land%surface%modeling:%basic%concepts%...land%surface%modeling:%basic%concepts% subhadeep%halder% %...

81
Land surface modeling: Basic concepts Subhadeep Halder Center for OceanLandAtmosphere Studies and Dept. of Atmospheric, Oceanic and Earth Sciences George Mason University ICTPIITMCOLA Targeted Training AcIvity (TTA) on "Modelling and PredicIon of Asian Monsoons: Improving Physical Processes", February 9 20, 2015 Lecture 1 1

Upload: others

Post on 07-May-2020

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Land  surface  modeling:  Basic  concepts  

Subhadeep  Halder    

Center  for  Ocean-­‐Land-­‐Atmosphere  Studies  and  Dept.  of  Atmospheric,  Oceanic  and  Earth  Sciences  

George  Mason  University        

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1   1  

Page 2: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Acknowledgement  

The  lecture  is  a  part  of  the  course  CLIM-­‐714  of  the  Department  of  Atmospheric,   Oceanic   and   Earth   Sciences,   GMU   and   taught   by  Prof.  Paul  Dirmeyer  ([email protected],  also  at  COLA)  

Lecture  -­‐  1   2  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 3: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  A  budget  represents  the  balance  of  inputs  and  outputs  of  a  conserved  quanIty  (a  quanIty  that  can  not  be  created  or  destroyed  –  only  transported  or  transformed).  

•  We  assume  conservaIon  of  certain  types  of  ma[er  at  the  land-­‐atmosphere  interface  (e.g.,  water  and  carbon)  

•  The  rate  of  change  in  state  S  of  a  system  is  equal  to  the  difference  between  input  (flux  into)  and  output  (flux  out  of)  the  system:  

•             is  the  rate  of  change  of  state  S  over  Ime  t    

•  QI  is  the  sum  of  fluxes  into  the  system  •  QO  is  the  sum  of  fluxes  out  of  the  system  

Lecture  -­‐  1   3  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

dSdt

=QI −QO

dSdt

Budgets  at  the  L-­‐A  interface  

Page 4: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Land  vs.  Ocean  vs.  Atmosphere:  Heterogeneity  

4  

Water •  Flows (x,y: 1y; z: 102y) •  High heat capacity (4.2×106 J m-3 K-1) •  Moderate heat conductivity (0.6 J m-1K-1s-1) •  Dark (α=0.05) •  Evaporation at potential rate

Dry Soil •  Stationary (essentially) •  Low heat capacity (0.6-1.3×106 J m-3 K-1) •  Low heat conductivity (0.08-0.2 J m-1K-1s-1) •  Light (α=0.13-0.50) •  No evaporation

Wet Soil •  Water flows (x,y: 0-30d; z: 0-104y) •  Moderate heat capacity (2.2-2.9×106 J m-3K-1) •  High heat conductivity (0.8-1.7 J m-1K-1s-1) •  Not as light (α=0.1-0.4) •  Evaporation is a function of soil moisture

Vegetation •  Varies with time (species, density, color, coverage) •  Canopy creates microenvironment for radiation, heat exchange, interception of rain and snow •  Generally Dark (α=0.08-0.25) •  Transpiration controlled by photosynthesis, moisture stress

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1  

Page 5: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  At  any  point  at  the  land-­‐atmosphere  interface:    

•  P  is  precipitaIon  •  E  is  evapotranspiraIon  •  R  is  runoff  •  ΔSW  is  change  in  water  storage  (on  surface  and  in  soil)  •                                   is  verIcally-­‐integrated  moisture  flux  divergence  

•                           is  the  change  in  verIcally  integrated  humidity  (change  in  precipitable  water)  

Surface  Water  Balance  

Lecture  -­‐  1   5  

P − E = R + ΔSW = − ∇⋅ (q! V )

z∫ − Δ q

z∫

Δ qz∫

∇ ⋅ (q! V )

z∫

Interface              Land                                            Atmosphere    

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 6: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1  

Water  Balance  for  a  Single  Land  Surface  Slab,  Without  Snow  

P    =    E  +  R  +  CwΔw/Δt  +  miscellaneous  

Where:  P  =  PrecipitaIon  E  =  EvapotranspiraIon  R  =  Runoff  (effecIvely  consisIng  of  surface  runoff  and  baseflow)  Cw  =  Water  holding  capacity  of  surface  slab  Δw  =  Change  in  the  degree  of  saturaIon  of  the  surface  slab  over  the  

Ime  step  Δt  miscellaneous  =  conversion  to  plant  sugars,  human  consumpIon,  etc.  

P                          E    

w  

Term  on  LHS  comes  from  the  atmospheric  model  –  external  “boundary  condiIon”.  

Terms  on  the    RHS  are  determined  by  the  land  

surface  model.      

R  

6  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 7: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Usually,  a  CombinaIon  of  Balances  Is  Considered  

Lecture  -­‐  1  

Water  balance  associated  with  canopy  intercepIon  reservoir   P = Eint + Dc +

ΔWc Δt

Eint =  intercepIon  loss  Dc =  drainage  through  canopy                        (“throughfall”)  ΔWc = change  in  canopy                          intercepIon  storage  

P Eint

Dc

Wc

Water  balance  in  a  snowpack  

P (snow) Esnow

M Wsnow

P = Esnow + M + ΔWsnow Δt

Esnow =  sublimaIon  rate  M =  snowmelt  ΔWsnow =  change  in  snow                                  amount  (“infinite”                                  capacity  possible)  

7  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 8: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

More  Balances…  

Lecture  -­‐  1  

Water  balance  in  a  surface  layer  

Ebs  =  evaporaIon  from  bare  soil  Etr1  =  evapotranspiraIon  from  layer  1  Q12  =  water  transport  from  layer  1  to  layer  2  CW1  =  water  holding  capacity  of  layer  1  ΔW1  =  change  in  degree  of  saturaIon  of  layer  1  

w2  

w1  

w3  

Q12  Water

storage

M+Dc Ebs + Etr1 Rs M + Dc =

Ebs + Etr1 + Rs + Q12 + CW1ΔW1/Δt    

Water  balance  in  a  subsurface  layer  (e.g.,  2nd  layer  down)  

Q12 = Q23 + Etr2 + CW2ΔW2/Δt    

w2  

w1  

w3  

Q12  

Q23  water

storage

Etr2

Etr2  =  evapotranspiraIon  from  layer  2  Q23  =  water  transport  from  layer  2  to  layer  3  CW2  =  water  holding  capacity  of  layer  2  ΔW2  =  change  in  degree  of  saturaIon  of  layer  2  

Note: some models may include an additional, lateral subsurface runoff term

8  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 9: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1  

Water  balance  in  the  lowest  layer  

wn  

Qn,n-­‐1  

water storage QD  

Etr-n Qn,n-1 = QD + Etr-n + CWnΔWn/Δt    

Etr-n =  EvapotranspiraIon  from  layer  n,  if  allowed  QD      =  Drainage  out  of  the  soil  column  (baseflow)    

A  model  may  compute  all  of  these  water  balances,  taking  care  to  ensure  consistency  between  connecIng  fluxes  (in  analogy  with  the  energy  balance    calculaIon).  

W2  

W1  

 W3  

Q12  

Q23  

Rs M  Ebs  

QD  

P   Eint  

Dc  P   Esnow  

Etr1   Etr2   Etr3  

SIll  More  Balances…  

9  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 10: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

PrecipitaIon  P  

•  Gekng  the  land  surface  hydrology  right  in  a  climate  model  is  difficult  largely  because  of  the  precipitaIon  term.    At  least  three  aspects  of  precipitaIon  must  be  handled  accurately:  –  SpaIally-­‐averaged  precipitaIon  amounts  (along  with  annual  means  

and  seasonal  totals)  –  Small-­‐scale  (subgrid)  distribuIon.  –  Temporal  variability  and  temporal  correlaIons.    

