 

    h

    2 qwsq x

      (5)

    where

    0 x   ¼ qu0q x

      ;   kb x   ¼ q

    2wb

    q x2  ;   ks x  ¼

    q2

    wsq x2

    0 y   ¼ qv0q y

      ;   kb y  ¼ q

    2wb

    q y2  ;   ks y  ¼

    q2

    wsq y2

    g0 xy  ¼ qu0q y

      þ qv0q x

      ;   kb xy  ¼ 2q

    2wb

    q x@ y ,

    ks xy  ¼ 2 q2

    wsq xq y

    ;   f   ¼ 14

     z  þ 53

     z   z h

    2(6)

     2.3. Constitutive equations

    The constitutive equations of an orthotropic plate can be

    written as

    s xs y

    s xys yz s xz 

    8>>>>>>>>>>>:

    9>>>>>>=>>>>>>;

    ¼

    Q 11   Q 12   0 0 0

    Q 12   Q 22   0 0 0

    0 0   Q 66   0 00 0 0   Q 44   0

    0 0 0 0   Q 55

    26666664

    37777775

     x y

    g xyg yz g xz 

    8>>>>>>>>>>>:

    9>>>>>>=>>>>>>;

    (7)

    where   Q ij   are the plane stress reduced elastic constants in the

    material axes of the plate, and are defined as

    Q 11  ¼  E 1

    1 n12n21;   Q 12  ¼

      n12E 21 n12n21

    ;   Q 22  ¼  E 2

    1 n12n21,

    Q 66  ¼ G12;   Q 44  ¼  G23;   Q 55  ¼ G13   (8)

    in which   E 1,   E 2   are Young’s modulus,   G12,   G23,   G13   are shear

    modulus, and n12,  n21 are Poisson’s ratios. For the isotropic plate,these above material properties reduce to   E 1 ¼  E 2 ¼  E ,

    G12 ¼  G23 ¼  G13 ¼  G,   n12 ¼  n21 ¼  n. The subscripts 1, 2, 3 corre-spond to   x,   y,   z    directions of Cartesian coordinate system,

    respectively.

     2.4. Equation of motions

    The strain energy of the plate can be written as

    U  ¼ 1

    2

    Z V 

    sijijdV  ¼ 1

    2

    Z V 

    ðs x x þ s y y þ s xyg xy þ s yz g yz  þ s xz g xz Þ dV 

    (9)

    Substituting Eqs. (5) and (7) into Eq. (9) and integrating through

    the thickness of the plate, the strain energy of the plate can be

    rewritten as

    U  ¼  1

    2

    Z  A

    ðN  x0 x  þ N  y0

     y  þ  N  xyg0

     xy þ  M b

     xkb

     x þ  M b

     ykb

     y  þ M b

     xykb

     xyÞ d x d y

    þ1

    2

    Z  A

    ðQ  yz g yz  þ  Q  xz g xz  þ M s

     xks

     x þ  M s

     yks

     y þ M s

     xyks

     xyÞ d x d y   (10)

    where the stress resultants  N ,  M  and  Q  are defined by

    ðN  x; N  y; N  xyÞ ¼

    Z   h=2h=2

    ðs x;s y;s xyÞ d z 

    ðM b x ; M b

     y; M b

     xyÞ ¼

    Z   h=2h=2

    ðs x;s y;s xyÞ z d z 

    ðM s x; M s

     y; M s

     xyÞ ¼ Z   h=2

    h=2

    ðs x;s y;s xyÞ f  d z 

    ðQ  xz ; Q  yz Þ ¼

    Z   h=2h=2

    ðs xz ;s yz Þ d z    (11)

    Substituting Eqs. (5) and (7) into Eq. (11) and integrating

    through the thickness of the plate, the stress resultants are related

    to the generalized displacements (u0,  v0,  wb,  ws) by the relations

    N  x

    N  y

    N  xy

    8>><>>:

    9>>=>>; ¼

     A11   A12   0

     A12   A22   0

    0 0   A66

    2664

    3775

    qu0=q x

    qv0=q y

    qu0=q y þ  qv0=q x

    8>><>>:

