komputasi sistem fisis 2

Upload: nadya-amalia

Post on 08-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Komputasi Sistem Fisis 2

    1/3

    1

    Homework 2

    Name : Nadya Amalia

    Student ID : 20213042

    Subject : Komputasi Sistem Fisis (FI5005)

    Lecturer : Dr.rer.nat. Linus Ampang Pasasa

    Use Runge-Kutta fourth order method for solving a system of first order Ordinary Differential

    Equation.

    ݕଵ  (ݔ) ̇ ଶݕ (ݔ) ̇

    ൨ =    ଵݕ0.5−4 − ଶݕ0.3  − ଵݕ0.1

    ൨ =  ( , (ݔ

     (0) = ݕ

    ଵ(0)

    ଶ(0)൨ = ቂݕ4

    6ቃwith ℎ = 0.5, on the interval [0,10].

    Solution

    In vector format we write the Runge-Kutta fourth order method as

    ାଵ +  = ଵ + ଵ) + ଶ2 + ଷ2  ,(ସ = 0,1,2,…

    where

    ଵ =  ଵଵଶଵ൨, ଶ  = ଵଶଶଶ൨, ଷ  =  ଵଷଶଷ൨, ସ  = 

    ଵସଶସ൨

    ଵ =  ℎ (ݔ, (ݕଵ), (ݕଶ)),  = 1,2.

    ଶ =  ℎ ൬ݔ + ℎ2

    , (+ ଵ)ݕ

    1

    2ଵଵ, (ݕଶ) +

    1

    2ଶଵ൰ ,  = 1,2.

    ଷ =  ℎ ൬ݔ + ℎ2

    , (+ ଵ)ݕ

    1

    2ଵଶ, (ݕଶ) +

    1

    2ଶଶ൰ ,  = 1,2.

    ସ =  ℎ (ݔ + ℎ, (ݕଵ) + ଵଷ, (ݕଶ) + ଶଷ),  = 1,2.

    In explicit form, we write the method as

    (ଵ)ାଵݕ  = + ଵ)ݕ) 

    1

    6( ଵଵ + 2 ଵଶ + 2 ଵଷ + ଵସ)

    (ଶ)ାଵݕ  = + ଶ)ݕ) 

    1

    6( ଶଵ + 2 ଶଶ + 2 ଶଷ + ଶସ)

    For = , we have , =  ))  = , ))  = ଵଵ  =  ℎ ଵ(ݔ, (ݕଵ), (ݕଶ)) = (0.5)(−0.5)(4) =  −1.000000

    ଶଵ  =  ℎ ଶ(ݔ, (ݕଵ), (ݕଶ)) = (0.5)[4 − (0.3)(6) − (0.1)(4)] = 0.900000

    ଵଶ  =  ℎ ଵ ൬ݔ + ℎ2

    ,   (+ ଵ)ݕ

    1

    2ଵଵ,   + ଶ)ݕ)

    1

    2ଶଵ൰

  • 8/19/2019 Komputasi Sistem Fisis 2

    2/3

    2

    = (0.5)(−0.5) ቂ4 + ଵଶ (−1.000000)ቃ =  −0.875000

    ଶଶ  =  ℎ ଶ ൬ݔ + ℎ2

    ,  (+ ଵ)ݕ

    1

    2ଵଵ, + ଶ)ݕ) 

    1

    2ଶଵ൰

    = (0.5)

    ቄ4 − (0.3)

    ቂ6 +

    ଶ(0.900000)

    ቃ− (0.1)

    ቂ4 +

    ଶ(−1.000000)

    ቃቅ = 0.857500

    ଵଷ  =  ℎ ଵ ൬ݔ + ℎ2

    + ଵ)ݕ) ,1

    2ଵଶ, (ݕଶ) +

    1

    2ଶଶ൰

    = (0.5)(−0.5) ቂ4 + ଵଶ (−0.875000)ቃ =  −0.890625

    ଶଷ  =  ℎ ଶ ൬ݔ + ℎ2

    , (+ ଵ)ݕ

    1

    2ଵଶ, (ݕଶ) +

    1

    2ଶଶ൰

    = (0.5) ቄ4 − (0.3) ቂ6 + ଵଶ (0.857500)ቃ− (0.1) ቂ4 +ଵଶ (−0.875000)ቃቅ = 0.857563

    ଵସ  =  ℎ ଵ(ݔ + ℎ, (ݕଵ) + ଵଷ, (ݕଶ) + ଶଷ)

    = (0.5)(−0.5)[4 + (−0.890625)] =  −0.777344

    ଶସ  =  ℎ ଶ(ݔ + ℎ, (ݕଵ) + ଵଷ, (ݕଶ) + ଶଷ)= (0.5){4 − (0.3)(6 + 0.857563) − (0.1)[4 + (−0.890625)]} = 0.815897

