l03 intscalar post

Upload: joi-lynn-marie-jover

Post on 14-Apr-2018

246 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 L03 IntScalar Post

    1/18

    LECTURE 3 slide 1

    Lecture 3

    Total Charge:

    Line, Surface and Volume Integrals

    Sections: 1.8, 1.9, 2.3

    Homework: D2.4; 1.23, 1.27, 2.14, 2.16

  • 7/30/2019 L03 IntScalar Post

    2/18

    LECTURE 3 slide 2

    Line Elements 1

    metric increment due to a differential change in position along a line

    a

    bdl

    xdxa

    ydya

    x yd ddx y= +l aa

    a

    d

    ad a

    d a

    d dd = +l aa

    dlxa

    ya

    a b

  • 7/30/2019 L03 IntScalar Post

    3/18

    LECTURE 3 slide 3

    Line Elements 2

    line increment is a vector has direction: point of integration

    moves from point a to point b

    each of its components is a linear increment (in meters)

    RCS: dx, dy, and dzare linear by default

    CCS: d and dzare linear, d is not

    SCS: dris linear, dand d are not

    angular increment d corresponds to linear increment d

    zd d d dz = + +l a a a

    x y zd dx dy dz = + +l a a a

    sinrd dr rd r d = + +l a a asin

    d rdd r d

    6

    6

    d d 6

  • 7/30/2019 L03 IntScalar Post

    4/18

    LECTURE 3 slide 4

    Line Elements 3

    SCS:

    ra

    a

    a

    dr

    drrd

    dl

    sinr

    sinr d

    d

    x

    y

    zsinrd dr rd r d = + +l a a a

  • 7/30/2019 L03 IntScalar Post

    5/18

    LECTURE 3 slide 5

    the direction of integration does

    not matter: charge is scalar

    Line Integration: Charge on Lines 1

    B

    lQ dl=

    straight line: choose RCS

    axis along charged line

    EASY SPECIAL CASES: CHARGE ON PRINCIPAL GRID LINES

    ( )Bx

    l

    x

    Q x dx=

    -line in CCS: circularcharges in thex-0-yplane 0( )

    B

    A

    lQ d

    =

    -line and -line in SCS

    0( )B

    lQ r d

    = 0 0( ) sinB

    A

    lQ r d

    =

  • 7/30/2019 L03 IntScalar Post

    6/18

    LECTURE 3 slide 6

    Line Integration: Charge on Lines 2

    GENERAL CASE curved line: needs line equation in parametric form( ) ( ) ( ) ( )x y zu x u y u z u= + +r a a a x y zd d dx dy dz = = + +l r a a a

    x

    y

    z

    B

    ( )ur dr

    2 2 2 2dl dx dy dz = + +2 2 2 2

    dl dx dy dz

    du du du du

    = + +

    2dl d d

    du du du

    =

    r r dl d d

    du du du

    =

    r r d ddl du

    du du =

    r r

    ( )Bu

    l

    u

    d dQ u du

    du du=

    r r

    B

    A

    u

    AB

    u

    d dL du

    du du=

    r r

  • 7/30/2019 L03 IntScalar Post

    7/18

    LECTURE 3 slide 7

    The surface element is defined by two line elements:

    1 2d d d= s l l

    surface elements in the RCS principal planes

    plane:

    plane:

    plane:

    z

    y

    x

    z const d dxdy

    y const d dxdz

    x const d dydz

    = = = =

    = =

    s a

    s a

    s a

    Surface Elements 1

    1dl2dlds

    0

    z

    y

    x

    a

    / 2z a=

    / 2z a=

    / 2x a=

    / 2x a= / 2

    ya

    =/ 2

    ya

    =

    dy

    dz

    dy

    dx

    dzdx

  • 7/30/2019 L03 IntScalar Post

    8/18

    LECTURE 3 slide 8

    surface elements in the CCS principal planes

    plane:

    plane:

    plane: z

    const d d dz

    const d d dz

    z const d d d

    = =

    = =

    = =

    s a

    s a

    s a

    Surface Elements 2

    z

    a

    dz

    d

    a

    dd

    za

    const=

    z const=

    const

    =

    d

    dz a

  • 7/30/2019 L03 IntScalar Post

    9/18

    LECTURE 3 slide 9

    surface elements in the SCS principal planes

    Surface Elements 3

    2

    surface (sphere):

