lecture 5 rev

32
Essential Emergy Systems Concepts Environmental Accounting Workshop Niamey, Niger (Nov, 2005) - Day 1 Estimates of solar emergy equivalents of tidal energy and deep earth heat and calculations of primary geobiosphere products of rain, river geopotential, atmospheric circulation, oceanic heating, winds and storms, ocean currents, and earth cycles.

Upload: muhammad-rizwan

Post on 12-Nov-2014

37 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 5 Rev

Essential Emergy Systems Concepts

Environmental Accounting Workshop

Niamey, Niger (Nov, 2005) - Day 1

Estimates of solar emergy equivalents of tidal energy and deep earth heat and calculations of primary geobiosphere products of rain, river geopotential, atmospheric circulation, oceanic heating, winds and storms, ocean currents, and earth cycles.

Page 2: Lecture 5 Rev

Outline

• Global Flows of Emergy– How the baseline transformity values

were derived

• Convergence of Emergy into Various Forms– Global flows of Rainfall, Wind, Soil etc.

• Transformities of Things– Raw materials, Agricultural Goods etc.

Page 3: Lecture 5 Rev

A Caution…

• Complex Material– These ideas are complex, and presented

here simply to demonstrate the rigor behind the computed values

– Only the main points will be made in this presentation – we will leave time for more detailed questions

Page 4: Lecture 5 Rev

The solar emergy equivalents of tidal energy and deep earth heat are estimated by assuming two inputs making the same product as equivalent.

An emergy equation was written for the joint contributions of these inputs to crustal heat and another for the joint contributions to the geopotential energy of ocean water.

Emergy of Global Processes

Three main emergy inputs to the geobiosphere are the solar energy, the tidal energy, and the deep earth heat.

With the transformity of solar equal one, by definition, the two equations are used to evaluate transformities of global tidal energy and global deep heat contribution.

Page 5: Lecture 5 Rev

CONCEPT: Calculation of the transformities of earth’s deep heat and tidal momentum using simultaneous equations and setting two inputs making the same product as equivalent…PRINCIPLE:

Emergy equations set the empower of inputs into an energy transformation process equal to the empower of an output, where each term contains a flow multiplied by its emergy/unit.

(Energy A * Tr A) + (Energy B * Tr B) = (Energy C * Tr C)

Emergy of Global Processes

Page 6: Lecture 5 Rev

Sun

Tide DeepHeat

Geobiosphere

Radio-activity Crustal

Heat39,300

x 1020 Joules per year

4.74

1.98

6.49

0.52

Earth Crust

Emergy of Heat in the Crust

Pictured below are the main processes contributing 13.21 E20 J/yr heat to the earth's crust as given by Sclater et al. (1980). By subtracting the estimate for radioactivity generation (1.98 E20 J/yr) and heat flux up from the mantle (4.74 E20 J/yr), the remaining annual flow of 6.49 E20 joules per year can be attributed to the tidal and solar sources from above

These sources (sun and tide) drive the atmosphere, ocean, hydrological, and sedimentary cycles and contribute heat downward by burying oxidized and reduced substances together, by friction, and by compressing sedimentary deposits

Emergy of Global Processes

4.741.986.4913.21

Page 7: Lecture 5 Rev

Sun

Tide DeepHeat

Geobiosphere

Radio-activity Crustal

Heat39,300

x 1020 Joules per year

4.74

1.98

6.49

0.52

Earth Crust

Emergy of Heat in the Crust

Emergy of Global Processes

(39,300 E20 J/yr)(1 sej/J) + (0.52 E20 J/yr)*Trt = (6.49 E20) *Trh

(Equation 1)

Solar + Tidal = Emergy of heat generated emergy emergy by surface processes

Page 8: Lecture 5 Rev

Sun

Tide

39,300

x 1020 Joules per year

0.52

OceanGeopot.Energy

6.72

1.62

EarthDeepHeat

In this figure, the emergy budget equation for oceanic geo-potential energy includes solar emergy, tidal emergy, and the contribution of the earth to the global process.

The earth contributes with 6.72 E20 J/yr (4.74 E20 J/yr deep heat and 1.98 E20 J/yr radioactive heat).

Emergy of Tidal Energy Inflow and Use…

Emergy of Global Processes

Tidal energy is contributed to the geo-biosphere by the gravitational forces of moon and sun that pull air, earth, and especially the ocean, relative to the rotating planet, causing friction and heat dissipation.