•  Otherwise,  even  with  a  perfect  land  surface  model:    

Lecture  -­‐  1   10  

Perfect land surface model

Garbage in

Garbage out

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 11: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

SpaIal  Variability  

•  PrecipitaIon  varies  on  all  spaIal  scales,  but  atmosphere  and  land  models  operate  in  discrete  “grid  boxes”.  

11  

(mm/hr)

512

km

pixel = 4 km

0 4 9 13 17 21 26 30

R (mm/hr)

The image part with relationship ID rId4 was not found in the file.

0 4 9 13 17 21 26 30

R (mm/hr)

2 km

4

km

pixel = 125 m

Figures: Courtesy E. Foufoula-Georgiou. ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  

Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    Lecture  -­‐  1  

Page 12: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Rainfall  Variability  

•  These  two  snapshots  of  precipitaIon  intensity  (mm/hr)  have  idenIcal  area  means.  

•  The  coefficient  of  variaIon  of  the  top  panel  is  6.5  Imes  greater  than  the  bo[om  (data  on  a  7-­‐km  grid).  

•  Would  these  two  events  produce  similar  total  runoff?  Canopy  evaporaIon?    Change  in  soil  moisture?      

12  

Grid box size of state-of-the-art • Climate change model • Seasonal forecast model • Weather forecast model

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1  

Page 13: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

PrecipitaIon:  temporal  correlaIons  Temporal  correlaIons  are  very  important  -­‐-­‐  but  are  largely  ignored  -­‐-­‐    in  GCM  formulaIons  that  assume  sub-­‐grid  precipitaIon  distribuIons.  This  is  especially  true  when  the  Ime  step  for  the  land  calculaIon  is  of  the  order  of  minutes.    Why  are  temporal  correlaIons  important?      Consider  three  consecuIve  Ime  steps  at  a  GCM  land  surface  grid  cell:  

time step 1 time step 2 time step 3 Case 1: No temporal correlation in storm position -- the storm is placed randomly with the grid cell at each time step.

Case 2: Strong temporal correlation in storm position between time steps.

13  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1  

Page 14: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

parameterization

EvapotranspiraIon  E    EvaporaIon  from  Open  Water  

•  EvaporaIon  from  open  water  occurs  at  the  potenIal  rate.  •  Priestley-­‐Taylor  formulaIon  for  wet  surfaces:  

–  m  is  slope  of  saturaIon  vapor  pressure  with  temperature  at  surface  temperature  T  (recall  the  Clausius-­‐Clapeyron  relaIonship).  

–  RNET  is  net  energy  available,  minus  that  which  warms  the  water.    –  γ  is  the  psychrometric  constant.  –  Empirical  observaIon  has  shown  α ≅1.26.  

•  EP  is  called  the  potenIal  evaporaIon.    In  this  formulaIon,  there  is  only  dependence  on  net  radiaIon  and  temperature.  

Lecture  -­‐  1   14  

m =desdT

EP =αmRNET

λv (m + γ)

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 15: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

The  Aerodynamic  Term  

•  The  Priestley-­‐Taylor  “fudge  factor”  α  accounts  for  the  aerodynamic  aspect  of  evaporaIon.  The  Penman  equaIon  is  slightly  more  sophisIcated  and  accounts  for  it  directly:  

–  Note  that  the  vapor  pressure  deficit  and  aerodynamic  resistance  are  expressed  directly  in  this  formulaIon.    

–  Forms  of  this  equaIon  are  commonly  used  in  models  for  evaporaIon  from  wet  surfaces  or  open  water  in  models.  

•  Note:  Some  LSMs  neglect  possible  evaporaIon  from  open  water  enIrely,  and  some  leave  it  to  a  lake  model  or  parameterizaIon  to  handle.  

Lecture  -­‐  1   15  

EP =mRNET + cpρ[es(TS ) − e(TA )]/ra

λv (m + γ )

parameterization

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 16: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Bare  Soil  EvaporaIon  •  Bare  soil  evaporaIon  draws  moisture  only  from  the  top  layer  of  soil  (that  exposed  to  the  air).  

•  The  simplest  (and  first)  formulaIon  of  soil  in  an  LSM  was  a  “Bucket  model”  by  S.  Manabe*.    It  used  a  “beta”  formulaIon  for  soil  evaporaIon:  

Lecture  -­‐  1   16  

E = βEP

* Manabe, 1969: Mon. Wea. Rev., 739‑774.

β = 0, w ≤ ww

β =w − ww

w f − ww

, ww < w < w f

β =1, w ≥ w f

Soil  Wetness  w 0        ww wf wsat

1                0  

β

Field  capa

city  

Wil1

ng  point  

Satura1o

n  

parameterization

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 17: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Canopy  IntercepIon,  Loss  and  Throughfall  

•  Moisture   intercepted   by   the   canopy   can   evaporate   directly   back   to   the   air  without  reaching  the  soil.  

•  Wet   leaves   (or   the   fracIon   of   canopy   that   holds   intercepted   moisture)   are  assumed  not  to  transpire  –  transpiraIon  only  occurs  from  the  dry  leaves.  

•  EvaporaIon   of   intercepted   water   is   formulated   the   same   as   from   an   open  water  surface.  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

17  

Capacity  of  bucket  is  typically  a  funcIon  of  leaf  area  index,  a  measure  of  how  many  leaves  are  present.  

This  works,  but  because  it  ignores  sub-­‐grid  precipitaIon  variability  (e.g.,  fracIonal  wekng),  it  is  overly  simple.  

Sellers et al. 1986: J. Atmos. Sci., 505-531.

Koster and Suarez, 1992: J. Geophys. Res., 2697-2716.

parameterization

Page 18: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

TranspiraIon  

•  TranspiraIon  is  the  loss  of  water  vapor  from  plants  as  a  result  of  their  respiraIon  of  carbon  dioxide.      –  It  is  analogous  to  the  water  you  lose  by  breathing  as  a  consequence  of  taking  in  oxygen.  

•  Plant  leaves  have  Iny  pores  called  stoma  through  which  they  “breathe”  in  CO2  and  release  O2  as  waste.    Water  vapor  is  lost  in  the  process.  –  Loss  of  water  is  not  advantageous  –  it  is  a      consequence  of  plant  respiraIon.  

–  Plants  try  to  opImize  CO2  intake  versus      loss  of  water  vapor.    

-  Will  be  discussed  in  next  lecture  !    

18  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1  

parameterization

Page 19: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

LimitaIons  on  Photosynthesis    1.  Availability  of  light  2. Maximum  rate  of  the  Rubisco  enzyme  (chemical)  process  3.  Carbon  compound  export  (C3)  or  PEP-­‐Carboxylase  limitaIon  (C4)  The  rate  of  carbon  flux  into  the  plant  can  be  modeled  in  the  same  way  as  transpiraIon  out  of  the  plant  —  as  a  diffusive  flux  through  the  stomata,  regulated  by  stomatal  conductance.  

When  carbon  is  represented  in  the  model,  the  CO2  gradients  can  also  affect  rc.    The  rate  at  which  photosynthesis  "fixes"  carbon  in  the  plant  (converts  from  gaseous  CO2  to  sugars)  affects  the  CO2  concentraIon  in  the  leaf,  and  thus  the  flux  rate.  

19  

rc  

Page 20: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

SublimaIon  (ice  to  vapor)  

•  Latent  heats  of  melIng  and  vaporizaIon  of  water  must  be  traversed  (recall:  λs =  λv  +  λm).  

•  SublimaIon  of  a  sikng  snowpack  is  esImated  much  like  evaporaIon  from  the  land  surface.  

•  SublimaIon  from  blowing  snow  is  much  more  efficient  than  sublimaIon  from  a  snowpack.    It  involves  its  own  parameterizaIons  (e.g.,  G.  Liston)    

Lecture  -­‐  1   20  

λs ≅  2.83x106  J/kg  λv  ≅  2.5x106  J/kg              Approximate  because  depends  on  T    λm = 3.34x105  J/kg  

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 21: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  For  lateral  moIon  of  water  within  a  model  grid  cell,  the  terrain  within  the  grid  cell  is  ouen  treated  as  an  idealized  hillslope.  