    = ଵ)ଵݕ) = (ଵ(0.5ݕ + ଵ)ݕ) 1

    6( ଵଵ + 2 ଵଶ + 2 ଵଷ + ଵସ)

    = 4 +1

    6[(−1.000000) + (2)(−0.875000) + (2)(−0.890625) + (−0.777344)]

    = 3.115234

    = ଶ)ଵݕ) = (ଶ(0.5ݕ + ଶ)ݕ) 1

    6 ( ଶଵ + 2 ଶଶ + 2 ଶଷ + ଶସ)

    = 6 +1

    6[(0.900000) + (2)(0.857500) + (2)(0.857563) + (0.815897)]

    = 6.857670

    For = , we have , = . ))  = ., ))  = .ૡૠૠଵଵ  =  ℎ ଵ(ݔଵ, (ݕଵ)ଵ, (ݕଶ)ଵ) = (0.5)(−0.5)(3.115234) =  −0.778809

    ଶଵ  =  ℎ ଶ(ݔଵ, (ݕଵ)ଵ, (ݕଶ)ଵ) = (0.5)[4 − (0.3)(6.857670) − (0.1)(3.115234)] = 0.815588

    ଵଶ  =  ℎ ଵ ൬ݔଵ +ℎ

    2 ,   + ଵ)ଵݕ)1

    2 ଵଵ,   + ଶ)ଵݕ)1

    2 ଶଵ൰= (0.5)(−0.5) ቂ3.115234 + ଵଶ (−0.778809)ቃ =  −0.681458

    ଶଶ  =  ℎ ଶ ൬ݔଵ + ℎ2

    ,   + ଵ)ଵݕ)1

    2ଵଵ,   + ଶ)ଵݕ)

    1

    2ଶଵ൰

    = (0.5) ൜4 − (0.3) 6.857670 + 12

    (0.815588)൨− (0.1) 3.115234 + 12

    (−0.778809)൨ൠ= 0.773889

    ଵଷ =  ℎ

    ଵ൬ݔ

    ଵ +

    2

    ݕ) ,

    ଵ)

    ଵ +

    1

    2 ଵଶݕ) ,

    ଶ)

    ଵ +

    1

    2 ଶଶ൰

  • 8/19/2019 Komputasi Sistem Fisis 2

    3/3

    3

    = (0.5)(−0.5) 3.115234 + 12

    (−0.681458)൨ =  −0.693626

    ଶଷ  =  ℎ ଶ ൬ݔଵ + ℎ2

    , (+ ଵ)ଵݕ

    1

    2ଵଶ, (ݕଶ)ଵ +

    1

    2ଶଶ൰

    = (0.5) ቄ4 − (0.3) ቂ6.857670 +ଵଶ (0.773889)ቃ− (0.1) ቂ3.115234 +

    ଵଶ (−0.681458)ቃቅ

    = 0.774583

    ଵସ  =  ℎ ଵ(ݔଵ + ℎ, (ݕଵ)ଵ + ଵଷ, (ݕଶ)ଵ + ଶଷ)= (0.5)(−0.5)[3.115234 + (−0.693626)] =  −0.605402

    ଶସ  =  ℎ ଶ(ݔଵ + ℎ, (ݕଵ)ଵ + ଵଷ, (ݕଶ)ଵ + ଶଷ)= (0.5){4 − (0.3)(6.857670 + 0.774583) − (0.1)[3.115234 + (−0.693626)]} = 0.734082

    = ଵ)ଶݕ) = (ଵ(1.0ݕ + ଵ)ଵݕ) 1

    6( ଵଵ + 2 ଵଶ + 2 ଵଷ + ଵସ)

    = 3.115234 + 16

    [(−0.778809) + (2)(−0.681458) + (2)(−0.693626) + (−0.605402)]

    = 2.426171

    + ଶ)ଵݕ) = ଶ)ଶݕ) = (ଶ(1.0ݕ1

    6( ଶଵ + 2 ଶଶ + 2 ଶଷ + ଶସ)

    = 6.857670 +1

    6[(0.815588) + (2)(0.773889) + (2)(0.774583) + (0.734082)]

    = 7.632106

    Solution obtained with a computer program for the fourth-order RK method. The plot below

    represents solutions for (ݔ)ଵݕ and (ݔ)ଶݕ for ݔ = 0 until ݔ = 10, with ℎ  = 0.5.

    0,000000

    2,000000

    4,000000

    6,000000

    8,000000

    10,000000

    12,000000

    14,000000

    0,0 2,0 4,0 6,0 8,0 10,0 12,0

    y1

    y2