4.74+1.986.72

0.52+1.622.14

2.14

Page 9: Lecture 5 Rev

Emergy of Tidal Energy Inflow and Use…

Solar + Tidal + Deep Earth = Oceanic geopotentialemergy emergy emergy emergy

Sun

Tide

39,300

x 1020 Joules per year

0.52

OceanGeopot.Energy

6.72

1.62

EarthDeepHeat

Emergy of Global Processes

(39,3 E20)*1.0 + (0.52 E20)*Trt + (6.72 E20)*Trh = (2.14 E20)*Trt

(Equation 2)

0.52+1.622.14

Page 10: Lecture 5 Rev

Combining Equations

(39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0-(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt =0

-6.49 E20*Trh - 6.72 E20 Trh +2.14 E20 *Trt = 0

Trt = 6.17*Trh

(39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0-(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt =0

-6.49 E20*Trh - 6.72 E20 Trh +2.14 E20 *Trt = 0

Trt = 6.17*Trh

Emergy of Global Processes

To obtain the unit emergy values (solar transformities), equation (1) was subtracted from equation (2) to obtain:

(6.72 E20)*Trh = (2.14 E20) *Trt - (6.49 E20) Trh

and the solar transformity of tide:

Trt = 6.17*11,945 = 73,923 sej/J

From this, the a preliminary solar transformity for tide was found to be

Trt = 6.17 Trhwhich was substituted in eq. 1 to obtain the solar transformity of crustal heat: Trh = 11,981 sej/J

Page 11: Lecture 5 Rev

Emergy of Global Processes

Table 1. Emergy of Inputs to the Geobiosphere____________________________________________________________Note Inflow Solar Transformity Empower

sej/J 1024 sej/yr____________________________________________________________1 Solar energy absorbed 13.93

2 Crustal heat sources 1.20 x 104

8.06

3 Tidal energy absorbed 7.37 x 104

3.83

Total Global Empower -- 15.83

Table 1. Emergy of Inputs to the Geobiosphere____________________________________________________________Note Inflow Solar Transformity Empower

sej/J 1024 sej/yr____________________________________________________________1 Solar energy absorbed 13.93

2 Crustal heat sources 1.20 x 104

8.06

3 Tidal energy absorbed 7.37 x 104

3.83

Total Global Empower -- 15.83

Transformities of renewable inputs to the geobiosphere are summarized below…(phew!)

Page 12: Lecture 5 Rev

3.93

8.063.83

x E24 sej/yr.

Empower Supporting the Geobiosphere

34.3

Page 13: Lecture 5 Rev

Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999)

____________________________________________________________________Note Inputs & Units Inflow Emergy/Unit* Empower

(J/yr) (sej/unit) E24 sej/yr_________________________________________________________________________________________________________________________________________

1 Renewable inputs -- -- 15.8

Non renewable energies released by society: 2 Oil, J 1.38 E20 9.06 E4 12.5 3 Natural gas (oil eq.), J 7.89 E19 8.05 E4 6.4 4 Coal (oil eq.), J 1.09 E20 6.71 E4 7.3 5 Nuclear power, J 8.60 E18 3.35 E5 2.9 6 Wood, J 5.86 E19 1.84 E4 1.1 7 Soils, J 1.38 E19 1.24 E5 1.7 8 Phosphate, J 4.77 E16 1.29 E7 0.6 9 Limestone, J 7.33 E16 2.72 E6 0.210 Metal ores, g 9.93 E14 1.68 E9 1.7__________________________________________________________________

Total non-renewable empower 34.3

Total global empower 50.1

Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999)

____________________________________________________________________Note Inputs & Units Inflow Emergy/Unit* Empower

(J/yr) (sej/unit) E24 sej/yr_________________________________________________________________________________________________________________________________________

1 Renewable inputs -- -- 15.8

Non renewable energies released by society: 2 Oil, J 1.38 E20 9.06 E4 12.5 3 Natural gas (oil eq.), J 7.89 E19 8.05 E4 6.4 4 Coal (oil eq.), J 1.09 E20 6.71 E4 7.3 5 Nuclear power, J 8.60 E18 3.35 E5 2.9 6 Wood, J 5.86 E19 1.84 E4 1.1 7 Soils, J 1.38 E19 1.24 E5 1.7 8 Phosphate, J 4.77 E16 1.29 E7 0.6 9 Limestone, J 7.33 E16 2.72 E6 0.210 Metal ores, g 9.93 E14 1.68 E9 1.7__________________________________________________________________