 

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

21  

10s  to  100s  of  meters                                                    10s  to  100s  of  kilometers  

–  Horton  runoff:  precipitaIon  exceeds  infiltraIon.  

–  Dunne  runoff:  soil      is  saturated,  cannot  infiltrate.  

–  Baseflow:  lateral  runoff  beneath  soil  into  river  system.  

MulI-­‐layer  soil  model:  

Runoff    R  

Page 22: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

NeglecIng  Lateral  Flow  

•  At  GCM  grid  resoluIons,  lateral  flow  is  typically  neglected.    Why?    A  scale  analysis  shows…  –  Typical  “acIve”  soil  column  considered  in  LSMs  is  only  a  few  meters  deep.  

22  

5m  on  a  side,  5m  deep  

Top,  bo[om,  sides  all  have  same  area,  water  flows  are  approximately  comparable.  

50  km  on  a  side,  5m  deep  

Top,  bo[om,  and  internal  horizontal  planes  have  10,000  Imes  the  area  as  the  verIcal  (side)  faces,  lateral  flows  are  negligible  compared  to  verIcal  and  internal  flows.  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 23: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Change  in  Storage  

•  Depending  on  locaIon  and  climate,  there  can  be  mulIple  water  storage  reservoirs:  –  Soil  moisture    

•  Can  exist  anywhere  there  is  soil  exposed  to  air  or  supporIng  vegetaIon  •  Can  be  liquid,  solid  or  vapor  (typically  soil  water  vapor  is  neglected  in  climate  

applicaIons)  –  Snow  

•  Cold  climates,  surface  storage  (on  top  of  soil)  –  Ice  (Glacier)  

•  Historically  treated  as  a  specified  boundary  condiIon  in  weather/climate  models  because  of  its  long  Ime  scales  of  variaIon  –  this  is  changing  now.  

–  Canopy  intercepIon  •  Where  there  is  vegetaIon,  equals  precipitaIon  minus  throughfall  

–  Surface  water  •  Ponding,  lakes,  rivers;  treated  with  varying  degrees  of  sophisIcaIon    

–  Groundwater  (Water  Table)  •  Treated  separately  from  soil  moisture,  deeper,  interacts  with  river  channel  

and  may  interact  with  soil  moisture  (vadose  zone).  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

23  

Page 24: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  At  the  land-­‐atmosphere  interface:    

–  RC  is  carbon  respiraIon  (uptake  by  plants),  silicate  weathering  –  EC  is  carbon  emission  (microbe  respiraIon,  decomposiIon,  wood  burning,  fossil  fuels,  wildfires,  volcanic  erupIons  etc.)  

–  ΔSC  is  change  in  carbon  storage  in  the  land  (vegetaIon  biomass,  soil  organic  carbon,  mineral  formaIon,  etc.)  

–                                     is  verIcally  integrated  carbon  flux  divergence  –                             is  change  in  verIcally  integrated  atmospheric      

   carbon  

Surface  Carbon  Balance  

Lecture  -­‐  1   24  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

RC − EC = ΔSC = − ∇ ⋅ (C!

V )z∫ −Δ C

z∫

 Interface              Land                                      Atmosphere    

∇ ⋅ (C!

V )z∫

Δ Cz∫

Page 25: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Other  Chemical  Budgets  

•  Once  we  consider  the  carbon  cycle  in  our  models,  we  find  we  must  consider  other  chemical  cycles  that  are  important  modulators  of  the  biologic  cycling  of  carbon  and  water.    These  are  consItuents  we  call  nutrients  or  ferIlizers.  –  Nitrogen  (#1)  –  Phosphorus  –  Potassium,  Sulfur,  Oxygen,  etc…  

•  Together,  we  refer  to  these  as  biogeochemical  cycles.  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

25  

Page 26: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Surface  Energy  Balance  

•  At  any  point  at  the  land-­‐atmosphere  interface:    

•  FS  is  the  downward  flux  of  solar  (shortwave)  radiaIon  •  α  is  the  net  surface  albedo  (shortwave  reflecIvity)  •             is  the  downward  flux  of  thermal  (longwave)  radiaIon  •  ε  is  the  surface  thermal  emissivity  •  σ  is  the  Stefan-­‐Boltzmann  constant  •  TS  is  the  surface  temperature  •  H  is  upward  sensible  heat  flux  from  the  surface  •  λ  is  the  latent  heat  of  vaporizaIon  •  E  is  the  surface  evaporaIon  •  G  is  heat  flux  into  the  ground  •  miscellaneous  includes  energy  associated  with  soil  water  freezing,  

plant  chemical  energy,  heat  content  of  precipitaIon,  etc.  

Lecture  -­‐  1   26  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

FS (1−α) + FL↓ = εσTS

4 + H + λE +G + miscellaneous

FL↓

Page 27: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Modeling  the  Energy  Balance  for  a  Single  Land  Surface  Slab,  Without  Snow        

                   Si  +  Li      =    Sh    +  Lh    +  H  +λE  +  CpΔT/Δt  +  miscellaneous  

Where:  Si    =  Incoming  shortwave  radiaIon  Li    =  Downward  longwave  radiaIon  Sh    =  Reflected  shortwave  radiaIon  Lh    =  Upward  longwave  radiaIon  H      =  Sensible  heat  flux  λ       =  Latent  heat  of  vaporizaIon  E      =  EvaporaIon  rate    

 Cp      =  Heat  capacity  of  surface  slab  ΔT    =  Change  in  slab’s  temperature,  

over  the  Ime  step  Δt  miscellaneous  =  energy  associated  with  

soil  water  freezing,  plant  chemical  energy,  heat  content  of  precipitaIon,  etc.  

   S              S                    L            L                              H        λE    

T  

Terms  on  LHS  come  from  “above”  (atmospheric  model).  Strongly  dependent  on  cloudiness,  water  vapor,  etc.  

Terms  on  RHS  come  from  “below”  (determined  by  the  land  surface  model).      

Lecture  -­‐  1   27  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 28: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Energy  balance  of  a  vegetaIon  canopy  

       S          S                      L          L              H          λE    

   S        S                              L      L                H    H                          

Tc  

Energy  balance  in  a  surface  layer  

G12  =  heat  flux  between  soil  layers  1  and  2  

Energy  balance  in  a  subsurface  layer  

   S          S                        L            L                  H      λE    

T2  

T1  

T3  

G12  Internal energy

T2  

T1  

T3  

G12  

G23  Internal energy λm =  latent  heat  of  melIng  

λs =  latent  heat  of  sublimaIon  M  =  snowmelt  rate  GS1  =  heat  flux  between  bo[om  of  pack  and  soil  layer  1    

Energy  balance  in  snowpack  

T1  

   S            S                      L            L                  H      λ sE    

Tsnow   λmM Internal energy GS1  

Note: same symbols are used, but values will be different.

Other  energy  balances  can  also  be  considered  

Lecture  -­‐  1   28  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 29: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Sensible  Heat  Flux  H  

EquaIon  commonly  used  in  climate  models: where:  •  ρ is  mean  air  density  •  Cp is  specific  heat  of  air  at  constant  pressure  •  KH is  exchange  coefficient  for  heat  •  |V| is  wind  speed  at  reference  level  •  TS is  surface  temperature  •  TR is  air  temperature  at  reference  level  

H = ρCpKH V (TS −TR )

Lecture  -­‐  1   29  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

We  commonly  write  this  in  terms  of  an  aerodynamic  resistance  ra:

where:                                is  effecIvely  a  conductance  of  heat  between  surface  and  air.  

H =ρCp (TS −TR )

ra

ra =1

KH V

KH V

Page 30: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Latent  Heat  Flux  λE  

•  Latent  heat  flux  is  the  energy  used  to  transform  liquid  water  or  ice  into  water  vapor.  

