lackner options

Upload: pratik-sharma

Post on 07-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Lackner Options

    1/40

    Sequestration Options

    Klaus S. Lackner

    Columbia University

    April 2006

  • 8/4/2019 Lackner Options

    2/40

    0.01

    0.1

    1

    10

    100

    100 1000 10000 100000

    GDP ($/person/year)

    Primar

    yEnergyConsumption

    (kW/person)

    Norway

    USAFranceUK

    Brazil

    Russia

    India

    China

    $0.38/kWh(primary)

    Energy, Wealth, Economic Growth

    EIA Data 2002

  • 8/4/2019 Lackner Options

    3/40

    IPCC Model Simulations of CO2Emissions

  • 8/4/2019 Lackner Options

    4/40

    Growth in Emissions

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    2000 2020 2040 2060 2080 2100Year

    FractionalC

    hange

    Cons tant Growth 1.6% Plus Population Growth to 10 billion Clos ing the Gap at 2%

    Energy intens ity drop 1%/yr Energy Intens ity drop 1.5%/yr Energy Intens ity drop 2% per year

    Constant growth

    Plus Population Growth

    Closing the Gap

    1% energy intensity reduction

    1.5% energy intensity reduction

    2.0% energy intensity reduction

  • 8/4/2019 Lackner Options

    5/40

  • 8/4/2019 Lackner Options

    6/40

    Comparison With Keelings Data

  • 8/4/2019 Lackner Options

    7/40

    A Triad of Large Scale Options

    backed by a multitude of opportunities

    Solar

    Cost reduction and mass-manufacture

    Nuclear

    Cost, waste, safety and security

    Fossil Energy

    Zero emission, carbon storage andinterconvertibility

  • 8/4/2019 Lackner Options

    8/40

    Carbon as Low Cost Energy

    Rogner 1997

    LiftingCost

  • 8/4/2019 Lackner Options

    9/40

    Refining

    Carbon

    Diesel

    Coal

    Shale

    Fossil fuels are fungible

    Tar

    Oil

    NaturalGas

    Jet Fuel

    Heat

    Electricity

    Ethanol

    Methanol

    DME

    Hydrogen

    SynthesisGas

  • 8/4/2019 Lackner Options

    10/40

    Resource Estimates

    H.H. Rogner, 1997

  • 8/4/2019 Lackner Options

    11/40

    Net Zero Carbon Economy

    CO2extractionfrom air

    Permanent &safe

    disposal

    CO2 fromconcentrated

    sourceselectricity or hydrogen

    Geological Storage

    Mineral carbonate disposal

    Capture of distributed emissions

  • 8/4/2019 Lackner Options

    12/40

    Sequestration at the Verge of

    Commercial Development Economic realities not quite there yet

    Projects require special circumstances

    Statoil

    Pilot Plants

  • 8/4/2019 Lackner Options

    13/40

    Private SectorCarbonExtraction

    CarbonSequestration

    Farming, Manufacturing, Service,etc.Certified Carbon Accounting

    certificates

    certification

    Public Institutionsand Government

    Carbon Board

    guidance

  • 8/4/2019 Lackner Options

    14/40

    The Role of the University Innovation & Basic Research

    Integration and Setting Goals

    Exposing the Problems

    De-emphasize assessments

    We all did badly on sulfur

    In 1980 estimate the cost of 2000 CD-ROM

  • 8/4/2019 Lackner Options

    15/40

    Storage

    Life Time

    5000 Gt of C

    200 years at 4 times current rates of emission

    Storage

    Slow Leak (0.04%/yr)

    2 Gt/yr for 2500 years

    Current Emissions: 6Gt/year

    L = S/R

  • 8/4/2019 Lackner Options

    16/40

  • 8/4/2019 Lackner Options

    17/40

    Dividing The Fossil Carbon Pie900 Gt C

    total

    550 ppm

    Past

    10yr

    Growth 10% per decade

  • 8/4/2019 Lackner Options

    18/40

    Removing the Carbon Constraint

    5000 Gt C

    totalPast

  • 8/4/2019 Lackner Options

    19/40

    Biomass Sequestration Time Constant 50 years or less

    Scale 600 Gt C

    Environmental Concerns

  • 8/4/2019 Lackner Options

    20/40

    Ocean Disposal

  • 8/4/2019 Lackner Options

    21/40

    Underground Injection

    statoil

    Enhanced Oil Recovery

    Deep Coal Bed Methane

    Saline Aquifers Storage Time

    Safety

    Cost

    VOLUME

  • 8/4/2019 Lackner Options

    22/40

    Hutchinson, Kansas January 17, 2001

    3 days & 15 km away, 1000 tons of natural gas

    M. Lee Allison, Geotimes, October 2001

  • 8/4/2019 Lackner Options

    23/40

    Gravitational Trapping of CO2

    Below the ocean floor Large Capacity

    Permanence

    Need to demonstrate injectivity

    Understanding of long term behavior

    Role of hydrate formation

    Rate of dispersal

  • 8/4/2019 Lackner Options

    24/40

    Clathrate Trapping Deep Ice

    John Longhi

    David Sevier

  • 8/4/2019 Lackner Options

    25/40

    Rockville Quarry

    Mg3Si2O5(OH)4 + 3CO2(g) 3MgCO3 + 2SiO2 +2H2O(l)