Total non-renewable empower 34.3

Total global empower 50.1

Empower Supporting the Geobiosphere

Page 14: Lecture 5 Rev

Table 2. Emergy of Products of the Global Energy System (Odum et. al 2000)_______________________________________________________________________________________________________________________________________________________________

Note Product Units Emergy* Production Emergy/Unit

E24 sej/yr units/yr sej/unit______________________________________________________________________________________________________________________________________________________

1 Global latent heat, J 15.83 1.26 E2412.6 sej/J2 Global wind circulation, J 15.83 6.45 E21 2.5 E3 sej/J3 Global precipitation on land, g 15.83 1.09 E20 1.5 E5 sej/g4 Global precipitation on land, J 15.83 5.19 E20 3.1 E4 sej/J5 Average river flow, g 15.83 3.96 E19 4.0 E5 sej/g6 Average river geopotential, J 15.83 3.4 E20 4.7 E4 sej/J7 Average river chem. energy, J 15.83 1.96 E20 8.1 E4 sej/J8 Average waves at the shore, J 15.83 3.1 E20 5.1 E4 sej/J9 Average ocean current, J 15.83 8.6 E17 1.8 E7 sej/J

Table 2. Emergy of Products of the Global Energy System (Odum et. al 2000)_______________________________________________________________________________________________________________________________________________________________

Note Product Units Emergy* Production Emergy/Unit

E24 sej/yr units/yr sej/unit______________________________________________________________________________________________________________________________________________________

1 Global latent heat, J 15.83 1.26 E2412.6 sej/J2 Global wind circulation, J 15.83 6.45 E21 2.5 E3 sej/J3 Global precipitation on land, g 15.83 1.09 E20 1.5 E5 sej/g4 Global precipitation on land, J 15.83 5.19 E20 3.1 E4 sej/J5 Average river flow, g 15.83 3.96 E19 4.0 E5 sej/g6 Average river geopotential, J 15.83 3.4 E20 4.7 E4 sej/J7 Average river chem. energy, J 15.83 1.96 E20 8.1 E4 sej/J8 Average waves at the shore, J 15.83 3.1 E20 5.1 E4 sej/J9 Average ocean current, J 15.83 8.6 E17 1.8 E7 sej/J

Global Emergy Intensities

Page 15: Lecture 5 Rev

Emergy of Products of the Global Energy System In the following table, emergy values for some main flows of the earth are calculated by dividing the total solar emergy input (15.83 E24 sej/yr) by each product's ordinary measure (number of joules, grams, dollars, individuals, etc.).

Emergy of Products of the Global Energy System____________________________________________________________________________________________________________________________________________________________

Product and Units Emergy* Production Emergy/UnitE24 sej/yr units/yr sej/unit

____________________________________________________________________________________________________________________________________________________________

Global latent heat, J 15.83 1.26 E24 12.6 sej/JGlobal wind circulation, J 15.83 6.45 E21 2.45 E3 sej/JGlobal precipitation on land, g 15.83 1.09 E20 1.45 E5 sej/gGlobal precipitation on land, J 15.83 5.19 E20 3.1 E4 sej/JAverage river flow, g 15.83 3.96 E19 4.0 E5 sej/gAverage river geopotential, J 15.83 3.4 E20 4.7 E4 sej/JAverage river chem. energy, J 15.83 1.96 E20 8.1 E4 sej/JAverage waves at the shore, J 15.83 3.1 E20 5.1 E4 sej/JAverage ocean current, J 15.83 8.6 E17 1.84 E7 sej/J

Emergy of Products of the Global Energy System____________________________________________________________________________________________________________________________________________________________

Product and Units Emergy* Production Emergy/UnitE24 sej/yr units/yr sej/unit

____________________________________________________________________________________________________________________________________________________________

Global latent heat, J 15.83 1.26 E24 12.6 sej/JGlobal wind circulation, J 15.83 6.45 E21 2.45 E3 sej/JGlobal precipitation on land, g 15.83 1.09 E20 1.45 E5 sej/gGlobal precipitation on land, J 15.83 5.19 E20 3.1 E4 sej/JAverage river flow, g 15.83 3.96 E19 4.0 E5 sej/gAverage river geopotential, J 15.83 3.4 E20 4.7 E4 sej/JAverage river chem. energy, J 15.83 1.96 E20 8.1 E4 sej/JAverage waves at the shore, J 15.83 3.1 E20 5.1 E4 sej/JAverage ocean current, J 15.83 8.6 E17 1.84 E7 sej/J