•  Latent  heat  flux  from  a  liquid  surface:    λvE  –  E  =  evaporaIon  rate  (flux  of  water  molecules  away  from  surface)  

–  λv  =  latent  heat  of  vaporizaIon  ≅(2.501  -­‐  .002361T)×106  J/kg  

•  Latent  heat  flux  from  an  ice/snow  surface:    λsE  –  λs  =  latent  heat  of  sublimaIon  =  λv  +  λm  

–  λm  =  latent  heat  of  melIng  ≅  3.34×105  J/kg  

 

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

30  

Page 31: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  Typically  defined  as  the  surface  energy  imbalance:    

–                                                                     is  heat  flux  into  the  ground  

–  ΔTSkin  is  the  temperature  gradient  across  the  surface  skin  layer  between  land  and  air,  auer  all  other  flux  terms  have  been  accounted  for.  

–  In  models,  the  “skin  temperature”  of  the  land  surface  is  adjusted  at  each  Ime  step  to  provide  the  gradient  consistent  with  the  calculated  surface  energy  imbalance.  

Ground  Heat  Flux  -­‐  G  

Lecture  -­‐  1   31  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

G = cpΔTSkinΔt

=ΔSΔt

                 Reservoir                                                    Input                                                Output    

G = cpΔTSkinΔt

=ΔSΔt

= FS (1−α) + FL↓ −H − λE −εσTS

4

Page 32: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Net  RadiaIon  and  VegetaIon  

RN  =  Net  radiaIon  (incoming  at  the  surface)  S↓    =  Downward  shortwave  (solar)  radiaIon  at  the  surface  α      =  Net  surface  albedo  (reflecIvity)  ε      =  Emissivity  L↓  =  Downward  longwave  (thermal)  radiaIon  from  atmosphere  σ      =  Stefan  Boltzmann  constant  TS    =  Surface  temperature  ε ≈ 1  is  usually  an  acceptable  assumpIon  (blackbody  assumpIon)  α =  10%  ‑  40%  (~80%  over  fresh  snow)  

 Sahara/Arabia  30‑35%    Other  deserts  20‑25%    Dense  forests  10‑15%    (Compare  to  ocean  4‑5%)  

This  summarizes  the  radiaIon  balance  at  the  land  surface.    VegetaIon  is  parIcularly  important  in  affecIng  the  S↓  term.  

RN = S↓(1−α) +εL↓ −εσT4

Primary  reference:  Sellers, P. J., 1985: Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sensing, 6, 1335-1372.

32  

Page 33: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Direct  RadiaIon  in  a  Canopy  

kLoL eII

LIkI−=

Δ−=Δ

Analogous  to  the  transfer  equaIon,  we  can  describe  exIncIon    (absorpIon)  of  radiaIon  by  a  plant  canopy:  

I  =  radiaIve  flux,  k  =  exIncIon  coefficient,  L  =  leaf  area  index.  The  exIncIon  coefficient  will  depend  on  the  orientaIon  of  the  leaves:  

33  

Two-­‐Stream  ApproximaIon  

Page 34: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Direct  RadiaIon  in  a  Canopy  

µ = cosθ

Direct  radiaIon  comes  from  the  direcIon  of  the  solar  zenith  angle  θ  so  we  can  define  an  inverse  opIcal  depth:  

It  interacts  with  the  canopy  depending  on  the  orientaIon  of  the  leaves.    The  projected  area  of  the  leaves  can  be  represented  as  a  funcIon  of  the  direcIon  of  radiaIon  G(µ),  which  may  be  quite  complex  depending  on  the  shape  and  structure  of  the  leaves  and  plants.    The  exIncIon  coefficient  is  defined  as:  

For  a  simple  flat  horizontal  leaf, G(µ) = µ, so k = 1.

k =G(µ)

µ

34  

Page 35: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  This  is  actually  a  bit  of  an  over-­‐simplificaIon,  because  leaves  sca[er  light  as  well  (if  they  didn’t  they  would  appear  black,  not  green,  yellow,  etc.).  

•  The  relaIonship  for  the  exIncIon  coefficient  may  be  wri[en  to  include  sca[ering:  

 where  ωs  is  the  sca[ering  coefficient.    In  fact,  the  sca[ering  is  a  funcIon  of  the  leaf  angle  distribuIon,  so  may  have  its  own  complex  dependence  on  µ.        

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Sca[ering  

k =G(µ)

µ1−ωs

35  

Page 36: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Diffuse  RadiaIon  in  a  Canopy  

kdiffuse =1µ

µ =" µ

G( " µ )0

1

∫ d " µ

The  sca[ering  coefficient  ω = α + τ  is  the  sum  of  reflectance  and  transmi[ance.    Most  canopies  have  a  fairly  small  sca[ering  coefficient  in  the  visible  range  (photosyntheIcally  acIve  radiaIon;  PAR),  and  a  high  sca[ering  in  the  near  infrared:  

For  diffuse  radiaIon:  

PAR  Region:  ω ≈ 0.2      

36  

NIR  Region:  ω ≈ 0.95 PAR                            NIR  

Note  the  “bump”  in  the  green  range!  

Page 37: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

The  Planetary  Boundary  Layer  (PBL)  

Layer Processes Domain Free

Atmosphere Dynamic Dry convective adjustment

Turbulence closure

Mixed Layer

Thermal, Mechanical,

Coriolis

Mixed Layer Model Multi-Layer Model

AGCM

Constant Stress Layer

Thermal, Mechanical

Monin-Obukhov Similarity Theory

LSM

Molecular Layer Molecular

Land Surface

The  PBL  (shaded  below)  is  the  layer  of  the  earth’s  atmosphere  between  the  earth’s  surface  and  the  free  atmosphere  (where  the  wind  is  essenIally  geostrophic);  it  includes  the  surface  fricIon  layer  (constant  stress  layer)  and  the  mixed  layer  (Ekman  layer).  

Over  land,  the  PBL  height  varies  from  0  to  >2000m  with  a  strong  diurnal  cycle.    

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1   37  

Page 38: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Surface  fluxes:  Bulk  transfer  relaIons  

aHopo

aHoo

aMoo

rcHrqqEruu

/)(/)(/)(

θ−θρ=

−ρ=

−ρ=τ

Here  u  is  a  non-­‐direcIonal  wind  speed,  and  likewise  the  momentum  flux  τo  is  non-­‐direcIonal.  Here,  (CD u)  and  its  brethren  are  conductances  that  facilitate  the  rate  of  flux,  given  a  certain  gradient,  and  aerodynamic  resistances  are  defined  as:  

The  formulaIon  is  typically  used  in  Land  Surface  Schemes  (LSS),  which  is  also  the  basis  of  turbulent  fluxes  within  the  Simple  Biosphere  (SiB)  model  and  its  so-­‐called  SiBlings.  

uCr

uCr

HaH

DaM

1,1==

Primary  reference:  Garratt, J. R., 1992: The atmospheric boundary layer. Cambridge University Press, 316 pp.

38  

Page 39: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Linking  Land  Surface  and  Boundary  Layer  

•  Surprisingly,  research  in  these  two  areas  have  proceeded  rather  independently.  –  Boundary  layer  research  has  focused  on  simulaIon  of  stable  profiles,  large  eddy  simulaIons  of  turbulence,  and  defining  bulk  properIes  over  various  terrain  –  the  land  surface  is  usually  treated  as  a  boundary  condiIon.  

 

–  The  link  between  land  surface  and  climate,  including  feedback  processes,  has  focused  either  on  the  immediate  near  surface  processes  (surface  fluxes,  screen-­‐level  meteorology)  or  the  free  atmosphere  (e.g.,  precipitaIon)  with  the  PBL  as  a  “black  box”  in-­‐between.    

39  Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 40: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Soil  Horizons  • There  is  a  general  verIcal  structure  to  the  soil  that  is  the  basis  of  most  models  of  the  verIcal  soil  column.  

