lecture 3-signal space, modulation

Upload: mayam-ayo

Post on 02-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    1/80

    SignalSpaceandModulation

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    2/80

    Update

    Haveconsidered

    Losslesssourcecoding

    Quantization

    Sampling

    Keyinsight:signal waveform vector

    Wewill

    now

    consider

    Signalspaceconcept

    Modulation

    Noisemodel

    Modulationwithmemory

    ELEC5360 2

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    3/80

    Source

    Encoder

    Information

    Source

    Channel

    EncoderModulator

    ChannelNoise

    Source

    Decoder

    Received

    Information

    Channel

    DecoderDemodulator

    Binaryinterface

    ELEC5360 3

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    4/80

    Update

    Haveconsidered

    Losslesssourcecoding

    Quantization

    Sampling

    Keyinsight:signalwaveform vector

    Wewill

    now

    consider

    Signalspaceconcept

    Modulation

    Noisemodel

    Modulationwithmemory

    ELEC5360 4

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    5/80

    TheConceptofSignalSpace

    Thesignalspace viewpointhasbeenoneofthefoundationsofmoderndigitalcommunicationtheory

    sinceits

    popularization

    in

    the

    classic

    text

    of

    Wozencraft andJacobs

    Bychoosinganappropriatesetofaxisforoursignal

    constellation,one

    can:

    Designmodulationtypeswhichhavedesirableproperties

    Constructoptimalreceiversforagivenmodulation

    technique Analyzetheperformanceofmodulationschemesusing

    verygeneraltechniques

    ELEC5360 5

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    6/80

    Example1

    Byinspection,

    the

    signals

    can

    be

    expressed

    in

    terms

    of

    the

    followingfunctions:

    Theseareknownasbasisfunctions

    Notethat Alsonotethateachofthesefunctionshaveunitenergy

    WesaythattheyformanOrthonormalBasis

    ELEC5360 6

    )5.0(rect)(1 ttf )2/3(rect)(2 ttf

    0*21

    dttftf

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    7/80

    ConstellationDiagramofExample1

    ELEC5360 7

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    8/80

    Example2

    Considerthefollowingorthonormalbasisfunctions:f1(t)andf2(t)(definedover[0,T)).

    ELEC5360 8

    )2cos(2)(1 tfT

    tf c )2sin(2)(2 tfT

    tf c

    1as,0

    4cos4

    1

    4sin2

    12

    2sin2

    2cos2

    0

    0

    0

    0

    *

    21

    Tf

    tfTf

    dttfT

    dttfT

    tfT

    dttftf

    c

    T

    c

    c

    T

    c

    T

    cc

    T

    Thebasisfunctionsarethusorthogonal andtheyarealsonormalized

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    9/80

    ConstellationDiagramofExample2

    Thesebasisfunctionsarequitecommonandcandescribevariousmodulationschemesbyproperly

    selectingx(t)

    and

    y(t).

    For

    instance,

    for

    QPSK

    ELEC5360 9

    ThesignalconstellationisthesameasonSlide6

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    10/80

    SignalSpaceandBasisFunctions

    Twoentirelydifferentsignalsetscanhavethesamegeometricrepresentation.

    Theunderlyinggeometrywilldeterminetheperformanceandthereceiverstructureforasignalset.

    Inthepreviousexamples,wewereabletoguessthe

    correctbasis

    functions.

    Ingeneral,isthereanymethodwhichallowsustofindacompleteorthonormal basisforanarbitrarysignal

    set? GramSchmidtOrthogonalization (GSO)Procedure

    Wefirstconsiderfinitedimensionalvectorspacestogaininsights

    ELEC5360 10

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    11/80

    VectorSpaces

    Avectorspaceisasetofelements ,calledvectors,alongwithasetofrulesforoperatingonboththesevectorsanda

    set

    of

    scalars examples:,therealvectorspace,and,thecomplexvectorspace

    Geometricinterpretationof

    ELEC5360 11

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    12/80

    VectorSpaces

    Theaxiomsofavectorspacearelistedbelow

    ELEC5360 12

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    13/80

    VectorSpaces

    Asetofvectors, , spans ifeveryvector isalinearcombinationof, ,

    Avectorspace

    isfinitedimensionalifthereexistsafinite

    setofvectors, , thatspan,e.g.,. Asetofvectors, , islinearlyindependentif 0 impliesthateach is0 A

    set

    of

    vectors

    , , isdefinedtobeabasis for ifthesetislinearlyindependentandspans.Thenany canbeexpressedas

