lecture on rayleigh scatterring

Upload: ajoy2bar

Post on 07-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Lecture on Rayleigh Scatterring

    1/77

    R. Botet 04/2016

    Module A:electromagnetic theory

    of l ight scatter ing

    LECTURE 1 :

    small particles and spheres  

  • 8/18/2019 Lecture on Rayleigh Scatterring

    2/77

    R. Botet 04/2016

    OUTLINE - LECTURE 1 -

    0. prerequisite –  what you should know about the electromagnetic waves –  

     0.1 electromagnetic field and Maxwell equations

     0.2 plane transverse em wave, shape and polarization

     0.3 the oscillating electric dipole

    I. concept –  what is light scattering? –  

     I.1 light scattering geometry

     I.2 fundamentals

     I.3 types of light –  types of particles

     I.4 types of scattering  I.5 main parameters governing light scattering

    II. context –  why light scattering? –  

    II.1 the direct problem

    II.2 the inverse problem

    II.3 light scattering –  fundamentals –  

    III. case of the small particle –  Rayleigh scattering –  

    III.1 Rayleigh theory

    III.2 instructions of use for the Rayleigh theory

    IV. case of the sphere  –  the Mie solution –  

    IV.1 Mie theory

    IV.2 instructions of use for the Mie solution IV.3 Mie theory numerical codes

  • 8/18/2019 Lecture on Rayleigh Scatterring

    3/77

    R. Botet 04/2016

    0. PREREQUISITE

    what you should know about the em waves

  • 8/18/2019 Lecture on Rayleigh Scatterring

    4/77

    R. Botet 04/2016

    0.1 EM FIELD AND MAXWELL EQUATIONS- THE UNCHARGED, NON-MAGNETIC, ISOTROPIC CASE -

    em field (E , B) is a couple of complex-valued vectors, solution anywhere anytime ofthe Maxwell equations:

    ;

    for isotropic dielectric material, e r  ( = relative electric permittivity) is a scalar depending

    on the material. The refractive index m is such that: m2 = e r  

    for this kind of material, only three components of the vector field are independent

    (for example : vector E)

    at boundary between two dielectric uncharged non-magnetic materials:

    the normal components of D and of B are continuous through the interface

    the tangential components of E and of H are continuous through the interface

    ED r oe  e     HB o 

    0  D   0  B

      BE

      D

    H

    no charge

    no current

    non-magnetic

  • 8/18/2019 Lecture on Rayleigh Scatterring

    5/77

    R. Botet 04/2016

    0.2 PLANE TRANSVERSE EM WAVE –  SHAPE AND POLARIZATION -

    em monochromatic plane wave of frequency w  and wavenumber k , propagating alongthe z -axis and linearly polarized along the x-axis, is:

    which is solution of the Helmoltz equation:

    k  = m(w /c)  (dispersion relation )

    k  = 2p/l (wavelength def ini tion )

    any em wave can be expanded in a series of em monochromatic wave, since the

    Maxwell equations are linear ( superposition theorem and Fourier theorem)

     x

     z k t 

    oe E    eE  w i

    0EE   2

    222

    cm

  • 8/18/2019 Lecture on Rayleigh Scatterring

    6/77

    R. Botet 04/2016

    0.3 THE OSCILLATING ELECTRIC DIPOLE –  RADIATED ELECTRIC FIELD -

    an oscillating electric dipole of dipole moment p radiates electric field of the form(spherical coordinates) :

    Every piece of volume v of

    a dielectric material submitted to external

    electric field, becomes an electric dipole of moment :

     

      

     kr r k r 

    ek r r r r 

    kr 

    o

    dip

    i1)(3)(

    4   22

    i2

    ppeeepeEpe 

     Electric dipole radiation. The dipole lies in the plane of the drawing, point vertically upward and oscillates.

    Colour indicates the strength of the field travelloing outward (Wikipedia)

    radiative static induction

    ext vEp  

     polarizability per unit of volume = 3 (m21)/(m22)