Emergy of Global Processes

Page 16: Lecture 5 Rev

Emergy of Atmospheric CirculationMany small circulation cells of the atmosphere converge and transform their energy into larger scale storms. These converge, concentrate, and transform into even larger circulation units that last longer and impact more. And so on…

Energetics of Atmospheric Circulation Units__________________________________________________________________________________________________________________________

Circulation Unit Kinetic Energy Flow TransformityJ/yr sej/J

__________________________________________________________________________________________________________________________

Over ocean circulation Latent heat into air 9.3 E23 12 Kinetic energy used 2.33 E21 192 Cumulus land circulation 9.45 E21 485 Meso-systems 1.73 E22 912 Temperate cyclones 4.9 E21 3230 Hurricanes 6.1 E20 6487 Hemisphere general circulation Surface winds 1.61 E22 983 Average circulation 6.4 E21 2473 Tropical jets 3.7 E21 4278 Polar jet 1.61 E21 9832

Energetics of Atmospheric Circulation Units__________________________________________________________________________________________________________________________

Circulation Unit Kinetic Energy Flow TransformityJ/yr sej/J

__________________________________________________________________________________________________________________________

Over ocean circulation Latent heat into air 9.3 E23 12 Kinetic energy used 2.33 E21 192 Cumulus land circulation 9.45 E21 485 Meso-systems 1.73 E22 912 Temperate cyclones 4.9 E21 3230 Hurricanes 6.1 E20 6487 Hemisphere general circulation Surface winds 1.61 E22 983 Average circulation 6.4 E21 2473 Tropical jets 3.7 E21 4278 Polar jet 1.61 E21 9832

Emergy of Global Processes

Page 17: Lecture 5 Rev

Emergy of Rain with Altitude

Precipitation varies with altitude, is affected by mountains, and depends on the weather systems in complex ways.

To estimate global emergy per unit rainfall with altitude, the percent of global rainfall at each altitude was assumed to be proportional to the percent of surface latent heat flux reaching that altitude

Evaluation of Continental Rainfall with Altitude______________________________________________________________NoteLevel Emergy Rain# Emergy/MassTransformity

m E24 sej/yr E20g/yr E4 sej/g E4 sej/J______________________________________________________________1 Surface15.83 1.09 14.5 2.92 990 15.83 0.63 25.1 5.03 1950 15.83 0.53 29.9 6.04 3010 15.83 0.31 50.310.05 4200 15.83 0.12 131.026.16 5570 15.83 0.08 198.039.57 718015.83 0.05 315.063.1

Evaluation of Continental Rainfall with Altitude______________________________________________________________NoteLevel Emergy Rain# Emergy/MassTransformity

m E24 sej/yr E20g/yr E4 sej/g E4 sej/J______________________________________________________________1 Surface15.83 1.09 14.5 2.92 990 15.83 0.63 25.1 5.03 1950 15.83 0.53 29.9 6.04 3010 15.83 0.31 50.310.05 4200 15.83 0.12 131.026.16 5570 15.83 0.08 198.039.57 718015.83 0.05 315.063.1

Emergy of Global Processes

Page 18: Lecture 5 Rev

Emergy of Ocean Circulation

The circulation of the oceans is a major part of the geobiosphere. Like the atmosphere, it forms a hierarchy of circulation units. Most of the energy is in small scale circulation at the ocean surface. Less energy and higher transformities are in mesoscale gyrals (medium scale eddies in coastal waters and eddies from jets). Large scale general ocean circulation has highest transformities, with less energy overall, especially as emergy is converged in jets like the gulf stream.

Energetics of Ocean Circulation_____________________________________________________________________________________________________________________________________________________

Circulation Unit Annual Energy TransformityJ/yr sej/unit

____________________________________________________________________________________________________________________________________

Surface eddies, J 3.0 x 1020 5.3 x 104 sej/JMesoscale gyrals, J 1.78 x 1019 8.9 x 104 sej/JSea Ice, g 3 x 1019 5.3 x 105 sej/gSea ice, J 9.0 x 1019 1.76 x 105 sej/JOcean circulation, J 8.5 x 1017 1.87 x 107 sej/JJet currents, J 1.67 x 1017 9.4 x 107 sej/J

Energetics of Ocean Circulation_____________________________________________________________________________________________________________________________________________________

Circulation Unit Annual Energy TransformityJ/yr sej/unit

____________________________________________________________________________________________________________________________________

Surface eddies, J 3.0 x 1020 5.3 x 104 sej/JMesoscale gyrals, J 1.78 x 1019 8.9 x 104 sej/JSea Ice, g 3 x 1019 5.3 x 105 sej/gSea ice, J 9.0 x 1019 1.76 x 105 sej/JOcean circulation, J 8.5 x 1017 1.87 x 107 sej/JJet currents, J 1.67 x 1017 9.4 x 107 sej/J