    Thedimension ofafinitedimensionalvectorspaceisthe

    numberofvectorsinanyofitsbasis

    ELEC5360 13

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    14/80

    InnerProductSpaces

    Thevectorspaceaxiomscontainnoinherentnotionoflengthorangle,whichwillbeprovidedbyinnerproduct

    Aninner

    product

    on

    acomplex

    vector

    space

    is

    acomplex

    valuedfunctionoftwovectors, ,denotedby , ,thatsatisfiesthefollowingaxioms

    Avector

    space

    with

    an

    inner

    product

    satisfying

    these

    axioms

    iscalledaninnerproductspace

    ELEC5360 14

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    15/80

    InnerProductSpaces

    Forthevectorspace and theinnerproductsareusuallydefinedas

    Thenorm orlength ofavector inaninnerproductspace

    is

    defined

    as

    , Twovectors and aredefinedtobeorthogonal( )if, =0

    Asetofvectorsareorthonormaliftheyaremutually andallhave

    unity

    norm

    ELEC5360 15

    , and ,

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    16/80

    SignalSpaces

    Generalizingthe

    concept

    of

    vector

    spaces

    Thesetofallrealfiniteenergy signals ,denotedby,isarealvectorspace(checkit!)

    Every

    signal

    has

    an

    Fourier

    transform Asignalspaceisanysubspace

    E.g.,thesetof signalsthataretimelimitedto[0,T] E.g.,thesetof signalswhoseFouriertransformsarenonzeroonlyin

    Everysignalspace hasanorthonormalbasis ,

    suchthatevery canbeexpressedas

    where

    ELEC5360 16

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    17/80

    Innerproduct

    Norm

    Signalset isanorthogonal setif

    If isanorthonormal set.Inthiscase,

    Where

    And we can write

    SignalSpaces

    Trytomakeananalogytofinitedimentional vectorspace

    ELEC5360 17

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    18/80

    KeyProperty

    Givenanorthonormalbasis ,andtwofiniteenergysignals

    Wehave

    Orequivalently

    i.e.,Innerproductsarepreservedinanorthonormalexpansion

    Inparticular,

    the

    energy of

    the

    signal

    can

    be

    calculated

    as

    Alltheinnerproduct/energycalculationcanbecarriedineitherrepresentation!

    ELEC5360 18

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    19/80

    OrthonormalExpansion

    Ingeneral,givenasetofMsignals{si(t);i=1,2,.,M}definedoverR withfiniteEnergy. Thatis,

    Then,wecanexpresseachofthesewaveformsasaweightedlinearcombinationoforthonormalsignals{k(t)}n

    whereNM

    Question:How

    to

    produce

    an

    orthonormal

    basis?

    ELEC5360 19

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    20/80

    Projectionofasignalontoanother

    Theprojectionofthesignalvontothesignalu isthesignalwthatsatisfiesbothofthefollowingconditions:

    1. w=u2. vwisorthogonaltou

    Itcan

    be

    shown

    that

    ELEC5360 20

    u

    v

    w

    Innerproduct

    of

    v

    and

    u

    Normalizedu

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    21/80

    FiniteDimensionalProjection

    LetSbeanndimensionalsubspaceofaninnerproductspaceV,andassumethat isanorthonormalbasisforS.Then

    forany ,thereisauniqueprojectionthatsatisfies

    Furthermore,theprojection isgivenby

    Thevector isdenotedas ,calledtheperpendicularfromvtoS.So

    andwecanget

    ELEC5360 21

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    22/80

    GramSchmidtOrthogonalization (GSO)

    Procedure

    ELEC5360 22

    TheGramSchmidtProcedure

    Remaining

    basis

    functions

    are

    found

    by

    removing

    portions

    of

    signals

    which

    arecorrelatedtopreviousbasisfunctions,andnormalizingtheresult.