  • 8/18/2019 Lecture on Rayleigh Scatterring

    7/77R. Botet 04/2016

    OUTLINE - LECTURE 1 -

    0. prerequisite –  what you should know about the electromagnetic waves –  

     0.1 electromagnetic field and Maxwell equations

     0.2 plane transverse em wave, shape and polarization

     0.3 the oscillating electric dipole

    I. concept –  what is light scattering? –  

     I.1 light scattering geometry

     I.2 fundamentals

     I.3 types of light –  types of particles

     I.4 types of scattering  I.5 main parameters governing light scattering

    II. context –  why light scattering? –  

    II.1 the direct problem

    II.2 the inverse problem

    II.3 light scattering –  fundamentals –  

    III. case of the small particle –  Rayleigh scattering –  

    III.1 Rayleigh theory

    III.2 instructions of use for the Rayleigh theory

    IV. case of the sphere  –  the Mie solution –  

    IV.1 Mie theory

    IV.2 instructions of use for the Mie solution IV.3 Mie theory numerical codes

  • 8/18/2019 Lecture on Rayleigh Scatterring

    8/77R. Botet 04/2016

    the source of light is not seen directly

    sunlight is scattered by small dust particles

    I. 1. DEFINITION 

  • 8/18/2019 Lecture on Rayleigh Scatterring

    9/77R. Botet 04/2016

    I. 1. LIGHT SCATTERING GEOMETRY

    q

  • 8/18/2019 Lecture on Rayleigh Scatterring

    10/77R. Botet 04/2016

    I. 1. LIGHT SCATTERING GEOMETRY

    q

  • 8/18/2019 Lecture on Rayleigh Scatterring

    11/77R. Botet 04/2016

    wave scattering = redirection of radiation out of the incident direction of propagation

    scatter ing resul ts from light-matter interaction  

    (e.g. interaction with particles)

    reflection, refraction, diffraction, are forms of wave scattering

    I. 2. LIGHT SCATTERING - FUNDAMENTALS - 

    reflection nebula IC 2631 MPG/ESO

  • 8/18/2019 Lecture on Rayleigh Scatterring

    12/77R. Botet 04/2016

    frequency = actual speed of light/wavelengthI. 3. TYPES OF “LIGHT”... 

  • 8/18/2019 Lecture on Rayleigh Scatterring

    13/77R. Botet 04/2016

    Aitken particles

    gas molecules

    viruses

    tobacco smoke

    bacteria

    ice crystal

    fog

    mist

    rain

    objects visible by human eye

    drizzle

    pollen

    snowflake

    ° PM2.5° 

    PM10

       l   i  g   h   t  v   i  s   i   b   l  e   b  y   h  u  m  a  n  e  y  eI. 3. TYPES OF “LIGHT” AND OF “PARTICLES” 

    Diesel smokesnowflake

    ice crystal

    pollen

    Diesel smoke

    bacteria

    smoke

    viruses

  • 8/18/2019 Lecture on Rayleigh Scatterring

    14/77R. Botet 04/2016

    I. 4. TYPES OF SCATTERING (1)

    elastic scatter ing  wavelength of scattered light

    = wavelength of incident light

    inelastic scatter ing  wavelength of scattered light

     wavelength of incident light

  • 8/18/2019 Lecture on Rayleigh Scatterring

    15/77R. Botet 04/2016

    I. 4. TYPES OF SCATTERING (1)

    elastic scatter ing  wavelength of scattered light

    = wavelength of incident light

    inelastic scatter ing  wavelength of scattered light

     wavelength of incident light

  • 8/18/2019 Lecture on Rayleigh Scatterring

    16/77R. Botet 04/2016

    I. 5. MAIN PARAMETERS GOVERNING LIGHTSCATTERING

    optical size parameter : x   p L /l 

    contrast  : difference of refractive index  m  m 0

    m 0

    wavelength :m

    incident wave

     particle shape

     particle material

    sphere of radius a  L = diameter = 2a

    cube of side a    L = a

    … 

  • 8/18/2019 Lecture on Rayleigh Scatterring

    17/77R. Botet 04/2016

    I. 5. MAIN OBSERVABLES FOR LIGHT SCATTERING

    angular distr ibution of the scattered intensity :

     I  sca(q , f ) = ( I  sca I // sca)

     

    l inear polari zation:  P = ( I  sca I // sca)/( I  sca I // sca)

    scatter ing, extinction cross sections : C  sca , C ext

    einc

    e||ince

     sca

     x

     z

     y

    qf

    e|| sca

  • 8/18/2019 Lecture on Rayleigh Scatterring

    18/77R. Botet 04/2016

    I. 5. MAIN OBSERVABLES FOR LIGHT SCATTERING

    angular distr ibution of the scattered intensity :

     I  sca(q , f ) = ( I  sca I // sca)