Emergy of Global Processes

Page 19: Lecture 5 Rev

Emergy of Main Features of the Land

After several billion years of development, the land of the geobiosphere has been self organized into a hierarchy of components and cycles on many scales. Circulation of the land is driven by the atmosphere, ocean, hydrological cycle, and deep convection of the hot mantle below. Emergy of Continental Parts of the Global Energy System __________________________________________________________________________________________________________________________________________ _____________________________________________________________

Component and Units Emergy* Production Emergy/UnitE24 sej/yr Units/yr sej/unit

_________________________________________________________________________________________________________________________________________

Earth heat flux, J 15.83 2.74 E20 5.8 E4 sej/JGlaciers, mass, g 15.83 2.48 E18 6.4 E6 sej/g crystal heat, J 15.83 8.3 E20 1.91 E4 sej/J geopotential, J 15.83 2.11 E19 7.5 E5 sej/J available heat, J 15.83 1.38 E19 1.14 E6 sej/JLand area sustained, ha 15.83 1.5 E10 1.05 E15 sej/haLand, global cycle, g 15.83 9.36 E15 1.69 E9 sej/gContinental sediment, g 15.83 7.4 E15 2.13 E9 sej/gVolcanoes, g 15.83 3.05 E15 3.8 E9 sej/gMountains, g 15.83 2.46 E15 6.43 E9 sej/gCratons, g 15.83 0.81 E15 19.5 E9 sej/g

Emergy of Continental Parts of the Global Energy System __________________________________________________________________________________________________________________________________________ _____________________________________________________________

Component and Units Emergy* Production Emergy/UnitE24 sej/yr Units/yr sej/unit

_________________________________________________________________________________________________________________________________________

Earth heat flux, J 15.83 2.74 E20 5.8 E4 sej/JGlaciers, mass, g 15.83 2.48 E18 6.4 E6 sej/g crystal heat, J 15.83 8.3 E20 1.91 E4 sej/J geopotential, J 15.83 2.11 E19 7.5 E5 sej/J available heat, J 15.83 1.38 E19 1.14 E6 sej/JLand area sustained, ha 15.83 1.5 E10 1.05 E15 sej/haLand, global cycle, g 15.83 9.36 E15 1.69 E9 sej/gContinental sediment, g 15.83 7.4 E15 2.13 E9 sej/gVolcanoes, g 15.83 3.05 E15 3.8 E9 sej/gMountains, g 15.83 2.46 E15 6.43 E9 sej/gCratons, g 15.83 0.81 E15 19.5 E9 sej/g

Emergy of Global Processes

Page 20: Lecture 5 Rev

Emergy of Global Processes

Emergy and the Spatial Organization of the Land

The spatial organization of earth processes results in large differences in rates of earth cycle, energy flux, and unit emergy between the high energy mountain centers and the broad low plains in between.

The larger scale features have longer turnover times, mass storages, and unit emergy values.

Page 21: Lecture 5 Rev

Emergy and the Spatial Organization of the LandLand area from the earth's hypsographic curve (area of land versus altitude) is multiplied by the erosion rate from the previous Figure to obtain the areal distribution of earth cycling. The mass flow at each level is related to the whole earth emergy to obtain the emergy per mass with altitude. These unit emergy values are appropriate for evaluating sediments generated in the earth cycle.Annual Emergy Contributions to Elevated Lands*

___________________________________________________________________________________________________________________________________________________________

Altitude Area Erosion Rate Mass Upflow Emergy/masskm 1012 m2 103 g/m2/yr 1015 g/yr 109 sej/g___________________________________________________________________________________________________________________________________________________________

0 148.1 -- 9.36 1.71 42.3 0.15 6.34 2.52 19.7 0.29 5.71 2.83 8.5 0.44 3.74 4.24 2.7 0.60 1.62 9.85 0.5 0.76 0.38 41.6

Annual Emergy Contributions to Elevated Lands* ___________________________________________________________________________________________________________________________________________________________

Altitude Area Erosion Rate Mass Upflow Emergy/masskm 1012 m2 103 g/m2/yr 1015 g/yr 109 sej/g___________________________________________________________________________________________________________________________________________________________

0 148.1 -- 9.36 1.71 42.3 0.15 6.34 2.52 19.7 0.29 5.71 2.83 8.5 0.44 3.74 4.24 2.7 0.60 1.62 9.85 0.5 0.76 0.38 41.6

Emergy of Global Processes

Page 22: Lecture 5 Rev

Emergy of RocksThe self organizational processes of the earth circulation generate many kinds of rock. Sediments become cemented, reefs are generated by eco-systems, sedimentary rocks are metamorphosed, etc.

