lecture13 ee620 freq synth examples

46
Sam Palermo Analog & Mixed-Signal Center Texas A&M University ECEN620: Network Theory Broadband Circuit Design Fall 2012 Lecture 13: Frequency Synthesizer Examples

Upload: frankliu

Post on 12-Apr-2015

21 views

Category:

Documents


2 download

DESCRIPTION

ECEN620: Network Theory Broadband Circuit Design Fall 2012Lecture 13: Frequency Synthesizer Examples

TRANSCRIPT

Page 1: Lecture13 Ee620 Freq Synth Examples

Sam Palermo Analog & Mixed-Signal Center

Texas A&M University

ECEN620: Network Theory Broadband Circuit Design

Fall 2012

Lecture 13: Frequency Synthesizer Examples

Page 2: Lecture13 Ee620 Freq Synth Examples

Announcements & Agenda

• HW2 is due Friday Oct. 12

• Frequency Synthesizer Examples • Design of Frequency Synthesizers for Short Range

Wireless Transceivers • A Multi-Standard Frequency Synthesizer

2

Page 3: Lecture13 Ee620 Freq Synth Examples

3

Design of Frequency Synthesizers for Short Range

Wireless Transceivers

Ari Y. Valero - López

Department of Electrical Engineering Analog & Mixed-Signal Center

Texas A&M University February 23th, 2004 A M S C

Page 4: Lecture13 Ee620 Freq Synth Examples

4

Most Popular Wireless Standards

ShortRange

Wireless

Bluetooth(2.45GHz, 1Mbps,10m)

WirelessLAN 802.1111a (5.25GHz, 54Mbps, 50m)11b (2.45GHz, 11Mbps, 100m)11g (2.45GHz, 24Mbps, 100m)

UWB(3.1-10.9GHz, 110Mbps, 10m)

Page 5: Lecture13 Ee620 Freq Synth Examples

5

Frequency Synthesizer in a Wireless Communication System

RF Radio

DigitalBaseband

AnalogBaseband

Where does a Frequency Synthesizer fits in a Radio Transceiver?

DigitalSignal

Processor

FrequencySynthesizer

ADCLNA

90o

BasebandProcessing

(Channel SelectFilter, VGA)

Receiver

Modulator

Transmitter

Downconverter

Upconverter

T/RSwitch

I

Q

Page 6: Lecture13 Ee620 Freq Synth Examples

6

Function of a Frequency Synthesizer in a Radio

The Frequency Synthesizer generates the

required frequency reference for selection of a communication channel

The desired channel is downconverted to a

frequency corresponding to: fIF = fRF - fLO

DesiredChannel

Rec

eive

d Si

gnal

Syn.

Out

put

Rec

eive

r O

utpu

t

Desired Tone

fRF

fLO

fIF

Page 7: Lecture13 Ee620 Freq Synth Examples

7

Frequency Synthesizer Building Blocks

• VCO and Frequency Divider operate at high frequency

• PFD, Charge Pump and LPF generate proper control voltage of VCO

PFDfin fout

VCO

1N

C1

R1

C2

Charge Pump

Loop Filter

fdiv

VDD

UP

DWN

Frequency Divider

θin

θdiv

PhaseDetector

FrequencyDivider

foutLoopFilter VCO

θin = θdiv ⇒ fin = fdiv = fout/N

Page 8: Lecture13 Ee620 Freq Synth Examples

8

FS for Bluetooth Receiver

PLL

LNA

I

Q

RF filterPolyphase

Filter

Demodulator

OffsetCancellation

/Decision

2.4GHz 2MHz

Bluetooth Low IF Receiver in 0.35µm CMOS

PFD ChargePump

FrequencyDivider

fREF fOUT

Modulus Selection

LPF VCO

Page 9: Lecture13 Ee620 Freq Synth Examples

9

Micrograph

• Results – Tuning Range: 2.388 - 2.550 GHz – PN: -120dBc / Hz @ 1MHz – Frequency Step 1MHz – Power: 12 mA

Phase Noise Measurement

Page 10: Lecture13 Ee620 Freq Synth Examples

10

Dual Mode Receiver

reset

VGAwith offset cancellation

BT: 0/24dB, 1 stageWi-Fi: 0-62dB, 3 stage

Measuresignallevel

Gaincontrol

BT

Wi-Fi

BT

Wi-Fi

LPFBT: BW=600kHzWi-Fi: BW=6MHz ADC

BT: 11-bit 11MHzWi-Fi: 8-bit 44MHz

reset

Pipeline

Dig

ital M

UX

Pipeline

fref = 2MHz4.9GHz

2

2.45GHzI Q

LPF CP PFD

VCO

Phase SwitchingBlock

ProgrammableDivider

15/16 Prescaler

LNA

-15dB Attenuator

RF IN

Pipeline

Dig

ital M

UX

Pipeline

Direct Conversion Bluetooth/Wi-Fi Receiver

Page 11: Lecture13 Ee620 Freq Synth Examples

11

Frequency Synthesizer Specifications

±60 kHz ±75 kHz Center frequency accuracy

-125 dBc/Hz @ 25 MHz

-124 dBc/Hz @ 3 MHz

Phase Noise

224 µs

220 µs Settling time (max)

5 MHz 1 MHz Channel Spacing

2401 – 2480 GHz

2401 – 2480 GHz

Frequency Range

IEEE 802.11b Bluetooth

• Bluetooth specifications are more stringent • Complying with Bluetooth specs covers WiFi

Page 12: Lecture13 Ee620 Freq Synth Examples

12

Frequency Synthesizer Architecture • An Integer N Frequency Synthesizer

architecture is used. • The VCO oscillates at 5 GHz to

accommodate all the standards (requires 10% tuning range).