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    23/80

    Example

    ELEC5360 23

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    24/80

    OrthonormalSetsinL2

    ELEC5360 24

    Fourierseries

    expansion

    Sampling

    functions

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    25/80

    InfiniteDimensionalProjection

    Let beasequenceoforthonormalvectorsinL2,andletv beanarbitraryL2 vector

    Thenthere

    exists

    aunique

    L2 vector

    u such

    that

    vu is

    orthogonaltoeach ,m=1,2,n,and

    Thisistheexactmeaningwhenwewrite

    foran

    infinite

    dimensional

    expansion

    ELEC5360 25

    Comparewith

    finite

    dimensionalcase

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    26/80

    Waveform DigitalSequence

    ThesourceandchannelwaveformscanberepresentedasrealorcomplexL2 vectors

    Given

    an

    orthonormal

    basis

    of

    L2,

    any

    such

    waveformcanberepresentedas

    Forasinglesymboltransmission,finitedimensionalexpansion

    Forcontinuoustransmission,ithelpstoconsiderinfinitedimensionalexpansion

    Then

    for

    modulation

    we

    can

    separately

    design carrierwaveforms,i.e.,thebasisfunctions

    signalconstellation,i.e.,thecoefficients

    ELEC5360 26

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    27/80

    Update

    Haveconsidered

    Losslesssourcecoding

    Quantization

    Sampling

    Keyinsight:signalwaveform vector

    Wewill

    now

    consider

    Signalspaceconcept

    Modulation

    Noisemodel

    Modulationwithmemory

    ELEC5360 27

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    28/80

    DigitallyModulatedSignals

    Designgoal: Generateasignalthatrepresentsthebinarydatastreamand

    matchesthecharacteristicsofthechannel

    Intransmission,blocks ofkbinarydigitalsaremappedintooneof waveforms

    Whenthemappingisperformedwithoutany

    constrainton

    previous

    waveforms

    it

    is

    known

    as

    memoryless

    Whenthemappingdependsonpreviouswaveformsthemodulatorhasmemory

    Linearvs. Nonlinear

    kM 2

    ELEC5360 28

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    29/80

    DigitalModulation

    ELEC5360 29

    Bitsto

    signalsbinary

    input

    Signalsto

    waveform

    Basebandto

    passband

    Channel

    Signalsto

    bitsbinary

    output

    Waveform

    tosignals

    Passband to

    baseband

    Passband

    waveform

    Sequences

    ofsignals

    Baseband

    waveform

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    30/80

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    31/80

    ChoiceofModulationPulse

    APAMmodulatorisdeterminedbythesignalconstellationA ,thesignalintervalT,andtherealL2 modulationpulsep(t)

    AstandardMPAMsignalconstellation

    Thechoiceofp(t) ismorechallenging

    p(t) shouldapproach

    0rapidly

    as

    Itshouldbeessentiallybasebandlimitedtosomebandwidth

    ItshouldbeorthonormaltoallitsshiftsbymultiplesofT

    Theretrievalofthesignalsequenceshouldbesimple.Intheabsence

    ofnoise,

    should

    be

    uniquely

    specified

    by

    the

    received

    waveform

    ELEC5360 31

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    32/80

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    33/80

    ComputingInnerProductswithaMatchedFilter

    Wewanttocomputetheinnerproduct

    Definethe

    matched

    filter

    as

    Then

    Therefore

    i.e.,we

    can

    compute

    inner

    product

    by

    passing

    the

    signal

    throughamatchedfilter

    ELEC5360 33

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    34/80

    Orthonormality Conditions

    Forasignal andatimeintervalT,thefollowingareequivalent

    1. Thetime

    shifts

    are

    orthonormal

    2. Thecompositeresponse satisfies

    and

    3. The

    Fourier

    transform

    satisfies

    the

    Nyquist

    criterionforzerointersymbol interference,namely

    ELEC5360 34

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    35/80

    Nyquist Theorem

    ELEC5360 35

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    36/80

    ELEC5360 36

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    37/80

    RaisedcosineSpectrum

    Objective:findg(t)thatareidealNyquistbutareapproximatelybandwidthlimitedandtimelimited

    Nyquist

    bandwidth

    ActualbasebandbandwidthBb, Apracticalsolution:Raisedcosinefrequencyfunction

    Bb exceedsWb byarelativelysmallamount

    Itissmoothinorderforg(t)todecayquicklyintime,asymptotically

    with1/t3

    ELEC5360 37

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    38/80

    Choosingp(t)andq(t)

    Howtochoosep(t)andq(t)subjectto ?