Emergy of Sediments and Rocks ___________________________________________________________________________________________________________________________________________________________

Component and Units Emergy* Production Emergy/Unit E24 sej/yr E15 g/yr E9 sej/g

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Global land cycle, g 15.83 9.36 1.69 Continental sediment, g 15.83 0.4-9.4 1.7-42Pelagic-abyssal sediment, g 15.83 9.7 E15 1.63Shale 15.83 3.9 E15 4.1Sandstone 15.83 1.87 E15 8.5Limestone 15.83 1.68 E15 9.5Evaporites 15.83 0.094 169.0Oceanic basalt, g 15.83 63.4 0.25

Emergy of Sediments and Rocks ___________________________________________________________________________________________________________________________________________________________

Component and Units Emergy* Production Emergy/Unit E24 sej/yr E15 g/yr E9 sej/g

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Global land cycle, g 15.83 9.36 1.69 Continental sediment, g 15.83 0.4-9.4 1.7-42Pelagic-abyssal sediment, g 15.83 9.7 E15 1.63Shale 15.83 3.9 E15 4.1Sandstone 15.83 1.87 E15 8.5Limestone 15.83 1.68 E15 9.5Evaporites 15.83 0.094 169.0Oceanic basalt, g 15.83 63.4 0.25

Emergy of Global Processes

Page 23: Lecture 5 Rev

Table 3. Solar transformities of selected fuels and biofuels. (values also include the emergy associated to labor and services)

Fuel Transformity Reference

(sej/J)

Coal 6.70E+04 Odum et al., 2000 Natural Gas 8.04E+04 Odum et al., 2000 Crude oil 9.05E+04 Odum et al., 2000 Refined fuels (gasoline, diesel, etc) 1.11E+05 Odum et al., 2000 Hydrogen from water electrolysis (°) 1.39E+05 Brown and Ulgiati, 2004 Hydrogen from steam reforming of natural gas 1.93E+05 Raugei et al, 2005 Hydrogen from water electrolysis (*) 4.04E+05 Brown and Ulgiati, 2004 Methanol from wood 2.66E+05 Giampietro & Ulgiati, 2005 Bioethanol from corn 1.89E+05 Giampietro & Ulgiati, 2005 Ethanol from sugarcane 1.86E+05 - 3.15E+05 Ulgiati, 1997 Biodiesel 2.31E+05 Giampietro & Ulgiati, 2005 Electricity from renewables (§) 1.10E+05 - 1.12E+05 Brown and Ulgiati, 2004 Electricity from fuel cells 2.18E+05-2.68E+05 Raugei et al, 2005 Electricity from thermal plants (#) 3.35E+05-3.54E+05 Brown and Ulgiati, 2004

Emergy Intensities

Page 24: Lecture 5 Rev

Table 5. Emergy intensities for some common products

(after Odum, 1996)

Item Transformity Specific Emergy (Sej/J) (Sej/g)

Corn stalks 6.6 E4 Rice, high energy 1 7.4 E4 1.4 E9 Cotton 1.4 E5 Sugar (sugar cane) 2 1.5 E5 Corn 1.6 E5 2.4 E9 Butter 2.2 E6 Ammonia fertilizer 3.1 E6 Mutton 5.7 E6 Silk 6.7 E6 Wool 7.4 E6 Phosphate fertilizer 1.7 E7 Shrimp (aquaculture) 2.2 E7 Steel 2 8.7 E7 7.8 E9 1. After Brown and McKlanahan, (1996) 2. After Odum and Odum (1983)

Table 5. Emergy intensities for some common products

(after Odum, 1996)

Item Transformity Specific Emergy (Sej/J) (Sej/g)

Corn stalks 6.6 E4 Rice, high energy 1 7.4 E4 1.4 E9 Cotton 1.4 E5 Sugar (sugar cane) 2 1.5 E5 Corn 1.6 E5 2.4 E9 Butter 2.2 E6 Ammonia fertilizer 3.1 E6 Mutton 5.7 E6 Silk 6.7 E6 Wool 7.4 E6 Phosphate fertilizer 1.7 E7 Shrimp (aquaculture) 2.2 E7 Steel 2 8.7 E7 7.8 E9 1. After Brown and McKlanahan, (1996) 2. After Odum and Odum (1983)