– O  Horizon:  organic  ma[er,  humus  – A  Horizon:  topsoil,  “root  zone”,  some  organic  ma[er,  dynamic  

– E  Horizon:  leached  of  water-­‐soluble  minerals,  transiIon  layer  

– B  Horizon:  subsoil;  “illuviated”  accumulates  minerals  lost  from  “eluviated”  zone.  

– C  Horizon:  transiIon  between  soil  and  bedrock;  new  mineral  soil  formed.  

• Not  all  soils  have  all  horizons.  Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  

Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    40  

The  Soil  

Page 41: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Soil  Texture  •  For  purposes  of  land  surface  modeling,  we  consider  a  simpler  

categorizaIon  based  on  composiIon  with  3  or  4  components:  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

41  

1.  Sand:  hard  round  parIcles  with  voids  between,  do  not  clump.  

2.  Silt:  smaller  grains  than  sand,  smaller  voids,  easily  carried  in  suspension  by  water.  

3.  Clay:  very  fine  parIcles,  usually  flat,  compress  to  form  nearly  impervious  sheets  

4.  Organic  Ma[er*  

Page 42: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Texture  and  Soil  ProperIes  •  It  is  common  in  land  models  to  define  a  small  number  of  

texture  classes,  each  with  a  set  of  parameters  defining  its  ability  to  conduct  or  transfer  heat  and  water  in  the  verIcal.    

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

42  

•  An  example  is  shown  on  the  right  clay  

sand   silt  

Page 43: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Heat  ConducIon  in  Soil  •  In  3-­‐dimensions:  

 

•  This  is  usually  expressed  only  in  the  verIcal:  

•  Where:  

•  The  actual  heat  flux  G  into  the  soil  [W  m-­‐2]  at  its  surface  is                typically  denoted  as  posiIve,  even  though  it  is  downward:  

•  The  final  form:    

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

43  

C ∂T∂t

=∇ ⋅ (k∇T)

C ∂T∂t

=∂∂z(k ∂T∂z) = k ∂

2T∂z2

+∂T∂z

∂k∂z

C  =  heat  capacity  of  soil  [J  m-­‐3K-­‐1]  T  =  temperature  [K]  k  =  thermal  conducIvity  of  soil  [W  m-­‐1K-­‐1]  

ρs  =  density  of  the  soil  [kg  m-­‐3]  cs  =  mass  specific  heat  of  soil  [J  kg-­‐1K-­‐1]  

C = ρScS

G = −k ∂T∂z

∂T∂t

= −1C∂G∂z

Page 44: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

The  ComplicaIon  of  k

•  Thermal  conducIvity  k  is  a  strong  funcIon  of  soil  moisture  w  and  also  a  funcIon  of  depth  (e.g.,  soil  horizons).  –  Some  models  neglect  the  dependence  on  depth    

•  Heat  capacity  C  also  varies  with  soil  moisture  content  and  depth  [C(w,z)],  but  is  more  ouen  neglected  because  its  variance  is  orders  of  magnitude  smaller  than  k(w,z)

 •  Thus,  we  must  parameterize  k  in  order  to  simulate  well  

the  transfer  of  heat  into  the  soil.  

44  

parameterization

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1  

Page 45: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

The  Bo[om  Boundary  

•  There  is  a  boundary  condiIon  at  the  bo[om  of  the  soil  column  that  must  be  specified.  Two  commonly  used  boundary  condiIons:  

•  Zero  heat  flux  –  at  the  interface  below  the  lowest  soil  layer  N:  

 •  Constant  temperature  –  the  base  soil  temperature  below  

the  soil  column  is  set  to  a  constant  TBase  (typically  the  annual  mean  air  temperature  at  the  locaIon):  

•  Zero  heat  flux  conserves  energy,  constant  TBase  does  not!  

 

45  

qN +1/ 2 = 0

qN +1/ 2 = −kN +1/ 2TBase −TNZBase − ZN

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 46: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  We  consider  only  the  two  largest  terms:  •  GravitaIonal  potenIal:      •  Matric  potenIal:  •  Pedotransfer  funcIons  are  derived  to  calculate  quanIIes  like  the  

matric  potenIal.  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

46  

ψz = gρwΔz

ψ =ψz +ψm

ψm = parameterization

Difference  relaIve    to  a  reference  height  

Water  ConducIon  in  the  Soil  

•  Soil  water  potenIal  y  describes  the  potenIal  energy  of  water  per  unit  volume   relaIve   to   a   reference   (pressure,   temperature,   elevaIon),  usually  set  to  zero.  In  other  words,  it  is  the  amount  of  work  necessary  to  move  the  water  verIcally  in  the  soil  matrix.  

•  Units  are  potenIal/volume  =  force/area  =  pressure  (pa).  –  Engineers   and  hydrologists   use   potenIal/weight   =   distance   (m),  which   they  

call  the  hydraulic  “head”  h = ψ/(ρwg).    

Page 47: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Water  ConducIon  in  Soil  

•  The  predicIon  equaIon  is:  

•  Splikng  the  potenIal  term  gives  Richards  EquaIon:  

•  Expanding:  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

47  

ρwg∂w∂t

= −∂∂z

kw∂ψ∂z

&

' (

)

* +

capillary  acIon                        gravity    

∂w∂t

= −∂∂z

kw1ρwg

∂ψm

∂z+1

&

' (

)

* +

,

- .

/

0 1

∂w∂t

= −1ρwg

kw∂ 2ψm

∂z2+∂ψm

∂z∂kw∂z

&

' (

)

* + −

∂kw∂z

Remember  soil  moisture  is  the  reservoir  of  water  

in  the  soil!  

This  w  is  dimensionless  

Page 48: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

All  the  ComplicaIons  

•  Hydraulic  conducIvity  kw  [ms-­‐1]  is  a  funcIon  of  soil  moisture  w  itself  (which  varies  in  the  verIcal)  and  with  soil  properIes  (which  vary  horizontally  and  verIcally  (soil  horizons)),  but  the  verIcal  variaIon  with  soil  texture  is  someImes  neglected.  

•  Matric  potenIal            is  a  funcIon  of  soil  moisture  and  soil  properIes  as  well.  

•  These  dependencies  makes  the  non-­‐linear  parIal  differenIal  equaIon  called  the  Richards  EquaIon  difficult  to  solve  analyIcally  in  most  cases.      

•  In  numerical  models,  the  soil  is  broken  into  homogeneous  layers,  and  the  fluxes  are  solved  at  the  layer  interfaces,  usually  iteraIvely.      

48  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1  

ψm

Page 49: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

ET  Stresses  Revisited  

•  Remember  canopy  resistance  rc?  One  of  the  factors  controlling  it  is  soil  moisture,  or  more  precisely  the  soil  water  potenIal  ψ.    

•  There  is  a  potenIal  between  the  soil  water  content  and  the  roots  of  plants  that  allow  water  to  diffuse  into  the  roots  –  which  feeds  transpiraIon.      

•  WilIng  point  –  the  potenIal  below  which  plant  roots  cannot  extract  moisture  from  the  soil  –  actually  varies  based  on  soil  condiIons,  vegetaIon  properIes  and  even  local  meteorology,  but  ouen  defined  as  ψWP  =  -­‐1.5×106  pa.    

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

49  

Page 50: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

•  Hydraulic  redistribuIon  also  keeps  rhizomes,  soil  microbes,  and  even  shallow-­‐rooted  plants  like  grasses  alive  during  dry  spells,  which  benefits  the  tree  as  well.    

•  This  mechanism  can  also  accelerate  the  moIon  of  rainwater  down  into  the  soil.    

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

50  

Hydraulic  RedistribuIon  •  Hydraulic  redistribuIon  is  the  mechanism  by  which  some  plants  

redistribute  soil  water.    

Dawson, 1993: Oecologia, 565-

Page 51: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Baseflow  

•  Baseflow  is  the  flow  of  water  out  of  the  soil  column.    This  is  a  bo[om  boundary  condiIon  analogous  to  that  for  heat.    There  are  many  ways  to  treat  this  as  well.  