     

    l inear polari zation:  P = ( I  sca I // sca)/( I  sca I // sca)

    scatter ing, extinction cross sections : C  sca , C ext

    einc

    e||ince

     sca

     x

     z

     y

    q

    e|| sca

    analyzer    I  sca

    analyzer ||

      I || sca

  • 8/18/2019 Lecture on Rayleigh Scatterring

    19/77R. Botet 04/2016

    I. 5. MAIN OBSERVABLES FOR LIGHT SCATTERING

    angular distr ibution of the scattered intensity :

     I  sca(q , f ) = ( I  sca I // sca)

     

    l inear polari zation:  P = ( I  sca I // sca)/( I  sca I // sca)

    scatter ing, extinction cross sections : C  sca , C ext x

     y

    Note : Im{m} = 0  absorption = 0 

     scattering

     scattering  scattering

     scattering

    absorption

    loss of intensity due to

    scatter ing and absorption  

     I inc  I trans

     I trans = I inc eC 

    extn l

     Beer-Lambert law

    n

  • 8/18/2019 Lecture on Rayleigh Scatterring

    20/77R. Botet 04/2016

    SUMMARY OF THE SECTION:

    “GENERALITIES ABOUT LIGHT SCATTERING” 

    light scattering = em wave/particle interaction

    two fundamental non-dimensional parameters:

    the optical size parameter x  p  L/l 

    the contrast  mm0

  • 8/18/2019 Lecture on Rayleigh Scatterring

    21/77R. Botet 04/2016

    OUTLINE - LECTURE 1 -

    0. prerequisite –  what you should know about the electromagnetic waves –  

     0.1 electromagnetic field and Maxwell equations

     0.2 plane transverse em wave, shape and polarization  0.3 the oscillating electric dipole

    I. concept –  what is light scattering? –  

     I.1 light scattering geometry

     I.2 fundamentals

     I.3 types of light –  types of particles

     I.4 types of scattering  I.5 main parameters governing light scattering

    II. context –  why light scattering? –  

    II.1 the direct problem

    II.2 the inverse problem

    II.3 light scattering –  fundamentals –  

    III. case of the small particle –  Rayleigh scattering –  

    III.1 Rayleigh theory

    III.2 instructions of use for the Rayleigh theory

    IV. case of the sphere  –  the Mie solution –  

    IV.1 Mie theory

    IV.2 instructions of use for the Mie solution

    IV.3 Mie theory numerical codes

  • 8/18/2019 Lecture on Rayleigh Scatterring

    22/77R. Botet 04/2016

    II. 1. THE DIRECT PROBLEM

    you know the incident em wave

    you know the particle shape and material  

    m 0

    goal: controlling the scattered wave 

    (intensity, polarization)

    incident wave

    wavelength :m

  • 8/18/2019 Lecture on Rayleigh Scatterring

    23/77R. Botet 04/2016

    II. 1. THE DIRECT PROBLEM

    1) write the Maxwell equations for all the em waves

    2) write the boundary conditions on the particle  

    m 0

    3) solve the vector linear equations… 

    incident wave

    wavelength :m

  • 8/18/2019 Lecture on Rayleigh Scatterring

    24/77R. Botet 04/2016

    II. 1. THE DIRECT PROBLEM

    1) the homogeneous sphere (G. Mie, 1905)

    3) the inf ini te cylinder (J.R. Wait, 1955) 

    the mathematical problem is well-posed and

    it is possible to obtain the exact solution in a few cases:

    4) the aggregate of homogeneous spheres (F. Borghese, 1979) 

    2) the coated sphere (A. Aden and M. Kerker, 1951)

    core

    coating

  • 8/18/2019 Lecture on Rayleigh Scatterring

    25/77

    R. Botet 04/2016

    II. 2. THE INVERSE PROBLEM

    you know the incident em wave

    you know the scattered em wave  

    m 0

    m

    goal: characterizing the scattering particles

    incident wave

    wavelength :

  • 8/18/2019 Lecture on Rayleigh Scatterring

    26/77

    R. Botet 04/2016

    II. 2. THE INVERSE PROBLEM

    the mathematical problem is ill-posed and

    there is no general way to characterize the particles

    though it may be the most important problem… 

    …only : guess-fit-errors

     pollution : which particles? remote objects: which structure? medical: which hazard?