    9>>=>>;

    M b x

    M b y

    M b xy

    8>>>>>>>:

    9>>>>=>>>>;

    ¼

    D11   D12   0

    D12   D22   0

    0 0   D66

    2664

    3775

    q2

    wb=q x2

    q2

    wb=q y2

    2q2

    wb=q xq y

    8

    >>>>>:

    9

    >>>=>>>;

    ARTICLE IN PRESS

    S.-E. Kim et al. / Thin-Walled Structures 47 (2009) 455–462456

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    3/8

    M s x

    M s y

    M s xy

    8>>><>>>:

    9>>>=>>>; ¼

      1

    84

    D11   D12   0

    D12   D22   0

    0 0   D66

    2664

    3775

    q2

    ws=q x2

    q2

    ws=q y2

    2q2

    ws=q xq y

    8>>><>>>:

    9>>>=>>>;

    Q  yz 

    Q  xz 

    ( )¼

     A44   0

    0   A55

    " #  qws=q y

    qws=q x

    ( )  (12)

    where   Aij   and   Dij   are called extensional and bending stiffness,respectively, and are defined in terms of the stiffness  Q ij as

    ð Aij; DijÞ ¼

    Z   h=2h=2

    Q ijð1; z 2Þ d z    ði; j  ¼  1; 2; 6Þ

     Aij  ¼ 5

    6Q ijh   ði; j ¼  4; 5Þ   (13)

    The work done of the plate by applied forces can be written as

    V   ¼  1

    2

    Z  A

    N o xq

    2ðwb þ  wsÞ

    q x2  þ N o y

    q2

    ðwb þ wsÞ

    q y2

    "

    þ2N o xyq

    2ðwb þ  wsÞ

    q xq y

    #d xd y 

    Z  A

    qðwb þ  wsÞd xd y   (14)

    where q  and  N  x0

    , N  y0

    , N  xy0

    are transverse and in-plane distributedforces, respectively.

    The kinetic energy of the plate can be written as

    T  ¼  1

    2

    Z V r €uiidV  ¼

     1

    2

    Z  A

    I 0ð €u20 þ  €v

    20 þ   €w

    2b þ   €w

    2s   þ 2 €wb  €wsÞd xd y

    þ1

    2

    Z  A

    I 2q €wbq x

      q €wbq y

    2" #þ

      I 284

    q €wsq x

      q €wsq y

    2" #( )d xd y

    (15)

    where  r   is mass of density of the plate and   I i   (i ¼  0, 2) are theinertias defined by

    ðI 0; I 2Þ ¼

    Z   h=2h=2

    ð1; z 2Þrd z    (16)

    Hamilton’s principle is used herein to derive the equations of motion appropriate to the displacement field and the constitutive

    equation. The principle can be stated in analytical form as

    0 ¼

    Z   t 0dðU  þ V    T Þdt    (17)

    where d  indicates a variation with respect to  x  and  y.

    Substituting Eqs. (10), (14) and (15) into Eq. (17) and

    integrating the equation by parts, collecting the coefficients of 

    du0, dv0, dwb, and dws, the equations of motion for the orthotropic

    plate are obtained as follows:

    du0  :qN  xq x

      þ qN  xyq y

      ¼ I 0 €u0

    dv0   :qN 

     xyq x   þ

    qN  y

    q y   ¼ I 0 €v0

    dwb  :  q

    2M b x

    q x2  þ 2

    q2

    M b xyq xq y

      þq

    2M b y

    q y2

    " #þ q

    þ   N 0 xq

    2w

    q x2  þ 2N 0 xy

    q2

    w

    q xq y þ N 0 y

    q2

    w

    q y2

    " #¼ I 0  €w  I 2r 

    2 €wb

    dws  :  q

    2M s x

    q x2  þ 2

    q2

    M s xyq xq y

      þq

    2M s y

    q y2  þ

     qQ  xz q x

      þqQ  yz q y

    " #þ q

    þ   N 0 xq

    2w

    q x2  þ 2N 0 xy

    q2

    w

    q xq y þ N 0 y

    q2

    w

    q y2

    " #¼ I 0  €w 

      I 284

    r 2 €ws   (18)

    where

    r 2 ¼   q2

    q x2 þ   q

    2

    q y2  (19)

