lecture07 - coning in vertical & horizontal wells

Upload: shz-irainian

Post on 02-Jun-2018

250 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    1/41

    Production TechnologyConing in Vertical & Horizontal Wells

    Aug 2008

    Master of Petroleum Engineering

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    2/41

    2

    Coning in Horizontal & Vertical Wells

    R.F. for Various DrivesDimension of Water Production Problem

    7 bbls water / bbl of oil - in US 3 bbls water / bbl of oil worldwide Water treatment cost: US$ 40b / year

    0.4 $/bbl of water

    Goodwater / Bad Water

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    3/41

    3

    Coning in Horizontal & Vertical Wells

    Where in the Oil Column to Place a Well?

    Objectives of perforations/well placement Communication of the well with reservoir fluid High productivity Delay gas/water brekthrough

    Improve recoveryAll within the constraints of Reservoir Management

    Plan (RMP)

    Summary of the objectives: Improved well/fieldeconomics

    Vertical Well: Where in the oil column do we perforate?

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    4/41

    4

    Coning in Horizontal & Vertical Wells

    An Example of Horizontal Well Placement (small gascap, strong aquifer)

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    5/41

    5

    Coning in Horizontal & Vertical Wells

    Coning Related Calculations

    1. Critical Coning Rate

    2. Breakthrough Time3. Post Breakthrough Production Performance

    How to Delay Coning Breakthough?

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    6/41

    6

    Coning in Horizontal & Vertical Wells

    Theory of Coning

    Maximum drawdown of the well without waterentering the well

    A rough estimate (not very accurate)

    WELL

    WATER CONE H

    H

    ( ) hp ow = 433.0max

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    7/41

    7

    Coning in Horizontal & Vertical Wells

    Water Coning

    Assumption kv=kh

    WELL

    WATER CONE H

    H

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    8/41

    8

    Coning in Horizontal & Vertical Wells

    Theory of Coning

    ( ) hp ow = 433.0max

    1. O

    i

    l

    1. Original

    OWC

    1. Original

    GOC

    ( )

    ( )[ ]PR

    SrrB

    pphkQ

    weoo

    weo

    o+

    =

    /ln

    00708.0

    ( ) ( )o

    w ffhrfPR 90cos2/71+=

    Assumption kv=kh

    f = fractional penetration (or

    perforation) = hp

    /h

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    9/41

    9

    Coning in Horizontal & Vertical Wells

    Water Coning

    Assumption kv=kh

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    10/41

    10

    Coning in Horizontal & Vertical Wells

    Muskat & Wyckoff (Laplace Eqn)

    Chaney / Cheirici (Potentiometric Methods)

    Wheatley (considers influence of cone shape on oil potential)

    Critical Coning Rate Analytical Solutions (Vertical Wells)

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    11/41

    11

    Coning in Horizontal & Vertical Wells

    Water Coning - Muskat & Wyckoffs Critical Coning Rate

    oo

    c

    B

    hkGq

    2=

    Originally derived for isotropic reservoir / water coning

    Can also be used for anisotropic reservoir & gas coning problem

    G = dimensionless factor =f(kv/k

    h; geometry)

    h = oil zone thickness

    Assumptions

    Single phase, SS flow Laplace Eqn applies

    Uniform-flux boundary condition

    Potential distribution in the oil phase not influenced by the coneshape

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    12/41

    12

    Coning in Horizontal & Vertical Wells

    Meyer-Garder (isotropic)

    Hoyland-Papatzacos-Skjaeveland (based on simulationruns)

    Chaney et al. (isotropic; extend Meyer-Garder; math+potentiometric) Chaperon (anisotropic)

    Schols (Lab & Numerical Simulation; isotropic) Chierici-Ciucci (potentiometric; anisotropic )

    Critical Coning Rate Correlations (Vertical Wells)

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    13/41

    13

    Coning in Horizontal & Vertical Wells

    Gas coning Water coning

    Combined gas and water coning

    Meyer-Garder Correlation (Isotropic; vertical well)

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    14/41

    14

    Coning in Horizontal & Vertical Wells

    Meyer-Garder Correlation (Isotropic; vertical well)

    Water coning

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    15/41

    15

    Coning in Horizontal & Vertical Wells

    Gas coningMeyer-Garder Correlation (Isotropic; vertical well)

    [ ]224 )(ln

    10246.0 too

    o

    w

    e

    go

    oc DhhB

    k

    r

    rQ

    =

    [ ]224

    ln

    10246.0 poo

    o

    w

    e

    ow

    oc hhB

    k

    r

    rQ

    =

    Water coning

    (Eq. 7.4)

    (Eq. 7.5)

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    16/41

    16

    Coning in Horizontal & Vertical Wells

    Simultaneous Gas & Water ConingMeyer-Garder Correlation (Isotropic; vertical well)

    Optimum Distance from Gas Cap, Dt

    (Eq. 7.6)

    +

    =

    2222

    4 1)()()/ln(10246.0 gw

    go

    go

    gw

    go

    ow

    we

    p

    oo

    oocrr

    hh

    B

    kQ

    (Eq. 7.6)

    =

    gw

    go

    pt hhD

    1)(

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    17/41

    17

    Coning in Horizontal & Vertical Wells

    Meyer-Garder Correlation (Isotropic; vertical well)