  • 8/18/2019 Lecture on Rayleigh Scatterring

    27/77

    R. Botet 04/2016

    II.3 LIGHT SCATTERING - FUNDAMENTALS -

    incident field = em transverse plane wave

     x-linearly polarized em plane wave

  • 8/18/2019 Lecture on Rayleigh Scatterring

    28/77

    R. Botet 04/2016

    II.3 LIGHT SCATTERING - FUNDAMENTALS -

    einc

    e||inc

    e||sca

    esca

    incincincincinc   E  E    eeE

     sca sca sca sca sca  E  E    eeE

    = plane wave

    = transverse

    wave

  • 8/18/2019 Lecture on Rayleigh Scatterring

    29/77

    R. Botet 04/2016

    II.3 LIGHT SCATTERING - FUNDAMENTALS -

    einc

    e||inc

    e||sca

    esca

    incincincincinc   E  E    eeE

     sca sca sca sca sca  E  E    eeE

     

      

      

      

      

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E 

    S S 

    S S 

    kr 

    e

     E 

     E 

    14

    32)(i

    i

    amplitude-scatteringmatrix elements

  • 8/18/2019 Lecture on Rayleigh Scatterring

    30/77

    R. Botet 04/2016

    II.3 LIGHT SCATTERING - FUNDAMENTALS -

     

     

     

     

     

     

     

     

     

     

     

     

      inc

    inc z r k 

     sca

     sca

     E 

     E 

    S S 

    S S 

    kr 

    e

     E 

     E 

    14

    32)(i

    i

     I  sca= I inc 

    2

    4

    2

    3

    2

    2

    2

    12

    1S S S S   

    = angular distribution of the scattered intensity

    = degree of linear polarization of the scattered light

    … 

    to know the amplitude-scattering coefficients 

    to know everything  about the far-field scattered light

     P = 

    2

    4

    2

    3

    2

    2

    2

    1   S S S S    2

    4

    2

    3

    2

    2

    2

    1   S S S S   

  • 8/18/2019 Lecture on Rayleigh Scatterring

    31/77

    R. Botet 04/2016

    II.3 LIGHT SCATTERING - FUNDAMENTALS -

     

     

     

     

     

     

     

     

     

     

     

     

      inc

    inc z r k 

     sca

     sca

     E 

     E 

    S S 

    S S 

    kr 

    e

     E 

     E 

    14

    32)(i

    i

    … 

    to know the amplitude-scattering coefficients 

    to know everything  about the far-field scattered light

    C  sca = 

    f q q f q    d d  I  sca

      sin),(

     I inc  I trans

     I trans = I inc eC 

    ext N l

    )0()0(Re2

    212

      q q p 

    S S k 

    C ext 

     Beer-Lambert law

     N

  • 8/18/2019 Lecture on Rayleigh Scatterring

    32/77

    R. Botet 04/2016

    II.3 LIGHT SCATTERING - FUNDAMENTALS -

    when several scattering particles are illuminated at the same time, two cases may appear:

    • either the particle positions are correlated  one each other (they form a rigid aggregate)

     fields are additive (coherence)

    • or the particle positions are uncorrelated (they all move independently)

     intensities are additive (no coherence)

      i

     sca sca sca  i E i E  I   22

    )()(

      i

     sca

    i

     sca sca   i E i E  I 

      22

    )()(

  • 8/18/2019 Lecture on Rayleigh Scatterring

    33/77

    R. Botet 04/2016

    OUTLINE - LECTURE 1 -

    0. prerequisite –  what you should know about the electromagnetic waves –  

     0.1 electromagnetic field and Maxwell equations

     0.2 plane transverse em wave, shape and polarization  0.3 the oscillating electric dipole

    I. concept –  what is light scattering? –  

     I.1 light scattering geometry

     I.2 fundamentals

     I.3 types of light –  types of particles

     I.4 types of scattering

     I.5 main parameters governing light scattering

    II. context –  why light scattering? –  

    II.1 the direct problem

    II.2 the inverse problem

    II.3 light scattering –  fundamentals –  

    III. case of the small particle –  Rayleigh scattering –  

    III.1 Rayleigh theory

    III.2 instructions of use for the Rayleigh theory

    IV. case of the sphere  –  the Mie solution –  

    IV.1 Mie theory

    IV.2 instructions of use for the Mie solution

    IV.3 Mie theory numerical codes

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    34/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SPHERE- RAYLEIGH THEORY -