    The boundary conditions of a plate (of length  a and width b) are

    given as follows:

     Clamped–clamped boundaries:On edges  x  ¼  0 and  a

    wb  ¼ ws  ¼ qwbq x

      ¼ qwsq x

      ¼ 0 (20a)

    On edges y  ¼  0 and  b

    wb  ¼ ws  ¼ qwbq y

      ¼ qwsq y

      ¼ 0 (20b)

     Simply supported boundaries:On edges  x  ¼  0 and  a

    wb  ¼  ws  ¼   D11q

    2wb

    q x2  þ D12

    q2

    wbq y2

      1

    84  D11

    q2

    wsq x2

      þ D12q

    2ws

    q y2

    !¼ 0

    (21a)

    On edges y  ¼  0 and  b

    wb  ¼  ws  ¼   D12q

    2wb

    q x2  þ D22

    q2

    wbq y2

      1

    84  D12

    q2

    wsq x2

      þ D22q

    2ws

    q y2

    !¼ 0

    (21b)  Free–free boundaries:

    On edges  x  ¼  0 and  a

      D11q

    2wb

    q x2  þ D12

    q2

    wbq y2

      1

    84  D11

    q2

    wsq x2

      þ D12q

    2ws

    q y2

    !¼ 0

      D11q

    3wb

    q x3  þ ðD12 þ 4D66Þ

     q3

    wbq xq y2

    " #

    ¼ A55qwsq x

        1

    84  D11

    q3

    wsq x3

      þ ðD12 þ 4D66Þ  q

    3ws

    q xq y2

    " #¼ 0 (22a)

    On edges y  ¼  0 and  b

      D12q

    2wbq x2

      þ D22q

    2wbq y2

      1

    84  D12

    q2wsq x2

      þ D22q

    2wsq y2

    !¼ 0

    ðD12 þ 4D66Þ q

    3wbq x2q y

     þ D22q

    3wbq y3

    " #

    ¼ A44qwsq y

        1

    84  ðD12 þ 4D66Þ

     q3

    wsq x2q y

     þ D22q

    3ws

    q y3

    " #¼ 0 (22b)

    3. Buckling of a simply supported rectangular plate under 

    compressive loads

    When a plate is subjected to in-plane compressive forces

    (Fig. 1b), and if the forces are small enough, the equilibrium of the

    plate is stable and the plate remains flat until a certain load is

    reached. At that load, called the buckling load, the stable state of 

    the plate is disturbed and plate seeks an alternative equilibrium

    configuration accompanied by a change in the load-deflection

    behavior. The critical buckling loads of simply supported,

    orthotropic, rectangular plate will be determined in this paper

    by using the Navier solution. The governing equations of plate in

    case of static buckling are given by

    D11q

    4wb

    q x4  þ 2ðD12 þ 2D66Þ

      q4

    wbq x2q y2

     þ D22q

    4wb

    q y4

    ¼ N 0q

    2w

    q x2   þ gq

    2w

    q y2 !   1

    84   D11

    q4

    ws

    q x4   þ 2ðD12 þ 2D66Þ

      q4

    ws

    q x2q y2"

    ARTICLE IN PRESS

    S.-E. Kim et al. / Thin-Walled Structures 47 (2009) 455–462   457

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    4/8

    þD22q

    4ws

    q y4

    #   A44

    q2

    wsq y2

      þ A55q

    2ws

    q x2

    " #

    ¼ N 0q

    2w

    q x2  þ g

    q2

    w

    q y2

    !  (23)

    The Navier method is only applied for simply supported

    boundary conditions on all four edges of the rectangular plate,as shown in Fig. 1a. The simply supported boundary conditions on

    all four edge of the rectangular plate can be expressed as

    wð x; 0Þ ¼ wð x; bÞ ¼ wð0; yÞ ¼ wða; yÞ ¼ 0 (24a)