Emergy Intensities

Page 25: Lecture 5 Rev

Table 1. Annual Emergy Contributions to Global Processes* (after Odum et al. 2000)___________________________________________________________________________________________________________________________________

Note Input Units Inflow Emergy/Unit Empowerunits/yr sej/unit (E24 sej/yr)

___________________________________________________________________________________________________________________________________

1 Solar insolation, J 3.93 E24 1.0 3.932 Deep earth heat, J 6.72 E20 1.20 E4 8.063 Tidal energy, J 0.52 E20 7.39 E4 3.844 Total 15.83

Table 1. Annual Emergy Contributions to Global Processes* (after Odum et al. 2000)___________________________________________________________________________________________________________________________________

Note Input Units Inflow Emergy/Unit Empowerunits/yr sej/unit (E24 sej/yr)

___________________________________________________________________________________________________________________________________

1 Solar insolation, J 3.93 E24 1.0 3.932 Deep earth heat, J 6.72 E20 1.20 E4 8.063 Tidal energy, J 0.52 E20 7.39 E4 3.844 Total 15.83

Emergy Flow Supporting the Geo-Biosphere

Page 26: Lecture 5 Rev

Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999)

________________________________________________________________________Note Inputs & Units Inflow Emergy/Unit* Empower

(J/yr) (sej/unit) E24 sej/yr________________________________________________________________________ 1 Renewable inputs -- -- 15.8Non-renewable energies released by society:2 Oil, J 1.38 E20 9.06 E4 12.53 Natural gas (oil eq.), J 7.89 E19 8.05 E4 6.44 Coal (oil eq.), J 1.09 E20 6.71 E4 7.35 Nuclear power, J 8.60 E18 3.35 E5 2.96 Wood, J 5.86 E19 1.84 E4 1.17 Soils, J 1.38 E19 1.24 E5 1.78 8 Phosphate, J 4.77 E16 1.29 E7 0.69 Limestone, J 7.33 E16 2.72 E6 0.210 Metal ores, g 9.93 E14 1.68 E9 1.7Total non-renewable empower 34.3Total global empower 50.1

Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999)

________________________________________________________________________Note Inputs & Units Inflow Emergy/Unit* Empower

(J/yr) (sej/unit) E24 sej/yr________________________________________________________________________ 1 Renewable inputs -- -- 15.8Non-renewable energies released by society:2 Oil, J 1.38 E20 9.06 E4 12.53 Natural gas (oil eq.), J 7.89 E19 8.05 E4 6.44 Coal (oil eq.), J 1.09 E20 6.71 E4 7.35 Nuclear power, J 8.60 E18 3.35 E5 2.96 Wood, J 5.86 E19 1.84 E4 1.17 Soils, J 1.38 E19 1.24 E5 1.78 8 Phosphate, J 4.77 E16 1.29 E7 0.69 Limestone, J 7.33 E16 2.72 E6 0.210 Metal ores, g 9.93 E14 1.68 E9 1.7Total non-renewable empower 34.3Total global empower 50.1

Emergy Flow Supporting the Geo-Biosphere

Page 27: Lecture 5 Rev

Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000)_____________________________________________________________________Note Product Units Emergy* ProductionEmergy/Unit

E24 sej/yr units/yr sej/unit_____________________________________________________________________1 Global latent heat, J 15.83 1.26 E24 12.6 sej/J2 Global wind circulation, J 15.83 6.45 E21 2.5 E3 sej/J3 Global precipitation on land, g 15.83 1.09 E20 1.5 E5 sej/g4 Global precipitation on land, J 15.83 5.19 E20 3.1 E4 sej/J5 Average river flow, g 15.83 3.96 E19 4.0 E5 sej/g6 Average river geopotential, J 15.83 3.4 E20 4.7 E4 sej/J7 Average river chem. energy, J 15.83 1.96 E20 8.1 E4 sej/J8 Average waves at the shore, J 15.83 3.1 E20 5.1 E4 sej/J9 Average ocean current, J 15.83 8.6 E17 1.8 E7 sej/J

Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000)_____________________________________________________________________Note Product Units Emergy* ProductionEmergy/Unit