–  Drainage  –  assumes  no  interacIon  with  a  water  table  below  the  soil  column.    Water  that  drains  out  the  bo[om  is  put  in  the  river  channel  to  be  carried  downstream.    Usually  some  proporIonality  to  the  soil  moisture  in  the  lowest  layer,  e.g.:  

–  Drainage  with  slope  –  add  a  term  that  increases  the  baseflow  as  the  terrain  becomes  steeper  (α  is  average  slope),  e.g.:    

–  2-­‐way  interacIon  with  water  table  (e.g.  “TOPModel”  approaches).  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

51  €

qN +1 = kNwN2B +3 sinα + kCwN€

qN +1 = kCwN

Page 52: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Hillslopes,  InfiltraIon  and  Runoff  •  For  lateral  moIon  of  water  within  a  model  grid  cell,  the  terrain  

within  the  grid  cell  is  ouen  treated  as  an  idealized  hillslope.  

•  An  alternaIve  parameterizaIon  is  the  VIC  (Variable  InfiltraIon  Capacity)  model:  

  Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

52  

10s  to  100s  of  meters                                                    10s  to  100s  of  kilometers  

–  Horton  runoff:  precipitaIon  exceeds  infiltraIon.  

–  Dunne  runoff:  soil      is  saturated,  cannot  infiltrate.  

–  Baseflow:  lateral  runoff  beneath  soil  into  river  system.  

MulI-­‐layer  soil  model:  

Liang et al., 1996: Glob. Planet. Change, 13, 195-.

Page 53: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Topographic  Index  

•  Topographic  Index  is  a  way  to  parameterize  the  large-­‐scale  infiltraIon  and  water  table  properIes  in  land  models.  Most  common  is  the  Compound  Topographic  Index:  

•  A  is  the  upstream  area  of  the  river  basin  draining  through  the  grid  box,  and  β  is  the  slope  of  the  terrain  in  the  grid  box.  

•  Topographic  indices  are  used  to  esImate  the  spaIal  variaIon  of  water  table  depth,  and  thus  the  porIon  of  grid  boxes  that  are  saturated,  experiencing  Dunne  runoff,  baseflow  rates,  etc.  

•  TOPModel  is  the  standard  for  linking  soil  moisture  and  water  table  models.    

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

53  

CTI = ln Atanβ#

$ %

&

' (

Famiglietti and Wood, 1994: Water Resour. Res., 30, 3061-.

Page 54: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Ice  in  the  Soil  •  When  water  in  the  soil  freezes,  many  things  change…  

–  Ice  is  essenIally  staIonary  –  it  will  not  drain  and  it  will  not  rise  by  capillary  acIon.  

–  Ice  had  a  different  heat  capacity  and  thermal  conducIvity  than  liquid  water,  so  thermal  properIes  change  as  well.  

–  Unless  condiIons  are  very  cold  for  a  long  Ime,  there  will  usually  be  both  liquid  water  and  ice  in  the  soil  column,  making  modeling  of  soil  moisture  and  soil  heat  flux  rather  complicated.  

•  In  cold  climates,  permafrost  (soil  that  is  frozen  throughout  the  year)  exists  below  the  top  layers  of  the  soil.    Permafrost  acts  almost  like  bedrock,  allowing  li[le  baseflow  of  water.    Soils  above  permafrost  ouen  remain  very  wet.  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

54  

Page 55: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Snow  •  Snow  is  another  complicaIng  factor.    

–  RadiaIve:  Snow  is  highly  reflecIve,  increases  surface  albedo.  –  Thermal:  Snow  is  an  effecIve  insulator  –  prevents  sensible  heat  flux  

between  soil  and  atmosphere.  –  Hydrologic:  Snow  decouples  soil  moisture  from  atmosphere  via  latent  

heat  flux,  while  sublimaIng  itself  to  the  atmosphere.    Also,  snow  melts,  supplying  water  for  infiltraIon  and  runoff  days,  weeks  or  months  auer  the  precipitaIon  occurred.  

 •  Snow  can  be  modeled  in  a  similar  way  as  soil,  with  its  own  

heat  and  moisture  budgets.      –  The  main  difference  –  the  thickness  of  the  snow  changes  with  

precipitaIon,  melIng.  –  Density  varies  with  different  snowfalls,  and  increases  over  Ime  as  

snowpack  ages.    Albedo,  conducIviIes,  diffusiviIes,  heat  and  water  capaciIes  also  vary  over  Ime  and  with  depth  in  snowpack.  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

55  

Page 56: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

56  

LSM  development      •  Improvement  in  the  representaIon  of  snowpack,  soil  moisture,  

vegetaIon  and  runoff.  

•  Improvement  in  the  parameterizaIon  of  evapotranspiraIon.  

•  Linking  the  land  surface  and  the  planetary  boundary  layer.  

   

Page 57: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Each  grid  box  is  

~50,000  km  in  area  

Area-­‐Averaged  Rain  Rates  Accurate  precipitaIon  measurements  are  limited  by  the  availability  of  rain  gauges….    

57  

GPCP  =  Global  PrecipitaIon  Climatology  Project  • Coverage  is  very  uneven  across  the  globe  –  many  regions  have  few  or  no  gauges  for  hundreds  of  kilometers  in  any  direcIon  

• Some  naIons  have  good  internal  rain  gauge  networks,  but  will  not  share  their  data.  

• Others  are  too  poor  /  unstable  to  maintain  observaIons  

1000  

100  

20  

8  

5  

3  

2  

1.5  

0.6  

0.3  

0  

Figure: Koster et al. (2011) doi:10.1175/2011JHM1365.1.

Page 58: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Area-­‐Averaged  Rain  Rates  

How  Good  is  the  Es/mated    SSM/I  Rain  Rate  Climatology  Data?    

Estimated Nonsystematic Error

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

Rain Rate (mm/day)

Perc

ent E

rror

(%)

F-14 F-13 TMI F-13+F-14 GPM F-13 AM

• The  Special  Sensor  Microwave/Imager  (SSM/I)  is  a  7-­‐channel,  4-­‐frequency,  linearly  polarized  passive  microwave  radiometer  system  flown  on  several  satellites  

• Over  oceans,  no  “truth”  data  available  for  validaIon  –  esImates  only  over  land    

• NonsystemaIc  error  includes  sampling  errors  and  random  errors;  sampling  errors  dominate  

• DMSP  F-­‐13  and  F-­‐14  SSM/I,  with  similar  sampling  (orbits)  have  similar  error  

• The  TRMM  (Tropical  Rainfall  Measuring  Mission)  TMI  (ThemaIc  Mapping  Imager)  has  a  slightly  lower  error  –  limited  to  ±40°  

• Combining  F-­‐13  &  F-­‐14  almost  saIsfy  the  TRMM  1  mm/day  and  10%  for  heavy  rain  

• GPM  with  8  satellites  would  have  had  50%  less  error  than  combining  F-­‐13  &  F-­‐14  –  funding  cuts  limit  mission  to  1  satellite  

…  and  by  the  inherent  inaccuracies  in  satellite-­‐derived  precipitaIon  data  

58  

Page 59: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Land-­‐Ocean  Exchanges  

•  In  our  discussions  we  have  neglected  some  major  fluxes…  

•  Rivers  carry  large  amounts  of  water,  and  smaller  but  significant  amounts  of  carbon  (and  other  elements)  from  land  to  ocean.      

•  Rivers  are  an  important  part  of  the  global  water  and  carbon  cycles,  but  in  this  class  we  will  focus  on  the  land-­‐atmosphere  interacIons.  

59  

Figure: Washington Post, 8 November 2011.

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1  

Page 60: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Soil  Taxonomy  •  There  is  a  thorough  and  complex  taxonomy  of  soils,  based  on  

composiIon  and  form,  that  includes  classes,  subclasses,  etc.    •  There  are  12  USDA  classes:  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

60  

• Gelisols:  permafrost  soils  • Histosols:  organic  soils  • Spodosols:  coniferous/boreal  soils  • Andisols:  volcanic  soils  • Oxisols:  wet  weathered  soils,  e.g.  under  tropical  forests  

• Ver/sols:  soils  high  in  clay  • Aridisols:  dry  climate,  low  organic  ma[er,  caliche  layers  

• Ul/sols:  red  clay  soils  • Mollisols:  mid-­‐laItude  grassland  soils,  sand  or  limestone  based,  rich  (“breadbasket”  soils).  