    M  xð0; yÞ ¼ M  xða; yÞ ¼ M  yð x; 0Þ ¼ M  yð x; bÞ ¼ 0 (24b)

    The following displacement functions  wb  and  ws  are chosen to

    automatically satisfy the boundary conditions in Eqs. (24a) and

    (24b)

    wb  ¼X1m¼1

    X1n¼1

    W bmn sina x sinb y

    ws  ¼X1m¼1

    X1n¼1

    W smn sina x sinb y   (25)

    where a  ¼  mp/a,  b  ¼  np/b and  W bmn,  W smn are coefficients.Substituting Eq. (25) into Eq. (23), the following system is

    obtained:

    k11   k12

    k12   k22

    " #  W bmn

    W smn

    ( )¼

    0

    0

      (26)

    where

    k11  ¼ ½D11a4 þ 2ðD12 þ 2D66Þa

    2b2

    þ D22b4

     N 0ða2 þ gb2Þ

    k12  ¼  N 0ða2 þ gb2Þ

    k22  ¼  1

    84½D11a

    4 þ 2ðD12 þ 2D66Þa2b

    2

    þ D22b4

    þ A55a2 þ A44b

    2 N 0ða

    2 þ gb2Þ   (27)

    For nontrivial solution, the determinant of the coefficient

    matrix in Eq. (26) must be zero. This gives the following

    expression for buckling load:

    N 0  ¼  D

    a2 þ gb2ðD=84 þ A55a2 þ A44b

    D þ ðD=84 þ A55a2 þ A44b2

    Þ(28)

    where

    D ¼  D11a4 þ 2ðD12 þ 2D66Þa

    2b2

    þ D22b4

    (29)

    Clearly, when the effect of transverse shear deformation is

    neglected, the Eq. (28) yields the result obtained using the

    classical plate theory. It indicates that transverse shear deforma-

    tion has the effect of reducing the buckling load. For each choice of 

    m  and  n, there is a corresponsive unique value of  N 0. The criticalbuckling load is the smallest value of  N 0(m, n).

    4. Numerical results and discussion

    For verification purposes, a simply supported rectangular plate

    subjected to the loading conditions, as shown in   Fig. 2, is

    considered to illustrate the accuracy of the present theory in

    predicting the buckling behavior of the plate. In order to

    ARTICLE IN PRESS

    N0 N0

    x

    y y

    x

    N0N0

    N0

    N0

    N0

    x

    y

    N0

    N0

    N0

    Fig. 2.  The loading conditions of square plate for (a) uniaxial compression, (b) biaxial compression and (c) tension in the  x  direction and compression in the  y   direction.

    a

            b

    y

    x

    at y=b

    w = M y = 0

    at y = 0

    w = M y = 0

    at x = 0

    w = M x = 0

    at x = a

    w = M x = 0

    a

    y

    x        b

    N0xx

    0N

    0yN

    Ny0

    Fig. 1.  Rectangular plate: (a) boundary condition and (b) in-plane forces.

    S.-E. Kim et al. / Thin-Walled Structures 47 (2009) 455–462458

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    5/8

    investigate the effects of side-to-thickness ratio and modulus

    ratio, the first example is applied for isotropic and orthotropic

    square plates. Many shear correction factors (k ¼  2/3, k  ¼  5/6 and

    k ¼  1) are also used for the FSDT in comparison with the present

    theory. The following engineering constants are used [12]

    E 1=E 2  varied;   G12=E 2  ¼  G13=E 2  ¼  0:5;   G23=E 2  ¼  0:2;  n12  ¼  0:25

    (30)For convenience, the following nondimensional buckling load is

    used:

    ¯ N  ¼ N cr a

    2

    E 2h3

      (31)

    where a  is the length of the square plate and h  is the thickness of 

    the plate.