    Wechooseas ,so

    ItiscalledassquarerootofNyquist

    Ifp(t)isreal,then

    q(t) iscalled

    as

    the

    matched

    filter

    to

    p(t)

    Theactualbandwidthofg(t),p(t),q(t)arethesame

    ELEC5360 38

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    39/80

    BasebandtoPassband

    ELEC5360 39

    Double

    sideband

    amplitude

    modulation Notbandwidthefficient

    Halfofthebandisredundant(u(t)isreal)

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    40/80

    QuadratureAmplitudeModulation(QAM)

    Baseband modulator(complexsignaluk)

    Baseband demodulator

    Samplethe

    output

    at

    Tspaced

    sample

    times

    Equivalentpassband expressions

    ELEC5360 40

    Differenceinenergy,

    justascaling

    Differentauthorsmayuse

    differentscaling,Proakis

    used1!

    Payattentiontosuch

    difference,thoughthe

    performancewillbethe

    same

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    41/80

    BasebandRepresentation

    Analyticrepresentation(oranalyticsignal)

    Itcanbeshownthat

    ELEC5360 41

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    42/80

    BasebandRepresentation

    Basebandrepresentation

    Itcanbeshownthat

    ELEC5360 42

    Sameaswhatwegoton

    Slide40,justdifferent

    waytointerpret

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    43/80

    BasebandRepresentation

    Basebandrepresentationofconvolution

    Basebandrepresentationoffiltering

    Frequency

    response

    with

    respect

    to

    the

    bandwidth

    W

    around

    thecarrierfrequencyfc is

    ELEC5360 43

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    44/80

    Passband vs.Baseband

    ELEC5360 44

    Passband Analytic Baseband

    Timedomain

    Frequency

    domain

    Bandwidth B B B/2

    Energy

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    45/80

    QAM

    Atpassband,QAMsignalcanalsobeshownasanorthonormalexpansion

    Itcan

    be

    shown

    that

    areorthonormal

    ELEC5360 45

    Anotherwayoflookingat

    theconversion

    on

    slide

    40

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    46/80

    QAMModulationandDemodulation

    ELEC5360 46

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    47/80

    GeneralOrthonormalModulation

    ConsideranMary signalsetofrealntuples

    The

    selected

    signal

    vector

    is

    modulated

    into

    a

    signal

    waveform

    Bydoingthis,wemapsymbols0toM1intoasetofsignalwaveforms

    Totransmitasequenceofsymbols,wechoosetheorthonormalwaveforms suchthat

    ELEC5360 47

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    48/80

    GeneralOrthonormalModulation

    ForPAM

    For

    QAM

    Withsuchorthonormalwaveforms,asequenceofsymbols,say eachdrawnfromthealphabet{0,,M1},could

    bemappedintoasequenceofwaveforms

    Thetransmitted

    waveform

    would

    be

    ELEC5360 48

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    49/80

    PAMvs.QAM DoF

    PAM RealsignalsgeneratedatTspacedintervals,transmittedina

    basebandbandwidthalittlemorethan

    Overan

    asymptotically

    long

    interval

    T0,

    2WbT0 real

    signals

    can

    be

    transmitted

    QAM ComplexsignalsgeneratedatTspacedintervals,transmittedina

    passband bandwidth

    a

    little

    more

    than OveranasymptoticallylongintervalT0,WbT0 complexsignals,or2WbT0 realsignalscanbetransmitted

    Weknowthatrealwaveformsoccupyingtimeinterval(T0/2,T0/2)andfrequencyinterval(W

    0,W

    0)hasabout2W

    bT0degrees

    of

    freedom (DoF)