E24 sej/yr units/yr sej/unit_____________________________________________________________________1 Global latent heat, J 15.83 1.26 E24 12.6 sej/J2 Global wind circulation, J 15.83 6.45 E21 2.5 E3 sej/J3 Global precipitation on land, g 15.83 1.09 E20 1.5 E5 sej/g4 Global precipitation on land, J 15.83 5.19 E20 3.1 E4 sej/J5 Average river flow, g 15.83 3.96 E19 4.0 E5 sej/g6 Average river geopotential, J 15.83 3.4 E20 4.7 E4 sej/J7 Average river chem. energy, J 15.83 1.96 E20 8.1 E4 sej/J8 Average waves at the shore, J 15.83 3.1 E20 5.1 E4 sej/J9 Average ocean current, J 15.83 8.6 E17 1.8 E7 sej/J

Global Emergy Intensities

Page 28: Lecture 5 Rev

Table 3. Solar transformities of selected fuels and biofuels. (values also include the emergy associated to labor and services)

Fuel Transformity Reference

(sej/J)

Coal 6.70E+04 Odum et al., 2000 Natural Gas 8.04E+04 Odum et al., 2000 Crude oil 9.05E+04 Odum et al., 2000 Refined fuels (gasoline, diesel, etc) 1.11E+05 Odum et al., 2000 Hydrogen from water electrolysis (°) 1.39E+05 Brown and Ulgiati, 2004 Hydrogen from steam reforming of natural gas 1.93E+05 Raugei et al, 2005 Hydrogen from water electrolysis (*) 4.04E+05 Brown and Ulgiati, 2004 Methanol from wood 2.66E+05 Giampietro & Ulgiati, 2005 Bioethanol from corn 1.89E+05 Giampietro & Ulgiati, 2005 Ethanol from sugarcane 1.86E+05 - 3.15E+05 Ulgiati, 1997 Biodiesel 2.31E+05 Giampietro & Ulgiati, 2005 Electricity from renewables (§) 1.10E+05 - 1.12E+05 Brown and Ulgiati, 2004 Electricity from fuel cells 2.18E+05-2.68E+05 Raugei et al, 2005 Electricity from thermal plants (#) 3.35E+05-3.54E+05 Brown and Ulgiati, 2004

Regional Emergy Intensities

Page 29: Lecture 5 Rev

Table 5. Emergy intensities for some common products

(after Odum, 1996)

Item Transformity Specific Emergy (Sej/J) (Sej/g)

Corn stalks 6.6 E4 Rice, high energy 1 7.4 E4 1.4 E9 Cotton 1.4 E5 Sugar (sugar cane) 2 1.5 E5 Corn 1.6 E5 2.4 E9 Butter 2.2 E6 Ammonia fertilizer 3.1 E6 Mutton 5.7 E6 Silk 6.7 E6 Wool 7.4 E6 Phosphate fertilizer 1.7 E7 Shrimp (aquaculture) 2.2 E7 Steel 2 8.7 E7 7.8 E9 1. After Brown and McKlanahan, (1996) 2. After Odum and Odum (1983)

Table 5. Emergy intensities for some common products

(after Odum, 1996)

Item Transformity Specific Emergy (Sej/J) (Sej/g)

Corn stalks 6.6 E4 Rice, high energy 1 7.4 E4 1.4 E9 Cotton 1.4 E5 Sugar (sugar cane) 2 1.5 E5 Corn 1.6 E5 2.4 E9 Butter 2.2 E6 Ammonia fertilizer 3.1 E6 Mutton 5.7 E6 Silk 6.7 E6 Wool 7.4 E6 Phosphate fertilizer 1.7 E7 Shrimp (aquaculture) 2.2 E7 Steel 2 8.7 E7 7.8 E9 1. After Brown and McKlanahan, (1996) 2. After Odum and Odum (1983)

Agricultural Emergy Intensities

Page 30: Lecture 5 Rev

What Now?

• We’ve estimated Nature’s work in primary processes– Rainfall, Wind, Tides/Waves, Soils,

Rocks, etc.• Now we can compile these values to

study secondary processes– Agriculture, Forestry, Fisheries, etc.

• Knowing Nature’s work and studying embodied work in secondary processes is used for policy analysis

Page 31: Lecture 5 Rev

Environmental Accounting of Sahelian Agroecosystems

• Identify systems– Agroforestry, Rotating rangeland,

Conventional cropping• Identify resource basis and yields

– Climate, soil, purchased goods/services, yields, changes in internal stocks (e.g. SOM)

• Synthesize information into Env. Acct. tables– Use previously computed transformities– Assess sensitivity to transformities– Determine if local values are needed

Page 32: Lecture 5 Rev

Next…

• Practical applications– Emergy analysis of states and nations– Environmental Impact Assessment

• Soil Erosion• Water Supply• Recycling