    The results of critical buckling load of simply supported square

    plate are presented in   Tables 1–3   and   Figs. 3–6. In the case of 

    isotropic plate (Fig. 3a), the results obtained by RPT and FSDT are

    in excellent agreement event though the plate is very thick. In

    case of square plate (a ¼  b  ¼  5h), the maximum difference of RPT

    and FSDT with the shear correction factor 5/6 is 0.24%, as shownin   Table 3. When the orthotropic plate is used, the difference

    between RPT and FSDT will increase with respect to the increase

    of side-to-thickness ratio (Fig. 3) and modulus ratio (Figs. 4–6). As

    presented in   Table 1,   the differences between RPT and FSDT

    (k ¼  5/6), and RPT and FSDT (k ¼  1) are 16.14% and 2.24%,

    respectively, for the same case of square plate (a ¼  b  ¼  5h   and

    E 1/E 2 ¼  40). It can be seen from Tables 1–3 that the difference of 

    critical buckling load between RPT and FSDT depends on not only

    the side-to-thickness and modulus ratios, but also the in-plane

    loading conditions (Fig. 2). In case of square plate (a ¼  b  ¼  10h),

    the difference between RPT and FSDT (k ¼  5/6) is 9.62% for

    uniaxial compression (Fig. 4   and   Table 1), 9.36% for biaxial

    compression (Fig. 5 and  Table 2), and 2.92% for tension in the x-

    direction and compression in the y-direction (Fig. 6 and  Table 3).

    ARTICLE IN PRESS

     Table 3

    Comparison of nondimensional critical buckling load of square plates subjected to

    tension in the x  direction and compression in the  y  direction

    a/h   Theories Isotropic

    n ¼  0.3Orthotropic

    E 1/E 2 ¼ 10   E 1/E 2 ¼  25   E 1/E 2 ¼  40

    5 RPT 4.8274a 4.0258b 4.1044c 4.1525c

    FSDT (k ¼  2/3) 4.4175a 3.2849d 3.3001e 3.3053e

    FSDT (k ¼  5/6) 4.8158a 3.9241c 3.9794c 4.0075d

    FSDT (k ¼  1) 5.1237a 4.4488b 4.5691c 4.6073c

    10 RPT 6.6024a 7.7863a 8.5471b 9.1638b

    FSDT (k ¼  2/3) 6.4032a 7.2656a 7.7820b 8.1208b

    FSDT (k ¼  5/6) 6.6010a 7.7748a 8.4774b 8.9039b

    FSDT (k ¼  1) 6.7398a 8.0651a 9.0153b 9.5197b

    20 RPT 7.2754a 9.2811a 11.6347b 12.8031b

    FSDT (k ¼  2/3) 7.2139a 9.1310a 11.2544b 12.1990b

    FSDT (k ¼  5/6) 7.2753a

    9.2782a

    11.6015b

    12.6339b

    FSDT (k ¼  1) 7.3168a 9.3790a 11.8453b 12.9428b

    50 RPT 7.4895a 9.8101a 12.9531b 14.4177b

    FSDT (k ¼  2/3) 7.4790a 9.7830a 12.8751b 14.2839b

    FSDT (k ¼  5/6) 7.4895a 9.8097a 12.9463b 14.3789b

    FSDT (k ¼  1) 7.4965a 9.8275a 12.9942b 14.4430b

    100 RPT 7.5211a 9.8907a 13.1666b 14.6827b

    FSDT (k ¼  2/3) 7.5185a 9.8838a 13.1463b 14.6474b

    FSDT (k ¼  5/6) 7.5211a 9.8906a 13.1648b 14.6724b

    FSDT (k ¼  1) 7.5229a 9.8951a 13.1772b 14.6891b

    CPT 7.5317a 9.9179a 13.2393b 14.7732b

    a Mode for plate is (m,  n) ¼  (1,2).b Mode for plate is (m,  n) ¼  (1,3).c Mode for plate is (m,  n) ¼  (1,4).d Mode for plate is (m,  n) ¼  (1,5).e Mode for plate is (m,  n) ¼  (1,6).