    PAMandQAMusealltheDoFs availableinthegivenbands

    ELEC5360 49

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    50/80

    SignalConstellation

    AnNdimensionalsignalconstellation isdenotedby

    Itselements

    is

    called

    signal

    points

    Basicparametersofasignalconstellation

    ItsdimensionalN

    Itssize

    M

    (number

    of

    signal

    points)

    Itsaverageenergy

    Itsminimumdistance

    ELEC5360 50

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    51/80

    SignalConstellation

    ELEC5360 51

    PAM PSK

    QAM

    l d l l

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    52/80

    MultidimensionalSignals

    ELEC5360 52

    Orthogonal Biorthogonal

    Simplex

    SignalsfromBinaryCodes

    U d

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    53/80

    Update

    Haveconsidered

    Losslesssourcecoding

    Quantization Sampling

    Keyinsight:signalwaveform vector

    We

    will

    now

    considerSignalspaceconcept

    Modulation

    Noisemodel

    Modulationwithmemory

    ELEC5360 53

    N i P

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    54/80

    NoiseProcess

    Wehaveseenthatthesignalwaveformcanbeexpressedas

    where isanorthonormalbasis

    Fornoiseprocess,wewillconsiderrandomprocessesdefinedas

    Z1,Z2,,isasequenceofrandomvariables

    Foreacht,Z(t)isasumofrandomvariables

    IfZ1,Z2,,areiid withmean0andvariance,thenthecovariancefunctionis

    ELEC5360 54

    Additi N i

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    55/80

    AdditiveNoise

    Thechanneloutputis

    X(t)and

    Z(t)

    are

    random

    processes

    modeling

    channel

    input

    andnoise

    X(t)andZ(t)areindependent

    ELEC5360 55

    J i tl G i

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    56/80

    JointlyGaussian

    EachofthefollowingarenecessaryandsufficientconditionsforarandomvectorZwithanonsingular

    covariance

    KZ to

    be

    jointly

    Gaussian1. Z=AW,wherethecomponentsofWareiid normaland

    2. Zhasthefollowingjointprobabilitydensity

    3. AlllinearcombinationsofZareGaussianrandom

    variables

    ELEC5360 56

    Gaussian Processes

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    57/80

    GaussianProcesses

    isazeromeanGaussianprocessif,forallpositiveintegersnandallfinitesetsofepochst1,,tn,thesetof

    randomvariables isa(zeromean)jointly

    Gaussianset

    of

    random

    variables.

    AzeromeanGaussianprocessisspecifiedbyitscovariancefunction

    Wewill

    focus

    on

    the

    Gaussian

    process

    defined

    as

    isacountablesetofrealorthonormalfunctions

    Zk areiid

    ELEC5360 57

    Linear Functionals of WSS Processes

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    58/80

    LinearFunctionals ofWSSProcesses

    ConsiderazeromeanWSSprocessZ(t),andarealL2 functiong(t).Forthelinearfunctional

    Itcanbeshownthat

    Similar,for itcanbeshownthat

    Ifgm(t)areorthonormalandSZ(f)isconstant,then

    ELEC5360 58

    Spectraldensity

    White Gaussian Noise

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    59/80

    WhiteGaussianNoise

    ItisastationaryzeromeanGaussianprocessW(t)

    Itscovariancefunctionis

    Thiscanonlybeanapproximation,thisfunctionneedstobeverynarrowrelativetothevariationofallfunctionsofinterest

    Thismeansthatthespectraldensityisapproximatedflat

    Considerasetoforthonormalfunctions ,andlet

    then

    Whenthenoiseisrepresentedintermsofanyorthonormalexpansion,theresultingRVsareiid

    ELEC5360 59

    Additive Noise Model

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    60/80

    AdditiveNoiseModel

    Considerthesignalwaveformgivenby

    Thetransmittedpassband waveformis

    Itcanbewrittenas

    where

    areorthonormal

    Thewhitenoisewaveformcanbeexpressedas

    Zk,j areiid Gaussian

    isindependentofUk,j andZk,j

    ELEC5360 60

    Notehereweusea

    differentscalingfactorto

    assistthediscussion

    AWGN Channel

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    61/80

    AWGNChannel

    Thechanneloutputis

    It

    can

    be

    expressed

    as

    Afterdemodulation

    Theresidualnoise isindependentof

    ELEC5360 61

    DifferentscalingfactorsduringmodulationmaychangethepowersofUkand

    Zk,buttheratio,i.e.,theSNRwillbethesame.