    Step 1 : replace the particle by em dipole

    Step 2 : the Maxwell equations give the polarizability of the dipole

    Step 3 : the scattered field is the resulting dipolar field 

       d  e  r   i  v  a   t   i  o  n   i  n  a  n  u   t  s   h  e   l   l

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    35/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    incident wave  

      scattering particle

    radius

  • 8/18/2019 Lecture on Rayleigh Scatterring

    36/77

    R. Botet 04/2016

     particle of volume v, with refractive index m embedded in a medium of relative permittivity

    m =1 and a uniform electric field Einc

    solution of the Maxwell equations is dipole radiation from the dipole moment:

    t m

    mat  incEp

    2

    14

    2

    23

      III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    m

    Einc

    3  volume material electric field

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    37/77

    R. Botet 04/2016

     particle of volume v, with refractive index m embedded in a medium of relative permittivity

    m =1 and a uniform electric field Einc

    solution of the Maxwell equations is dipole radiation from the dipole moment:

    t t  incEp  

      polarizability  

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    m

    Einc

    2

    13

    2

    2

    m

    mv 

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    38/77

    R. Botet 04/2016

     particle of volume v, with refractive index m embedded in a medium of relative permittivity

    m =1 and a uniform electric field Einc

    solution of the Maxwell equations is dipole radiation from the dipole moment:

    t t  incEp  

      polarizability  

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    m

    Einc

    2

    13

    2

    2

    m

    mv 

    small particle = electric dipole

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    39/77

    R. Botet 04/2016

    an oscillating electric dipole radiates the far-field electric field:

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    )(4

    3i

    incr r 

    kr 

     sca k kr e EeeE  

    p  vector form  

    erincident wave

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    40/77

    R. Botet 04/2016

    an oscillating electric dipole radiates the electric field:

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    )(4

    3i

    incr r 

    kr 

     sca k kr e EeeE  

    p  vector form  

    erincident wave

    exercise : write the formula in the matrix form

     

      

      

      

     

     

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E 

    S S 

    S S 

    kr 

    e

     E 

     E 

    14

    32)(i

    i

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    41/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    )(4

    3i

    incr r 

    kr 

     sca

    kr 

    e

    EeeE  p  vector form  

    e z ’ er

    incident wave

    exercise : write the formula in the matrix form

    e xe y

    e z

    e x’  

    e y’ e y

    Einc

    E//inc

    E// sca

    E scaq

     z k 

    o

    inc  e

     E i

    0

    0

     

     

     

     

    E

     

     

     

     

    cos

    0

    sin

    r e;

     

     

     

     

    sin

    0

    cos

    cos)(oincr r 

      E  E ee

    e x’ 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

      inc

    inc z r k 

     sca

     sca

     E 

     E k 

    kr 

    e

     E 

     E 

    10

    0cos

    4

    ii

    3)(i q 

     

     z = 0

    matrix

    form  

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    42/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

     

      

      

      

      

      

     

     

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E k 

    kr 

    e

     E 

     E 

    10

    0cos

    4

    ii

    3)(i q 

     

     particle volume particle material

    angular dependence

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    43/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    the scattered intensity at 90° is ½ the forward intensity

    q 2cos1 sca I   

    || || x

     z

     z

     y

    q

    . .

    .

     y

    graphic representations of the angular distribution of the scattered intensity in the Rayleigh theory

     

      

      

      

      

      

      

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E k 

    kr 

    e

     E 

     E 

    10

    0cos

    4

    ii

    3)(i q 

      242322212

    1/   S S S S  I  I  inc sca   and

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    44/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

     I  sca(l   450 nm) = 10   I  sca(l   800 nm)

     small particles scatter much more the small than the large wavelengths

    consequences of the wavelength dependence of the scattered intensity in the Rayleigh theory

     

      

      

      

      

      

      

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E k 

    kr 

    e

     E 

     E 

    10

    0cos

    4

    ii

    3)(i q 

      242322212

    1/   S S S S  I  I  inc sca   and

    4

    1

    l  sca I 

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    45/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    4

    1

    l  sca I 

    explains the color blue of the sky

    ( scattering by molecules   0.3 nm)

    and the reddening of forward transmissionscattered blue

    not-scattered red

    consequences of the wavelength dependence of the scattered intensity in the Rayleigh theory

    (provided m does not depend on the wavelength)

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    46/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    4

    1

    l  sca I 

    consequences of the wavelength dependence of the scattered intensity in the Rayleigh theory

     but why blue and not violet ?...