     Table 2

    Comparison of nondimensional critical buckling load of square plates subjected to

    biaxial compressive load

    a/h   Theories Isotropic

    n ¼  0.3Orthotropic

    E 1/E 2 ¼ 10   E 1/E 2 ¼  25   E 1/E 2 ¼  40

    5 RPT 1.4756 2.8549a 3.3309a 3.4800a

    FSDT (k ¼  2/3) 1.4100 2.5042a 2.7332a 2.8303a

    FSDT (k ¼  5/6) 1.4749 2.8319a 3.1422a 3.2822a

    FSDT (k ¼  1) 1.5216 3.1027a 3.4933a 3.6793a

    10 RPT 1.7112 4.6718a 6.0646a 7.2536a

    FSDT (k ¼  2/3) 1.6886 4.4259 5.4351a 6.0797a

    FSDT (k ¼  5/6) 1.7111 4.6367 5.8370a 6.6325a

    FSDT (k ¼  1) 1.7265 4.7708 6.1425a 7.0690a

    20 RPT 1.7825 5.3267 7.6643a 9.6614a

    FSDT (k ¼  2/3) 1.7763 5.2463 7.3701a 8.9895a

    FSDT (k ¼  5/6) 1.7825 5.3100 7.5546a 9.3049a

    FSDT (k ¼  1) 1.7866 5.3533 7.6834a 9.5297a

    50 RPT 1.8036 5.5390 8.2784a 10.6576a

    FSDT (k ¼  2/3) 1.8025 5.5249 8.2199a 10.5111a

    FSDT (k ¼  5/6) 1.8036 5.5361 8.2566a

    10.5810a

    FSDT (k ¼  1) 1.8042 5.5436 8.2812a 10.6282a

    100 RPT 1.8066 5.5707 8.3744a 10.8172a

    FSDT (k ¼  2/3) 1.8063 5.5672 8.3593a 10.7788a

    FSDT (k ¼  5/6) 1.8066 5.5700 8.3687a 10.7972a

    FSDT (k ¼  1) 1.8068 5.5719 8.3751a 10.8095a

    CPT 1.8076 5.5814 8.4069 10.8715a

    a Mode for plate is (m,  n) ¼  (1,2).

     Table 1

    Comparison of nondimensional critical buckling load of square plates subjected to

    uniaxial compression

    a/h   Theories Isotropic

    n ¼  0.3Orthotropic

    E 1/E 2 ¼ 10   E 1/E 2  ¼ 25   E 1/E 2 ¼  40

    5 RPT 2.9512 6.3478 9.1039 10.5785

    FSDT (k ¼  2/3) 2.8200 5.5679 7.1122 7.7411

    FSDT (k ¼  5/6) 2.9498 6.1804 8.2199 9.1085

    FSDT (k ¼  1) 3.0432 6.6715 9.1841 10.3463

    10 RPT 3.4224 9.3732 16.7719 22.2581

    FSDT (k ¼  2/3) 3.3772 8.8988 14.7011 18.3575

    FSDT (k ¼  5/6) 3.4222 9.2733 15.8736 20.3044FSDT (k ¼  1) 3.4530 9.5415 16.7699 21.8602

    20 RPT 3.5650 10.6534 21.3479 31.0685

    FSDT (k ¼  2/3) 3.5526 10.4926 20.4034 28.85

    FSDT (k ¼  5/6) 3.5650 10.6199 20.9528 30.0139

    FSDT (k ¼  1) 3.5733 10.7066 21.3363 30.8451

    50 RPT 3.6071 11.0780 23.1225 34.9717

    FSDT (k ¼  2/3) 3.6051 11.0497 22.9366 34.4886

    FSDT (k ¼  5/6) 3.6071 11.0721 23.0461 34.7487

    FSDT (k ¼  1) 3.6085 11.0871 23.1197 34.9244

    100 RPT 3.6132 11.1415 23.4007 35.6120

    FSDT (k ¼  2/3) 3.6127 11.1343 23.3527 35.4852

    FSDT (k ¼  5/6) 3.6132 11.1400 23.3810 35.5538

    FSDT (k ¼  1) 3.6135 11.1438 23.3999 35.5996

    CPT 3.6152 11.1628 23.4949 35.8307

    S.-E. Kim et al. / Thin-Walled Structures 47 (2009) 455–462   459

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    6/8

    The difference between RPT and FSDT is also due to the shear

    correction factors using in FSDT. In case of tension in the   x

    direction and compression in the y direction (Fig. 2c), the buckling

    mode shape (Fig. 7) switches from asymmetric to symmetric or,

    conversely, from symmetric to asymmetric, depending on the

    shear correction factors.