• Alfisols:  typical  soil  under  hardwood  forests,  rich,  some  clay  

• Incep/sols:  Largely  unweathered  soils  lacking  illuvial  accumulaIon  

• En/sols:  Soils  lacking  any  development  (no  E,  B,  and  someImes  C  horizons).  

ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/ebook/Keys_to_Soil_Taxonomy_11th_Edition.pdf.

Page 61: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Turbulent  Fluxes  

τ x = −ρ % u % w = ρKM∂u∂z

E = ρ % q % w = −ρKV∂q∂z

τ y = −ρ % v % w = ρKM∂v∂z

H = ρc p % θ % w = −ρcpK H∂θ∂z

VerIcal  fluxes  of  momentum,  latent  heat  and  sensible  heat  can  be  wri[en  as:  

where  the  turbulent  stress  (the  second  order  terms  in  each)  is  related  to  the  flux  gradient  in  the  verIcal.    For  example,  for  momentum,  τ  is  the  tangenIal  fricIonal  force.    The  total  shear  normal  to  the  surface  is:    

Turbulence  closure  schemes  like  those  applied  in  the  Ekman  layer  are  built  around  the  expansion  of  the  higher  order  terms  to  some  level  auer  which  derivaIves  of  the  higher  order  moments  →  0.  

∂u /∂z

61  

Turbulent  mixing  occurs  over  a  length  scale  l  that  is  a  funcIon  of  the  depth  of  the  constant  stress  layer.    k  is  the  von  Karman  constant  (∼0.4  as  determined  experimentally).   l = k zc

Page 62: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1  

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  

February  9  -­‐  20,  2015    

Near  an  interface  (e.g.,  the  surface  of  the  earth)  we  must  be  concerned  with  the  effects  of  the  disconInuiIes  in  temperature  and  moisture,  and  the  effect  of  the  "no-­‐slip"  boundary  condiIon  on  turbulent  transfer.  We  can  relate  the  viscosity  to  the  length  scale  through  a  fricIonal  velocity:    

Flux-­‐profile  relaIonship  

KM = u*l

u*2 =

τ oρ= [( !u !w )2 + ( !v !w )2 ]1/2

The  fricIonal  velocity  is  a  funcIon  of  the  horizontal  surface  stress:  Disregarding  the  direcIon  of  the    wind,  and  subsItuIng  we  have:  

∂u∂z

=u*kz

62  

kuu*

= ln zzo

"

# $

%

& '

IntegraIng  in  z,    and  choosing  the  constant  C = -ln(zo) such  that u = 0 at z = zo. zo is  roughness  length.      

Page 63: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Drag  Coefficients  

CH =k 2

ln zzo

"

# $

%

& ' ln

zzH

"

# $

%

& '

Similar  drag  coefficients  can  be  defined  for    heat  and  moisture  (ouen  chosen  to  be  the  same)  based  on  a  surface  scaling  length  for  heat  that  yields  a  zH  analogous  to  zo:  

63  

CD =u*u

"

# $

%

& ' 2

=k 2

ln Z − dzo

"

# $

%

& '

2In  bulk  transfer  relaIonships  we  can  define  a  drag  coefficient:  

Page 64: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Monin-­‐Obukhov  Similarity  Theory  The  turbulent  fluxes  of  momentum,  sensible  heat  and  moisture  are  nearly  constant  with  height  in  the  constant  stress  layer.  The  M-­‐O  similarity  theory  states  that  when  scaled  appropriately  the  dimensionless  mean  verIcal  gradients  of  wind,  potenIal  temperature  and  specific  humidity  are  unique  funcIons  of  a  buoyancy  parameter  (ζ),      where,                                                                                                          is  the  M-­‐O  length  scale    

ζ = (z− d) / L

L = −u*3 / k g

θ

"

#$%

&'

HρCp

"

#$$

%

&''

(

)**

+

,--

u*2 =

τ oρ= [( !u !w )2 + ( !v !w )2 ]1/2

The  fricIonal  velocity              is  a  funcIon  of  the  horizontal  surface  stress:        PosiIve  values  of  the  funcIon  indicate  stable  atmosphere,  whereas  negaIve  values  indicate  unstable  condiIon.  

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Lecture  -­‐  1   64  

u*

Page 65: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Eventually  Plants  Die  •  The  carbon  may  remain  in  the  land  surface  system  as  wood  on  the  surface,  or  in  the  soil  (woody  material,  peat,  organic  carbon  parIcles,  minerals)  for  some  Ime.  

•  There  are  biological  and  other  chemical  processes  that  can  return  this  carbon  back  to  the  atmosphere.  

•  In  the  Industrial  Era  (the  Anthropocene*),  humans  have  become  a  major  converter  of  terrestrial  carbon  to  atmospheric  carbon  through  the  burning  of  oil,  coal,  natural  gas,  wood,  etc.    

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

65  

*Term  coined  by  Eugene  Störmer,  but  popularized  by  Paul  Crutzen.  

Page 66: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Carbon  Emissions  EC  •  Natural  terrestrial  sources  of  carbon:  

–  RespiraIon  by  animals  and  plants  [plant  chemistry  of  digesIng  glucose  (sugar)  re-­‐releases  carbon]  

–  Decay  of  organic  Issues  and  ma[er  by  fungi  and  bacteria  (the  major  component  of  soil  respiraIon)  

– Metamorphic  rock  formaIon  (slow);  volcanic  erupIons  (unpredictable)  –  these  approximately  balance  silicate  weathering.  

– Wildfires  •  Besides  the  burning  of  fossil  fuels  and  wood,  the  producIon  of  cement  is  another  large  human  carbon  emission.    

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

66  

Page 67: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Downward  Shortwave  RadiaIon  

•  Si  is,  basically  and  simply,  sunlight.  •  We  usually  make  a  simplifying  assumpIon  that  the  3-­‐dimensional  complexity  of  sky  and  earth  can  be  simplified  to  a  1-­‐D  problem  where  there  is  only  “up”  and  “down”.  

•  For  downward  (also  called  downwelling)  shortwave  radiaIon,  integrate  over  the  “upper”  hemisphere:  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

67  €

FS = IS (θ,ϕ)cosθ sinθ dθ dϕ0

π2

∫0

∫Azimuth  angle  Zenith  angle  Intensity  of  radiaIon  

Page 68: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Direct  and  Diffuse  RadiaIon  

•  For  shortwave  radiaIon,  we  disInguish  between  direct  beam  and  diffuse  radiaIon.  

•  Direct  radiaIon  is  treated  as  uni-­‐direcIonal  (like  a  laser  beam)  directly  from  the  disc  of  the  sun.  

•  Diffuse  radiaIon  is  omni-­‐direcIonal,  from  the  whole  sky  (clear  and  cloudy).  

•  Both  have  energy  at  a  range  of  wavelengths.  

•  IS(λ)  is  the  intensity  of  radiaIon  at  wavelength  λ.  68  

FS = IS (Direct )(λ)dλShortwave∫ + IS (Diffuse )(λ)dλ

Shortwave∫

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 69: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Spectral  Bands  

•  Shortwave  radiaIon  is  defined  to  be  across  a  range  of  the  electromagneIc  spectrum  covering  ultraviolet,  visible  and  near-­‐infrared  wavelengths.  

•  To  make  calculaIons  manageable,  we  divide  that  spectrum  into  a  number  of  discrete  bands  that  we  treat  as  having  uniform  properIes  within  each  band.  

•  I(b)  is  the  intensity  of  radiaIon  in  band  b.  