    III 1

  • 8/18/2019 Lecture on Rayleigh Scatterring

    47/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    4

    1

    l  sca I 

     but why blue and not violet?...

    atmosphere optical absorption

    Rayleigh scattering

     blue sky spectrum (white curve)  

    III 1 LIGHT SCATTERING BY A SMALL PARTICLE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    48/77

    R. Botet 04/2016

    III.1 LIGHT SCATTERING BY A SMALL PARTICLE- RAYLEIGH THEORY -

    degree of polarization of the scattered intensity in the Rayleigh theory

    q 2

    2

    cos1

    sin

     P 

     

      

      

      

      

      

     

     

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E k 

    kr 

    e

     E 

     E 

    10

    0cos

    4

    ii

    3)(i q 

     and P = 

    24

    23

    22

    21   S S S S   

    2

    4

    2

    3

    2

    2

    2

    1   S S S S   

    q   90° 

    q   0° 

    q   180° 

    Paraselene, 2007, Nikon D80, Sigma lens 10-20 mm, polarizing filter. unprocessed image

    backscattering

     forward

    linearly polarized

     partially polarized

    unpolarized

    q

    SUMMARY OF THE SECTION:

  • 8/18/2019 Lecture on Rayleigh Scatterring

    49/77

    R. Botet 04/2016

    SUMMARY OF THE SECTION:

    “RAYLEIGH THEORY” 

    when particle is small enough, it can be represented by an

    em dipole

    the dipole may be anisotropic if the real particle is notspherical

    the scattered field is the em dipolar field

    III 2 RAYLEIGH THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    50/77

    R. Botet 04/2016

    III.2 RAYLEIGH THEORYREQUIREMENTS

    1) refractive index, shape and volume of the particle

    1) table relating the effective (anisotropic) refractive index to the shape

    of the particle

    INPUT:

    REQUIREMENT:

    III 2 RAYLEIGH THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    51/77

    R. Botet 04/2016

    III.2 RAYLEIGH THEORYCONDITIONS OF USE

    1) x  < 0.3

    2) a less restrictive condition is sometimes used : |m |x  < 1, though it is verysimilar

    CONDITIONS :

    that is very small particles :  L < 0.1 l  ex. : L < 50 nm for l 500 nm(or :  N  < 150000 Fe atoms)

    III 2 RAYLEIGH THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    52/77

    R. Botet 04/2016

    III.2 RAYLEIGH THEORYPROS & CONS

    PROS :

    • valid for any finite particle shape

    • fully analytical, then easy to handle

    CONS :

    • only for very small particles

    III 2 RAYLEIGH THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    53/77

    R. Botet 04/2016

    III.2 RAYLEIGH THEORY- APPLICATIONS -

    any very small particles

  • 8/18/2019 Lecture on Rayleigh Scatterring

    54/77

    R. Botet 04/2016

    OUTLINE - LECTURE 1 -

    0. prerequisite –  what you should know about the electromagnetic waves –  

     0.1 electromagnetic field and Maxwell equations

     0.2 plane transverse em wave, shape and polarization

     0.3 the oscillating electric dipole

    I. concept –  what is light scattering? –  

     I.1 light scattering geometry

     I.2 fundamentals

     I.3 types of light –  types of particles

     I.4 types of scattering

     I.5 main parameters governing light scattering

    II. context –  why light scattering? –  

    II.1 the direct problem

    II.2 the inverse problem

    II.3 light scattering –  fundamentals –  

    III. case of the small particle –  Rayleigh scattering –  

    III.1 Rayleigh theory

    III.2 instructions of use for the Rayleigh theory

    IV. case of the sphere  –  the Mie solution –  

    IV.1 Mie theory

    IV.2 instructions of use for the Mie solution

    IV.3 Mie theory numerical codes

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    55/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    as plane waves form natural basis for a medium invariant by translation,

    vector spherical harmonics form natural basis for the spherical symmetry

    Step 1 : search for scalar functions y   solutions of the scalar  Helmoltz equation

    under the form y = f(r ) g(q ) h(f ), and which are finite everywhere

    Step 2 : for each scalar function y , define the two vector functions :

    then: M and N are both solutions of the correspondingvector  Helmoltz equation

    Step 3 : expand the incident em plane wave Einc and the em scattered wave E sca as sums of thevector spherical wave functions M and N

    Step 4 : write the boundary conditions for the em fields at the surface of the sphere to find

    equations relating the various coefficients in the expansions of the waves inM and N

    Step 5 : solve the equations

    022 y y    k 

    y rM     MN   k 

    1

       d  e  r   i  v  a   t   i  o  n   i  n  a  n  u   t  s   h  e   l   l

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    56/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    the incident plane wave writes :

    where the vector spherical wave functions M(R), N(R) can be written in terms

    of associated Legendre and Bessel functions of the reduced distance r  = k r  :

    with the angular functions :