    The next comparison is carried out for the orthotropic

    rectangular plates subjected to uniaxial compression with thevariation of aspect ratio and side-to-thickness ratio. The following

    material properties are used [13]:

    E 2=E 1  ¼  0:52;   G12=E 1  ¼  G23=E 1  ¼ 0:26,

    G13=E 1  ¼  0:16;   n12  ¼ 0:44;   n21  ¼  0:23 (32)

    The results of buckling stress parameter,   k x ¼  (P cr/E 1)(12/p2)

    (b/h)2, are shown in   Table 4   and   Fig. 8. It is observed that the

    present theory overpredicts the asymptotic of buckling stress

    parameter and is more accurate than the Mindlin theory. Even thequite thick plate (b ¼  5h), the error is only 0.19%.

    ARTICLE IN PRESS

    0

    10

    20

    30

    40

    0

    CPTFSDP (k = 5/6)RPT

         N

    0

    10

    20

    30

    40

    0

    CPTFSDP (k = 5/6)RPT

         N

    E1 /E2 E1 /E2

    10 20 30 40 10 20 30 40

    Fig. 4.  The effect of modulus ratio on the critical buckling load of square plate subjected to uniaxial compression: (a)  a  ¼  10h  and (b)  a  ¼  20h.

    00

    3

    6

    9

    12 CPTFSDP (k = 5/6)RPT

         N

    0

    0

    3

    6

    9

    12 CPTFSDP (k = 5/6)RPT

         N

    E1 /E2 E1 /E2

    10 20 30 40 10 20 30 40

    Fig. 5.  The effect of modulus ratio on the critical buckling load of square plate subjected to biaxial compression: (a)  a  ¼  10h  and (b)  a  ¼  20h.

    .

    2.7

    2.9

    3.1

    3.3

    3.5

    3.7

    CPT

    FSDT (k = 5/6)RPT

    .

         N

         N

    4

    6

    8

    10

    12

    CPTFSDT (k = 5/6)RPT

         N

         N

    0

    6

    10

    14

    18

    22

    26

    a/h

    CPTFSDT (k = 5/6)RPT

    0

    5

    12

    19

    26

    33

    40

    a/h

    CPTFSDT (k = 5/6)RPT

    25 50 75 10025 50 75 100

    0

    a/h

    0

    a/h

    25 50 75 10025 50 75 100

    Fig. 3.   The effect of side-to-thickness and modulus ratios on the critical buckling load of square plate subjected to uniaxial compression: (a) isotropic, (b)  E 1/E 2 ¼  10,

    (c) E 1/E 2 ¼  25 and (d)  E 1/E 2 ¼  40.

    S.-E. Kim et al. / Thin-Walled Structures 47 (2009) 455–462460

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    7/8

    5. Concluding remarks

    An efficient two variable refined plate theory proposed by

    Shimpi and Patel [11] has been applied in this paper for bucklingbehavior of isotropic and orthotropic plates. The theory takes

    account of transverse shear effects and parabolic distribution of 

    the transverse shear strains through the thickness of the plate,

    hence it is unnecessary to use shear correction factors. The

    governing equations are strong similarity with the classical platetheory in many aspects. It can be concluded that the two variable

    ARTICLE IN PRESS

    Fig. 7.  Buckling mode shapes of orthotropic square plate: (a) ( m,  n) ¼  (1,1); (b) (m,  n) ¼  (1,2); (c) (m,  n) ¼  (1,3); (d) (m,  n) ¼  (1,4); (e) (m,  n) ¼  (1,5); (f) (m,  n) ¼  (1,6).