    Payattentiontothescaling! X(t)isinorthogonalororthonormalexpansion

    ofUk

    Different Parameters

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    62/80

    DifferentParameters

    PAM

    SymbolintervalT

    Nominalbasebandbandwidth

    W=1/2T

    AverageenergypersymbolEs=P/2W

    Noisevarianceperdimension

    N0/2 SNR=Es/(N0/2)=P/N0W

    Transmissionrate

    Spectralefficiency

    ELEC5360 62

    QAM

    SymbolintervalT

    Nominalpaseband bandwidth

    W=1/T

    AverageenergypercomplexsymbolEs=P/W

    Noisevariancepertworeal

    dimension

    N0

    SNR=Es/N0 =P/N0W

    Transmissionrate

    Spectralefficiency

    Update

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    63/80

    Update

    Haveconsidered

    Losslesssourcecoding

    Quantization Sampling

    Keyinsight:signalwaveform vector

    We

    will

    now

    considerSignalspaceconcept

    Modulation

    Noisemodel

    Modulationwithmemory

    ELEC5360 63

    Linear Modulation with Memory

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    64/80

    LinearModulationwithMemory

    Usedtoprovidelowsidelobes inspectrum

    NRZIisonesimplelinearexample

    Importantnonlinearexamplesprovidespectrumshaping

    ELEC5360 64

    Non Linear Signals with Memory

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    65/80

    NonLinearSignalswithMemory

    Forexample,forconventionalFSK

    Abruptswitchingfromoneoscillatoroutputtoanotherresultsinlargespectralsidelobes

    Thusit

    requires

    alarge

    frequency

    band

    Itishoweverpossibletomakesignalswithmemoryhavetheminimumsseparationandyetremainorthogonalandalso

    have

    continuous

    phase

    Non-linear modulationwith memory

    ELEC5360 65

    Continuous phase FSK (CPFSK)

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    66/80

    ContinuousphaseFSK(CPFSK)

    n

    n nTtgItd )()(

    t

    d ddTfjT

    Ets 0)(4exp

    2)(

    ELEC5360 66

    Continuous phase FSK (CPFSK)

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    67/80

    ContinuousphaseFSK(CPFSK)

    Re-expressed as

    where

    h is the modulation index

    )(2

    )(4);(

    nTtqhI

    dnTtgITfIt

    nn

    t

    nnd

    0);(2cos2

    )( IttfT

    Ets c

    TtTtTt

    t

    tq

    Ih

    Tfh

    n

    kkn

    d

    2/102/

    00

    )(

    2

    1

    ELEC5360 67

    Continuous Phase Modulation

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    68/80

    ContinuousPhaseModulation

    MoregeneralfromofCPFSKisCPMwhere

    Whereq(t)issomenormalizedwaveformshape

    Whenhk =h modulationindexisfixedforallsymbols.Whenitvariesknownasmultih

    Ifg(t)=0

    for

    t>T

    known

    as

    full

    response.

    If

    the

    pulse

    lasts

    longer

    than

    Tthen

    known

    aspartialresponse

    n

    k

    kk nTtqhIIt )(2);(

    ELEC5360 68

    Continuous Phase Modulation

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    69/80

    ContinuousPhaseModulation

    InfinitevarietyofCPMpossiblebychoosingdifferentg(t),handalphabetsize

    Popularpulses

    are

    GMSK,

    Rectangular

    and

    raised

    cosine

    GMSKwithBT=0.3isusedinGSM

    kM 2

    ELEC5360 69

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    70/80

    CPMSignalSpaceDiagrams

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    71/80

    g p g

    IngeneralCPMcannotbeeasilyrepresentedassignalspacediagrambecausephaseofcarrieris

    timevariant

    Insteadthebeginningandendpointsofthephasetrajectorycanbeeasilymarked

    BinaryCPFSK

    with

    h=1/2

    can

    be

    represented

    in

    signalspacehowever

    ELEC5360 71

    MinimumShiftKeying(MSK)