    1

    )R (

    1

    )R (

    1

    cosi in

    nenon x

    kr 

    oinc   E e E    NMeEq 

     r  r p 

     r y  2/12

        nn   J 

     r y 

     r p   r 

    y p q    q  d 

    d nn   nnnr nnne

    1sincossincos)1( 2

    )R (

    1   eeeN  

      nnnnoy 

     r  p   q 

    1sincos

    )R (

    1   eeM  

    q q p    sin/cos1nn   P 

    q q     d dP nn   /cos1

    )1(

    12i

    nn

    n E  E   n

    on

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    57/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    examples of Legendre and Bessel functions :

    p 1  1   1 = cos q   y 1 = (sin r   –  r  cos r )/ r  

    p 2  3 cos q    2 = 3(2cos

    2 q 1) y 2 = ((3- r  2

     )sin r 3 r  cos r )/ r 2

    … 

     r  r p 

     r y  2/12

        nn   J 

     r y 

     r p   r 

    y p q    q  d 

    d nn   nnnr nnne

    1sincossincos)1( 2

    )R (

    1   eeeN  

      nnnnoy 

     r  p   q 

    1sincos

    )R (

    1   eeM  

    q q p    sin/cos1nn   P 

    q q     d dP nn   /cos1

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    58/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    the wave inside the spherical particle writes generally :

    with the same vector spherical wave functions M(R), N(R) as for the incident wave

    (because the field has to be finite at the origin)

    1

    )R (

    1

    )R (

    1   in

    nennonn sph   d c E    NME

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    59/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    the scattered wave writes generally :

    where the vector spherical wave functions M and N are the same as M(R), N(R),

    replacing the regular y n by the general x n (because the field has not to be finite at the origin):

    in which :

    1

    11   in

    nennonn sca   ab E    NME

    q q p    sin/cos1nn   P 

    q q     d dP nn   /cos1  r  r  r 

    p  r x  2/12/1   i

    2      nnn   Y  J 

     r x 

     r p   r 

    x p q    q  d 

    d nn   nnnr nnne

    1sincossincos)1( 21   eeeN  

      nnnnox 

     r  p   q 

    1sincos1   eeM  

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    60/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    note that only the radial component of the corresponding vector spherical

    functions are different :

    is the regular part of Mo1n

     r  r  r p  r x  2/12/1   i2       nnn  Y  J 

      nnnnox 

     r  p   q 

    1sincos1   eeM  

      nnnnoy 

     r  p   q 

    1sincos

    )R (

    1   eeM  

     r  r p 

     r y  2/12

        nn   J 

    )R (1noM

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    61/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    we then write the em boundary conditions, namely:

    •  the tangential components of the electric field inside the particle just beneath the surface must be equal to the tangential components of the

    sum of the incident field and the scattered field just above the surface

    •  the same for the components of H (that is essentially )E

    1

    )R (

    1

    )R (

    1   in

    nennonn sph   d c E    NME

    1

    1

    )R (

    11

    )R (

    1   in

    nennenonnon scainc   ab E    NNMMEE

    and using the orthogonality of the vector spherical wave functions (angular part),

    one eventually finds four linear equations in the four unknownsan, bn, cn, d n

    at r   a

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

     A

    c

    b

    a

    c

    b

    a

     A

    ,4

    ,3

    ,2

    ,1

    1

    ,4

    ,3

    ,2

    ,1

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    62/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    the coefficients an, bn allow to compute straightforwardly the scattered em field

    anywhere outside the sphere

    and the coefficients cn, d n can be used to compute the em field inside the sphere

    1

    11   in

    nennonn sca   ab E    NME

    1

    )R (

    1

    )R (

    1   in

    nennonn sph   d c E    NME

    the first term (n  1) is called the dipolar term, the other terms (n  2) are the multipolar terms

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    63/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

     

      

      

      

     

     

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E 

    kr 

    e

     E 

     E 

    1

    2)(i

    0

    0i

    in particular, the amplitude-scattering matrix writes simply :

    from which all the optical scattered quantities can be deduced… 

    1

    1   )()1(

    12

    n

    nnnn   bann

    nS   p 

    1

    2   )(

    )1(

    12

    n

    nnnn   ba

    nn

    nS  p  

    IV 1 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    64/77

    R. Botet 04/2016

    IV.1 LIGHT SCATTERING BY A SPHERE- MIE THEORY -

    the coefficients an, bn write :