    6

    9

    12

    15

    18

    0

    CPTFSDP (k = 5/6)RPT

         N

    6

    9

    12

    15

    18

    0

    CPTFSDP (k = 5/6)RPT

         N

    E1 /E2 E1 /E2

    10 20 30 40 10 20 30 40

    Fig. 6.  The effect of modulus ratio on the critical buckling load of square plate subjected to tension in the  x  direction and compression in the y  direction: (a)  a  ¼  10h and

    (b) a  ¼  20h.

    S.-E. Kim et al. / Thin-Walled Structures 47 (2009) 455–462   461

  • 8/20/2019 KIM Buckling Analysis of Plates Using Two Variable Refined Plate Theory

    8/8

    refined plate theory can accurately predict the critical buckling

    loads of the isotropic plates.

     Acknowledgements

    The support of the research reported here by Ministry of Commerce, Industry and Energy through Grant 10020379-2006-

    12 and Korea Ministry of Construction and Transportation

    through Grant 2006-C106A103001-06A050300220 are gratefully

    acknowledged.

    References

    [1] Timoshenko SP, Woinowsky-Krieger S. Theory of plates and shells. New York:McGraw-Hill; 1959.

    [2] Timoshenko SP, Gere JM. Theory of elastic stability. New York: McGraw-Hill;1961.

    [3] Bank L, Yin J. Buckling of orthotropic plates with free and rotationallyrestrained unloaded edges. Thin Wall Struct 1996;24(1):83–96.

    [4] Kang JH, Leissa AW. Exact solutions for the buckling of rectangular plates

    having linearly varying in-plane loading on two opposite simply supportededges. Int J Solids Struct 2005;42(14):4220–38.

    [5] Aydogdu M, Ece MC. Buckling and vibration of non-ideal simply supportedrectangular isotropic plates. Mech Res Commun 2006;33(4):532–40.

    [6] Hwang I, Lee JS. Buckling of orthotropic plates under various inplane loads.KSCE J Civ Eng 2006;10(5):349–56.

    [7] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech-T ASME 1945;12(2):69–77.

    [8] Mindlin RD. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech-T ASME 1951;18(1):31–8.

    [9] Levinson M. An accurate simple theory of the statics and dynamics of elasticplates. Mech Res Commun 1980;7(6):343–50.

    [10] Reddy JN. A refined nonlinear theory of plates with transverse sheardeformation. Int J Solids Struct 1984;20(9):881–96.

    [11] Shimpi RP, Patel HG. A two variable refined plate theory for orthotropic plateanalysis. Int J Solids Struct 2006;43(22–23):6783–99.

    [12] Reddy JN. Mechanics of laminated composite plate: theory and analysis. New York: CRC Press; 1997.

    [13] Srinivas S, Rao AK. Bending, vibration and buckling of simply supported thickorthotropic rectangular plates and laminates. Int J Solids Struct 1970;6(11):1463–81.

    ARTICLE IN PRESS

     Table 4

    Asymptotic k x ¼  (P cr/E 1)(12/p2)(b/h)2 for buckling of orthotropic plate under normal stress  P  on edges  x  ¼  0 and  x  ¼  a

    b/h   Exacta CPT Mindlina RPT Error-CPT (%) Error-Mindlin (%) Error-RPT(%)

    20 2.966 3.039 2.965 2.9665 2.46   0.03 0.02

    10 2.770 3.039 2.768 2.7709 9.71   0.07 0.03

    5 2.210 3.039 2.204 2.2143 37.51   0.27 0.19

    a Take from Ref. [13].

    0

    a/b

    a

    P

    x

    P

    2

    3

    4

    5

    6

       B  u  c   k   l   i  n  g  s   t  r  e  s  s  p  a  r  a  m  e   t  e  r ,   k

    CPTRPT (b = 20h)RPT (b = 10h)RPT (b = 5h)

    b

    y

    1 2 3 4

    Fig. 8.   Variation of buckling stress parameter   k x ¼  (P cr/E 1)(12/p2)(b/h)2 with

    respect to  b/h and  a/b  for orthotropic plates under load on  x  ¼  0 and  x  ¼  a.

    S.-E. Kim et al. / Thin-Walled Structures 47 (2009) 455–462462