69  

S↓ = I (Direct )b∑ (b) + I (Diffuse )

b∑ (b)

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 70: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Reflected  Shortwave  RadiaIon  

•  Sh  is  the  reflected  shortwave  radiaIon,  also  called  upward  or  upwelling  shortwave  radiaIon.  

•  Sh  is  related  to  Si  by  the  net  surface  albedo  α:  

•  Albedo  is  also  a  funcIon  of  wavelength;  net  surface  albedo  is  different  for  direct  and  diffuse  radiaIon:  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

70  €

S↑ = αDirect (b) ⋅ IDirectb∑ (b) + αDiffuse (b) ⋅ IDiffuse

b∑ (b)€

S↑ =αS↓

b  indicates  spectral  bands  –  typical  to  have  only  2:  UV+visible  and  IR  

Page 71: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

RadiaIve  Transfer  EquaIon  

dIλ = −kλρIλds

RadiaIon  traversing  a  medium  (e.g.  air)  will  be  weakened  by  its  interacIon  with  ma[er.    The  intensity  of  the  radiaIon Iλ,  auer  traversing  a  distance ds, becomes Iλ + dIλ,  where:

ρ  is  the  density  of  the  ma[er  traversed,  and  kλ  is  the  mass  exIncIon  cross  secIon  (area  per  mass)  at  wavelength  λ.    The  reducIon  dIλ  is  caused  by  sca[ering  and  absorpIon.    Where  sca[ering  can  be  neglected  (e.g.,  a  blackbody),  then  kλ  is  the  mass  absorpIon  cross-­‐secIon  (or  absorpIon  coefficient).      

71  

Page 72: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

RadiaIve  Transfer  EquaIon  

Iλ(s1) = Iλ(0) exp(− kλρ ds0

s1

∫ )

At  locaIon  s = 0,  let  Iλ = Iλ(0),  and  we  can  integrate  the  transfer  equaIon  to  a  distance  s1:  

72  

Page 73: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Beer-­‐Lambert-­‐Bourguer  Law  

u = ρds0

s1

Iλ(s1) = Iλ(0)e−kλu

Aλ =1−Tλ =1− e−kλu

Over  a  path  length u, assuming  the  medium  is  homogeneous  (i.e., kλ is  constant  along  the  path):  

Then  we  have:  

In  fact,  e-kλu  is  the  monochromaIc  transmissivity:  Tλ For  a  non-­‐sca[ering  medium,  the  monochromaIc  absorpIvity  is:  

If  there  is  sca[ering,  we  define  a  monochromaIc  reflecIvity  (a.k.a.  albedo): Rλ,  and:  

Aλ + Tλ + Rλ =1

73  

Page 74: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

ExIncIon:  MathemaIcal  RepresentaIon  

•  ExIncIon  is  represented  by  the  following  differenIal  equaIon:  

•  I  is  the  intensity,  z  is  the  distance  travelled,  and  k  is  the  exIncIon  coefficient.      

•  NoIce  the  minus  sign  –  it  indicates  the  intensity  diminishes  along  the  path.    

Lecture  -­‐  1  

dI = −kIdz

74  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 75: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

ExIncIon:  Along  a  Path  

•  If  we  integrate  the  equaIon  between  z=0  and  z=z1,  

•  This  is  the  classic  “exponenIal  decay”.      •  For  each  increase  of  the  exponent  kz1  by  one,  the  intensity  will  decrease  by  a  factor  of  1/e  or  to  ≈37%  of  its  previous  value.    

Lecture  -­‐  1  

I(z1) = I(0)e−kz1

75  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 76: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

ExIncIon:  OpIcal  Path  

•  ExIncIon  in  fluids  like  the  atmosphere  can  be  highly  variable  depending  on  the  type  and  density  of  the  a[enuaIng  consItuents  (e.g.,  clouds,  smoke,  dust,  chemical  species,  etc.).      

•  In  pracIcal  terms,  the  path  is  represented  not  as  a  distance,  but  as  the  amount  of  a[enuaIng  ma[er  traversed.  

•  For  a  single  consItuent  of  density  ρ:  

•  u  is  usually  referred  to  as  the  opIcal  path  length.  

Lecture  -­‐  1   €

u = ρdz0

z1

76  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 77: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

ExIncIon:  Beer-­‐Lambert-­‐Bourguer  Law  

•  We  then  have:  •  Here  we  represent  the  intensiIes  and  exIncIon  coefficient  k  as  funcIons  of  wavelength  λ  because  exIncIon  typically  varies  greatly  as  a  funcIon  of  wavelength.        

•                   is  the  monochromaIc  (“one  color”,  i.e.,  one  wavelength)  transmissivity,  and    

•                             is  the  monochromaIc  absorpIvity.  

Lecture  -­‐  1  

Iλ(z1) = Iλ(0)e−kλu

e−kλu

1− e−kλu

77  ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

Page 78: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1  

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  

February  9  -­‐  20,  2015    

Two-­‐Stream  FormulaIon  

µdI↓dL

= ωβI↑−[1− (1−β)ω]I↓+ωµk(1−βo)e−kL

µdI↑dL

= ωβI↓−[1− (1−β)ω]I↑+ωµkβoe−kL

is  the  mean  leaf  inclinaIon  angle  relaIve  to  horizontal,  and as(µ) is  the  single  sca[ering  albedo.

θ

The  equaIons  for  the  change  in  diffuse  flux  as  it  penetrates  the  canopy  (i.e.  as  a  funcIon  of  the  LAI  penetrated,  where  LAI  is  essenIally  a  verIcal  coordinate  within  the  canopy)  are:  

β  and  βo  are  the  upsca[er  parameter  for  diffuse  and  direct  radiaIon  respecIvely:    

β =12ω[α + τ + (α − τ )cos2θ]

βo =1+ µkωµk

as(µ)

78  

Page 79: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Lecture  -­‐  1  

ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  

February  9  -­‐  20,  2015    

Two-­‐Stream  

1=oI

][ totalkLsoil eII −+↓α↑=

The  pair  of  differenIal  equaIons  above  can  be  solved  given  appropriate  boundary  condiIons.    Assuming  a  normalized  incident  solar  radiaIon  at  the  top  of  the  canopy:  

and  at  the  bo[om  where  L = Ltotal:  

µdI↓dL

= ωβI↑−[1− (1− β)ω]I↓+ωµk(1− βo)e−kL

µdI↑dL

= ωβI↓−[1− (1− β)ω]I↑+ωµkβoe−kL

79  

Page 80: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Diurnal  Cycle  •  US  Department  of  Energy  

(DOE)  has  a  facility  in  Oklahoma  and  Kansas  for  measuring  the  surface  energy  balance  (ARM/CART*).  

•  Single  day’s  hourly  measurements  at  a  wet  (top)  and  dry  (bo[om)  site.  

•  Note  the  relaIve  magnitudes  of  fluxes  and  how  they  vary  in  Ime  and  between  locaIons.  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

80  

*Atmospheric  RadiaIon  Measurement  (ARM)  Program  /  Cloud  And  RadiaIon  Testbed  (CART)  

Figure: Robock et al., 2002: J. Geophys. Res., 8846.

Page 81: Land%surface%modeling:%Basic%concepts%...Land%surface%modeling:%Basic%concepts% Subhadeep%Halder% % Center%for%Ocean;Land;Atmosphere%Studies%and% Dept.%of%Atmospheric,%Oceanic%and%Earth%Sciences%

Diurnal  Cycles  of  Surface  Fluxes  

Lecture  -­‐  1   ICTP-­‐IITM-­‐COLA  Targeted  Training  AcIvity  (TTA)  on  "Modelling  and  PredicIon  of  Asian  Monsoons:  Improving  Physical  Processes",  February  9  -­‐  20,  2015    

81  

Wet  soils    Unstressed  ET    β <  1  all  day    

TransiIon  soil  Semi-­‐stressed  ET    β <  1  during    morning  only  

Dry  soils  Stressed  ET    β >  1  all  day    

Typical  July  CondiIons  Represented  

Bowen  RaIo:    β = H/λvE