    11   )()1(

    12

    nnnnn   bann

    n

    S   p 

    1

    2   )()1(

    12

    n

    nnnn   bann

    nS  p  

    )(')()(')(

    )(')()(')(

    mx xm xmx

    mx xm xmx

    b nnnn

    nnnn

    n y x x y 

    y y y y 

    )(')()(')(

    )(')()(')(

    mx x xmxm

    mx x xmxma

    nnnn

    nnnnn

    y x x y 

    y y y y 

     xY  x J  x x nnn   2/12/1   i2     p 

     x J  x xnn   2/1

    p y 

    SUMMARY OF THE SECTION:

  • 8/18/2019 Lecture on Rayleigh Scatterring

    65/77

    R. Botet 04/2016

    “MIE THEORY” 

    the known incident field, the unknown inner field and the

    unknown scattered field are expanded on the basis of the

    vector spherical functions attached to the spherical particle

    the coefficients of the expansion are given by the em

     boundary conditions on the surface of the sphere

    IV.2 MIE THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    66/77

    R. Botet 04/2016

    IV.2 MIE THEORYREQUIREMENTS

    1) refractive index and radius of the sphere

    1) numerical code

    INPUT:

    REQUIREMENT:

    IV.2 MIE THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    67/77

    R. Botet 04/2016

    IV.2 MIE THEORYCONDITIONS OF USE

    1) restricted to homogeneous simple shape with specific symmetries

    (sphere, spheroid, infinite cylinder)

    CONDITIONS :

    IV.2 MIE THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    68/77

    R. Botet 04/2016

    IV.2 MIE THEORYPROS & CONS

    PROS :

    • very precise (exact) and stable

    • extended to multi-layers

    CONS :

    • only for a few perfect homogeneous shapes

    IV.2 MIE THEORY

  • 8/18/2019 Lecture on Rayleigh Scatterring

    69/77

    R. Botet 04/2016

    IV.2 MIE THEORY- APPLICATIONS -

    perfect sphere

    coated sphere

    IV.2 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    70/77

    R. Botet 04/2016

    IV.2 LIGHT SCATTERING BY A SPHERE- THE TYPES OF THEORIES -

    Mie solution is the complete  solution

    (any wavelength, refractive index

    and particle radius)

    …though approximate theories are 

    useful for simple formula at hand, better understanding, etc

    IV.3 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    71/77

    R. Botet 04/2016

    IV.3 LIGHT SCATTERING BY A SPHERE- THE TYPES OF THEORIES -

    Rayleigh scattering

    .

    Geometric scattering

    .

    IV.3 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    72/77

    R. Botet 04/2016

    V.- THE TYPES OF THEORIES -

    absorbance is measured by the

    extinction efficiency :

    1

    22

    2  )12(

    2

    n

    nnext   ban

    k C 

    IV.2 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    73/77

    R. Botet 04/2016

    - RAYLEIGH FROM MIE THEORY -

     

      

      

      

     

     

      

     

      inc

    inc z r k 

     sca

     sca

     E 

     E 

    kr 

    e

     E 

     E 

    1

    2)(i

    0

    0i

    if truncated to the first term (|m |x  

  • 8/18/2019 Lecture on Rayleigh Scatterring

    74/77

    R. Botet 04/2016

    - MIE THEORY -

    numerics

    most popular free code in FORTRAN from Bohren and Huffman : BHMIE.f

    for example here  https://code.google.com/archive/p/scatterlib/

    IV.3 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    75/77

    R. Botet 04/2016

    - MIE THEORY -

    optical efficiencies

    S 11 is the scattered intensity (unpolarized/unpolarized)

     POL is the degree of polarization of the scattered light

    S 33 = Re(S 1S 2*+S 3S 4*)

    S 34 = Re(S 2S 1*+S 4S 3*)

    easy to modify the code to obtain the desired quantities

    numerics

    most popular free code in FORTRAN from Bohren and Huffman : BHMIE.f

    IV.3 LIGHT SCATTERING BY A SPHERE

  • 8/18/2019 Lecture on Rayleigh Scatterring

    76/77

    R. Botet 04/2016

    - MIE THEORY -

    numerics

    there are also a number of alternative free code … 

    a list  http://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.html 

    Summary of the Lecture 1

    http://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.htmlhttp://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.htmlhttp://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.htmlhttp://diogenes.iwt.uni-bremen.de/vt/laser/wriedt/Mie_Type_Codes/body_mie_type_codes.html

  • 8/18/2019 Lecture on Rayleigh Scatterring

    77/77

    Summary of the Lecture 1

    very small particles  Rayleigh scattering

    approximation  L  0

    analytical

    any shape

    spherical particles  Mie theory

    exact

    computer code

    homogeneous spheres (coated, infinite cylinders, spheroids)