    +63kJ/mol CO2

  • 8/4/2019 Lackner Options

    26/40

    Peridotite and Serpentinite Ore Bodies

    Magnesium resources that far exceed

    world fossil fuel supplies

  • 8/4/2019 Lackner Options

    27/40

    Adapting Power PlantsAmine Scrubbing

    Plus variations on the theme

    Oxygen Blown Combustion

    Entry to zero emission plants

    IGCC with Capture

    Completely changes the mass flow in the power plant

    - Emphasis on better efficiency

  • 8/4/2019 Lackner Options

    28/40

    CO2 N2

    H2OSOx, NOxandother

    Pollutants

    Carbon

    Air

    Zero Emission

    Principle

    Solid Waste

    Power Plant

  • 8/4/2019 Lackner Options

    29/40

    Steam Reforming

  • 8/4/2019 Lackner Options

    30/40

    Boudouard Reaction

  • 8/4/2019 Lackner Options

    31/40

    Hydrogenation

  • 8/4/2019 Lackner Options

    32/40

    Relative size of a tank

    Electrical,mechanical storage

    Batteries etc.

    hydrogen

    gasoline

  • 8/4/2019 Lackner Options

    33/40

    Biomass Fuels Corn Alcohol?

    Switch Grass

    Cellulosic Alcohol

    Biodiesel

  • 8/4/2019 Lackner Options

    34/40

    60m by 50m

    3kg of CO2per second

    90,000 tons per year

    4,000 people or

    15,000 cars

    Would feed EOR for 800

    barrels a day.

    250,000 units forworldwide CO2emissions

  • 8/4/2019 Lackner Options

    35/40

    Wind area that

    carries 22 tonsof CO2per year

    Wind area thatcarries 10 kW

    0.2 m2

    for CO2 80 m2

    for Wind Energy

    How much wind?(6m/sec)

    50 cents/ton of CO2

    for contacting

  • 8/4/2019 Lackner Options

    36/40

    A First Attempt

    Air contactor:

    2Na(OH) + CO2 Na2 CO3

    Calciner:

    CaCO3CaO+CO2

    Ion exchange:

    Na2CO3 + Ca(OH)22Na(OH) + CaCO3

  • 8/4/2019 Lackner Options

    37/40

    Sorbent Choices

    -30

    -25

    -20

    -15

    -10

    -5

    0

    100 1000 10000 100000

    CO2 Partial Pressure (ppm)

    BindingEnergy(kJ/mole)

    350K

    300KAir Power plant

    P

  • 8/4/2019 Lackner Options

    38/40

    ProcessReactions

    Capture

    Device TronaProcess LimestonePrecipitateDryer

    FluidizedBed

    HydroxylationReactor

    MembraneDevice

    (1)

    (2)(3)(6)

    (5)

    (4)

    Membrane

    (1) 2NaOH + CO2 Na2CO3 + H2O Ho = - 171.8 kJ/mol

    (2) Na2CO3 + Ca(OH)2 2NaOH + CaCO3 Ho = 57.1 kJ/mol

    (3) CaCO3 CaO + CO2 Ho = 179.2 kJ/mol

    (4) CaO + H2O Ca(OH)2 Ho = - 64.5 kJ/mol

    (6) H2O (l) H2O (g) Ho = 41. kJ/mol

    (5) CH4 + 2O2 CO2 + 2H2O Ho = -890.5 kJ/mol

    Source: Frank Zeman

    CO2

    O2Fuel

  • 8/4/2019 Lackner Options

    39/40

    Hydrogen or Air ExtractionCoal,Gas Fossil Fuel Oil

    Hydrogen Gasoline

    Consumption Consumption

    Distribution Distribution

    CO2Transport Air Extraction

    CO2Disposal

  • 8/4/2019 Lackner Options

    40/40

    Hydrogen or Air ExtractionCoal,Gas Fossil Fuel Oil

    Hydrogen Gasoline

    Consumption Consumption

    Distribution Distribution

    CO2Transport Air Extraction

    CO2Disposal

    Cost comparisons