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    18/41

    18

    Coning in Horizontal & Vertical Wells

    Hoyland- Papatzacos-Skjiaeveland Method(anisotropic, vertical well) Water Coning

    CD

    oo

    howt

    oc qB

    khQ

    =

    )(10246.0

    24

    where,

    kh = horizontal permeability,mD

    qCD = dimensionless critical flow rate

    ht = total reservoir thickness, ft

    qCD = f (rD and fp)

    h

    ve

    D

    k

    k

    h

    rr =

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    19/41

    19

    Coning in Horizontal & Vertical Wells

    Hoyland- Papatzacos-Skjiaeveland Method(anisotropic, vertical well) Water Coning

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    20/41

    20

    Coning in Horizontal & Vertical Wells

    Hoyland- Papatzacos-Skjiaeveland Method(anisotropic, vertical well) Water Coning

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    21/41

    21

    Coning in Horizontal & Vertical Wells

    Chaperons Method (anisotropic, vertical well)Water Coning

    [ ]*

    2

    4)(

    100783.0 coo

    ph

    oc qB

    hhk

    Q

    =

    )"/943.1(7311.0* +=cq

    hve kkhr /)/("=

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    22/41

    22

    Coning in Horizontal & Vertical Wells

    Chierici-Ciucci Method (anisotropic, vertical well)Water & Gas Coning

    v

    he

    De

    k

    k

    h

    rr =

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    23/41

    23

    Coning in Horizontal & Vertical Wells

    Chierici-Ciucci Method (anisotropic, vertical well)Water & Gas Coning

    ( )

    ( ) ( )wDewhrooo

    ow

    ow rkkB

    h

    Q

    ,,10492.0

    24

    =

    ( )( ) ( )gDeghro

    oo

    go

    og rkkB

    hQ

    ,,10492.0

    2

    4

    =

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    24/41

    24

    Coning in Horizontal & Vertical Wells

    1=

    WO

    OG

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    25/41

    25

    Coning in Horizontal & Vertical Wells

    1=

    WO

    OG

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    26/41

    26

    Coning in Horizontal & Vertical Wells

    1=

    WO

    OG

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    27/41

    27

    Coning in Horizontal & Vertical Wells

    1=

    WO

    OG

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    28/41

    28

    Coning in Horizontal & Vertical Wells

    1=

    WO

    OG

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    29/41

    29

    Coning in Horizontal & Vertical Wells

    1=

    WO

    OG

    C i i H i l & V i l W ll

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    30/41

    30

    Coning in Horizontal & Vertical Wells

    1=

    WO

    OG

    C i i H i t l & V ti l W ll

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    31/41

    31

    Coning in Horizontal & Vertical Wells

    Chierici-Ciucci Method (anisotropic, vertical well)Water & Gas Coning

    Given reservoir & fluid properties, hp (), =>

    critical production rate

    Given reservoir & fluid properties, , Q, =>

    Optimum completion interval by trial & error method

    Assume hp, ; know fluid properties => Q()

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    32/41

    32

    Coning in Horizontal & Vertical Wells

    Cone Breakthrough Time

    The Sobocinski-Cornelius Method

    The Bournazel-Jeanson Method

    Post Breakthrough Production Performance

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    33/41

    33

    Coning in Horizontal & Vertical Wells

    Cone Breakthrough TimeThe Sobocinski-Cornelius Method (Experimental Data)

    ( )

    ooo

    phow

    QB

    hhhkZ

    =

    410492.0

    Dimensionless cone height Z:

    ( )Z

    ZZZtBTD

    2775.075.14 32

    +=

    ( )( ) ( ) Mkth

    tvow

    BTDoBT

    +=

    1

    325,20

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    34/41

    34

    Coning in Horizontal & Vertical Wells

    Cone Breakthrough TimeThe Sobocinski-Cornelius Method (Experimental Data)

    ( )( )

    =

    w

    o

    Swcro

    Sorrw

    kkM

    = 0.5 forM 1 and = 0.6 for 1

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    35/41

    35

    Coning in Horizontal & Vertical Wells

    Cresting in Horizontal Wells

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    36/41

    36

    Coning in Horizontal & Vertical Wells

    Critical Coning (Cresting) Rate for Horizontal Wells

    1. Chaperons Method

    2. Efros Method3. Karchers Method4. Joshis Method

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    37/41

    37

    Coning in Horizontal & Vertical Wells

    Breakthrough Time for Horizontal Wells

    1. The Ozkan-Raghavan Method

    2. Papatzacos Method

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    38/41

    38

    Coning in Horizontal & Vertical Wells

    Figure (7.20) Dimensionless time for two-cone case.

    (After Paptzacos, P. et. Al.)

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    39/41

    39

    g

    Figure (7.21) Optimum well placement for two-cone case.(After Paptzacos, P. et. al.)

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    40/41

    40

    g

    Practical Issues with Coning Calculations

    Analytical solutions are based on simplified assumptions

    Assume khomogenous

    etc

    Scarcity of data

    Data quality & consistency

    Quality of core data?

    RFT data (density etc) matching with lab data Oil density graduation in reservoir

    Permeability sequencing (fining/coarsening trend)

    Kv?

    Coning in Horizontal & Vertical Wells

  • 8/10/2019 Lecture07 - Coning in Vertical & Horizontal Wells

    41/41

    41

    Solution to Practical Issues

    Analytical tools are still powerful in understanding the

    physics of multiphase flow

    Be practical & beaware of the assumptions and limitations

    Perform sensitivity analysis define range of uncertainty

    A range of outcome with various probability

    Identify most likely / risked outcome

    Be guided by analogy / experience / probability