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    72/80

    MSK isaspecialformofbinaryCPFSKwhenh=1/2

    Sincethis

    produces

    the

    minimumfrequencyseparation (1/2T)fororthogonalsignalsover

    lengthTwhile

    also

    continuousinphaseitisknownasminimumshiftkeying

    Canalso

    be

    thought

    of

    as

    4

    phasePSKinwhichthepulseshapeishalfcycle

    ELEC

    5360 72

    PowerSpectrum

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    73/80

    Powerspectrumdensity(PSD) Helpsdeterminetherequiredtransmissionbandwidthofdifferent

    modulationschemes

    Comparebandwidth

    efficiency

    of

    different

    modulation

    schemes

    PSDobtainedfromFToftheautocorrelation

    function))(*)(()()()( 2

    txtxEdef

    fj

    ELEC

    5360 73

    SpectralCharacteristics

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    74/80

    ThekeymotivationforperformingCPMistohavesignalswithlowsidelobes

    Todeterminethespectralcharacteristicsof

    memorylessmodulation

    we

    can

    find

    the

    PSD

    of

    the

    basictransmittedpulse

    Forlinearlymodulatedsignals

    Twoterms continuousandspectrallines

    Spectrallines

    disappear

    when

    the

    information

    symbol

    meaniszero(thesymbolsequenceisuncorrelatedtoo)

    m

    iivvT

    mf

    T

    mG

    TfG

    Tf

    2

    2

    22

    2

    )()(

    Pulse shape

    ELEC

    5360 74

    PulseShaping

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    75/80

    Sincpulse

    Raisedcosine

    pulse

    ELEC

    536075

    CPMandCPFSK

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    76/80

    ForCPMandCPFSKthederivationis slightlymore

    involved Fromthefigure:

    Forh1,thespectrumismuch

    broader

    Ashapproaches1,thespectrabecomepeaked

    ELEC

    536076

    SpectralEfficiencyComparison

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    77/80

    Let

    b

    bT

    R 1 = Bit rate where Tb=Bit duration

    BPSK:1stnulloccursatfrequency=1/Tb=Rb.Then,

    BBPSK,mulltonull=2Rb

    QPSK: 1stnulloccursatfrequency=1/(2Tb)=Rb/2. Then,

    Bmulltonull=Rb

    MSK:1stnulloccursatfrequency=0.75/Tb=0.75Rb. Then,

    BMSK,nulltonull=1.5Rb

    Let

    B99%

    Bandwidth

    which

    contains

    99%

    of

    total

    power.

    Then,

    b

    b

    R

    RB

    8

    2.1%99

    (forMSK)

    (forQPSK and OQPSK)

    ELEC

    536077

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    78/80

    B99%=8Rb

    B99%=1.2Rb

    ELEC

    536078

    QuadratureModulation:Summary

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    79/80

    Fora90%powercontainment bandwidth, MSK andQPSK (sameforOQPSK)areaboutthesameandarethemostbandwidthefficient,withBPSK

    requiringabouttwiceasmuchbandwidth.

    For

    a

    99%

    power

    containment bandwidth,

    MSK isbyfarthebest,followedbyQPSK,withBPSKbeingadistantthird.

    Alltheseschemeshaveconstantenvelopes. Hence,theyareusedsothatnonlinearamplification isused(nonlinearamplifiersaremoreefficient

    thanlinearones).

    Inpractice,

    filtering is

    employed

    and

    this

    results

    in

    envelope

    deviation (which

    prohibitstheuseofnonlinearamplification).

    Byexperiment,ithasbeenfoundthatMSK sufferstheleast (intermsofenvelopedeviation),followedbyOQPSK,QPSK,andBPSK.

    Thatiswhy,MSKforinstanceisusedinGSM andHYPERLAN (wirelessLAN)

    ELEC

    536079

    Summary

  • 7/27/2019 Lecture 3-Signal Space, Modulation

    80/80

    Signalspaceconcept

    Digitalmodulation

    Noisemodel

    Modulationwithmemory

    Readingassignment

    Ch57ofGallager

    Ch3,9.2ofProakis

    ELEC

    536080