    sin r

    r const

    d r d d

    ==s a

    surface (cone):sin

    constd r drd

    ==s a

    surface (circular plane):constd rdrd ==s a

  • 7/30/2019 L03 IntScalar Post

    10/18

    LECTURE 3 slide 10

    Surface Integration: Charge on Surfaces 1

    We will limit ourselves to SPECIAL CASES

    charges on principal coordinate planes

    charge on a plane2 2

    1 1

    ( , )

    y x

    s

    y x

    Q x y dxdy=

    charge on a circular disk or ringx

    y

    1x 2x

    1y

    2y

    2 2

    1 1

    ( , )sQ d d

    =

    s

    S

    Q ds=

    1

    21

    2

    x

    y

  • 7/30/2019 L03 IntScalar Post

    11/18

    LECTURE 3 slide 11

    Surface Integration: Charge on Surfaces 2

    charge on a cylinder

    charge on a sphere

    22

    1 1

    0( , )

    z

    s

    z

    Q z d dz

    = 1z

    2z1 2

    0

    2 2

    1 1

    20( , ) sinsQ r d d

    = 0

    x

    y

    z

    0r

    12

    1

    2

  • 7/30/2019 L03 IntScalar Post

    12/18

    LECTURE 3 slide 12

    Surface Integration: Charge on Surfaces 3

    charge on a cone2 2

    1 1

    0( , ) sin

    r

    s

    r

    Q r r drd

    = 1 2

    1r

    2r

    0

    NOTE: If you sets = 1 in the above formulas, you can compute

    the area of the respective surfaces.

  • 7/30/2019 L03 IntScalar Post

    13/18

    LECTURE 3 slide 13

    1 2 3( )dv d d d = l l l

    Volume Elements 1

    The volume element is defined by three line elements

    RCS: dv dxdydz= 2dl1

    dl3dl

  • 7/30/2019 L03 IntScalar Post

    14/18

    LECTURE 3 slide 14

    CCS: dv d d dz =

    Volume Elements 2

  • 7/30/2019 L03 IntScalar Post

    15/18

    LECTURE 3 slide 15

    2SCS: sindv r drd d =

    Volume Elements 3

  • 7/30/2019 L03 IntScalar Post

    16/18

    LECTURE 3 slide 16

    v

    V

    Q dv=

    Volume Integration: Volume Charges

    parallelogram22 2

    1 1 1

    ( , , )

    yz x

    v

    z y x

    Q x y z dxdydz =

    cylindrical volume

    1 2 2

    1 1 1

    ( , , )

    z

    v

    z

    Q z d d dz

    =

    spherical volume

    2 2 2

    1 1 1

    2( , , ) sin

    r

    v

    r

    Q r r drd d

    =

    NOTE: You can find the volume of the element by settingv = 1.

  • 7/30/2019 L03 IntScalar Post

    17/18

    LECTURE 3 slide 17

    Volume Integration: Example

    Work in SCS. Assume thez-axis is along the axis of thesymmetrical conical light beam. The sine of half the subtended

    angle of the beam is

    2

    2

    0 0 0

    sin

    a

    V r

    V dv r drd d

    = = =

    = = 3 3

    352 (1 cos ) 2 0.0202 0.21, m3 3

    aV = = =

    A light source shines onto a hemispherical dome of radius a = 5 m,and makes a round spot 2 m in diameter, d= 2 m. What is the

    volume of the light cone from the light source to the dome?

    / 2sin 0.2

    d

    a = =2cos 1 sin 0.9798 = =

    Homework: Find the area of the dome lit up by the beam. 23.173, mA =

  • 7/30/2019 L03 IntScalar Post

    18/18

    LECTURE 3 slide 18

    You have learned how to

    find the total charge along a straight line or any other curved line

    find the total charge on any portion of the surface of a plane, disk,

    cylinder, sphere, cone

    find the total charge on any portion of a parallelogram, cylinder,

    sphere, cone

    use integration to find length, area and volume