lecture 5 geos24705 thermodynamics of heat...

16
Lecture 5 GEOS24705 Thermodynamics of heat engines Copyright E. Moyer 2011

Upload: others

Post on 11-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Lecture 5 GEOS24705

Thermodynamics of heat engines

Copyright E. Moyer 2011

Page 2: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

What  is  a  “heat  engine”?  

A  device  that  generates  converts  thermal  energy  to  mechanical  work  by  exploi8ng  a  temperature  gradient  

•  Makes  something  more  ordered:      random  mo8ons  of  molecules    ordered  mo8on  of  en8re  body  

•  Makes  something  less  ordered:      degrades  a  temperature  gradient  (transfers  heat  from  hot  to  cold)  

Page 3: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

The  two  technological  leaps  of  the  Industrial  Revolu?on  that  bring  in  the  modern  energy  era  

1.   “Heat  to  Work”  Chemical  energy      mechanical  work  via  mechanical  device  Use  a  temperature  gradient  to  drive  mo8on  Allows  use  of  stored  energy  in  fossil  fuels  Late  1700’s:  commercial  adop8on  of  steam  engine  

2. Efficient  transport  of  energy:  electrifica;on  Mechanical  work                electrical  energy                mech.  work  Allows  central  genera8on  of  power  Late  1800s:  rise  of  electrical  companies  

Page 4: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Newcomen’s  design  is  state  of  the  art  for  60+  years  

First  true  steam  engine:  

Thomas  Newcomen,  1712,  blacksmith  

Copy  of  Papin’s  engine  of  design  of  1690,  with  piston  falling  as  steam  cooled,  drawn  down  by  the  low  pressure  generated  

First  reciproca;ng  engine:  force  transmiOed  by  mo8on  of  piston  

Can  pump  water  to  arbitrary  height.  

Force  only  on  downstroke  of  piston  

Very  low  efficiency:  0.5%  

IntermiOent  force  transmission  

Page 5: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Newcomen’s design is state of the art for 60+ years

First  true  steam  engine:  

Thomas  Newcomen,  1712,  blacksmith  

Copy  of  Papin’s  engine  of  design  of  1690,  with  piston  falling  as  steam  cooled,  drawn  down  by  the  low  pressure  generated  

First  reciproca;ng  engine:  force  transmiOed  by  mo8on  of  piston  

Can  pump  water  to  arbitrary  height.  

Force  only  on  downstroke  of  piston  

Very  low  efficiency:  0.5%  

IntermiOent  force  transmission  

Page 6: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

First  modern  steam  engine:  

James  WaO,  1769  (patent),  1774  (prod.)  Higher  efficiency  than  Newcomen  by  introducing  separate  condense  Reduces  wasted  heat  by  not  requiring  hea8ng  and  cooling  en8re  cylinder  

Page 7: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

First  modern  steam  engine:  

James  WaO,  1769  (patent),  1774  (prod.)  Higher  efficiency  than  Newcomen  by  introducing  separate  condenser  

Page 8: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

First  modern  steam  engine:  

James  WaO,  1769  patent              (1774  produc8on  model)  

Like  Newcomen  engine  only  with  separate  condenser    Higher  efficiency:  2%  

Force  only  on  downstroke  of  piston  

IntermiOent  force  transmission  

No  rota8onal  mo8on  

Page 9: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Improved  Wa>  steam  engine:  

James  WaO,  1783  model  Albion  Mill,  London  

Separate  condenser    Higher  efficiency:  ca.  3%  

Force  on  both  up-­‐  and  downstroke  

Con8nuous  force  transmission  

Rota8onal  mo8on  (sun  and  planet  gearing)  

Engine  speed  regulator  

Page 10: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Steam  engines  got  more  powerful  AND  more  efficient  over  Dme  

From V. Smil

Page 11: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

How  were  both  accomplished?  

POWER  •       More  pressure  •       Bigger  cylinders  •       More  cylinders  

EFFICIENCY  •       Removing  obvious  losses  •       Higher  temperatures  

Pressure  and  temperature  are  related  for  steam    

Page 12: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Prince  Consort  Beam  engine  (world’s  largest  steam  engine)  

Prince  Consort  Beam  engine  

Beam  engine  train  (see  6:20)  

Page 13: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Double-­‐acDon  steam  engine:  

Why  use  suc8on  to  pull  the  piston  down  –  why  not  just  push  it  down  with  another  injec8on  of  steam?  

Piston  pushed  by  steam  on  both  up-­‐  and  down-­‐stroke.  

No  more  need  for  a    condenser.  Steam  is  simply  vented  at  high  temperature  

 slide  valve  alternates  input  &  exhaust  

Page 14: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Double-­‐acDon  steam  engine:  

slide valve alternates input & exhaust

Page 15: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Double-­‐acDon  steam  engine:  

primary use: transportation

Page 16: Lecture 5 GEOS24705 Thermodynamics of heat enginesgeosci.uchicago.edu/~moyer/GEOS24705/2011/Notes/Slides_Lecture5.pdfNewcomen’s design is state of the art for 60+ years Firsttrue*steamengine:*

Indicator  diagrams  told  engineers  how  much  work  a  cylinder  put  out  on  each  stroke