• A Divide-by-2 generates quadrature outputs for BT and 802.11b.

fref = 2MHz 4.9GHz

2

2.45GHz IQ

PFD CP LPF

VCO

Phase SwitchingBlock

ProgrammableDivider

15/16 Prescaler

BluetoohIEEE 802.11b

Page 13: Lecture13 Ee620 Freq Synth Examples

13

Design Considerations

( )( )

>−

+−∆

−−

<

=

1 12

1ln

11

1 1

ln

2

2

2

2

ζξε

ξξ

ωξξ

ζωζε

ref

n

n

ref

lock

Nf

ζ

Nf

t

+

+=

=

−−

−−

1

1tan1tan

tantan

2

1

1

2

11

2

121

CCC

Cm

p

z

z

pm

φ

ωω

ωω

φ

• Phase Margin

• Settling Time

20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

1.2

1.4

Phase Margin [Degrees]

Damping Factorξωn/ωc

20 30 40 50 60 70 801.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Phase Margin [Degrees]

ω-3dB/ωc

( ) ( ) 11212 2223 ++++=− ζζωω ndB

• Design Parameters – Loop Bandwidth – VCO Gain – Charge Pump Current – Loop Filter Components

( )( )m

mvcofpd

NKKK

φφτζ

cos2sin

2==

Page 14: Lecture13 Ee620 Freq Synth Examples

14

Loop Filter

C1

R1

C2Vo

Icp

+

-

Kvco = 300MHz/V C1 = 340 pF

Icp = 35 µA C2 = 26.15 pF

N = 2450 R1 = 52.6 kΩ

• Trade offs – Settling Time – Close-in Phase Noise – Total Capacitance – Charge Pump Current

Loop Bandwidth = 35 kHz Phase Margin = 60°

Page 15: Lecture13 Ee620 Freq Synth Examples

15

Capacitance Multiplier

• Schematic Vdd

C

5 µA

VbiasN

VbiasPIin

1:M

1:M

M1

M2

M4

M3

A

B

10

+=

Mzzin

Z0i1 Mi1

iin

Zin

• Model

Page 16: Lecture13 Ee620 Freq Synth Examples

16

Loop Filter Layout • Active Filter.

• Reduced area • 240µm x 280µm

• Passive Filter. • Reduced spurs • 430µm x 780µm

Active vs. Passive

Page 17: Lecture13 Ee620 Freq Synth Examples

17

Phase Switching Prescaler

• Architecture

Phase switching prescaler for reduced power consumption

compared with traditional architectures.

Total Current: 4 mA

fin /4fin

÷ 2IQIQ

f in /2

5GHz

2.5GHz 1.25

GHz

To Mixers LO Port

625MHz

÷ 2IQIQ

PhaseSelection

÷ 2

ModulusControl

÷ 2fout

IQIQ

÷ 2

PhaseSelection

fin /8

/2 /

2

/2

/2

/2

I

QI

Q

p0p2p4p6

p1p3p5p7

ModulusControl

Mux

15/16 Dual Modulus

Page 18: Lecture13 Ee620 Freq Synth Examples

18

Phase Switching Prescaler

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

1 2 3 4 1 2 3 4

1 2 3

fout

Mux

p7

p6

p5

• Circuit Operation

fin /4

1.25GHz 625

MHz

IQIQ

PhaseSelection

÷ 2

ModulusControl

÷ 2fout

IQIQ

÷ 2

PhaseSelection

fin /8

/2

/2

p0p2p4p6

p1p3p5p7

ModulusControl

Mux

Page 19: Lecture13 Ee620 Freq Synth Examples

19

Phase Switching Prescaler

Vdd

CLK CLK

D

Q

Q

Vbias

R R

D

Ibias

÷ 2IQIQ

D Q

Q

D Q

QCLK

I Q

1st stage 2nd stage 3rd stage Ibias 500 µA 375 µA 250 µA R 1 kΩ 1.3 kΩ 2 kΩ

• Implementation: High Frequency D Flip-flop

2

2.45GHz IQ

Phase SwitchingBlock

15/16 Prescaler

Page 20: Lecture13 Ee620 Freq Synth Examples

20

Measurement Results • Phase Noise

Phase Noise: -124 dBc/Hz @ 3MHz

Settling time : 150 µs (220 µs spec)

• Settling Time

Page 21: Lecture13 Ee620 Freq Synth Examples

21

Measurement Results

• Output Spectrum

Worst case measurement

Phase error ≈ 3°

Magnitude error ≈ 1dB

Tuning Range:

2.391 – 2.498 GHz

• I/Q Mismatch

Page 22: Lecture13 Ee620 Freq Synth Examples

22

Summary of FS Testing Results

Parameter Value Units

Frequency Range 2400 - 2500 GHz

Phase Noise -124 dBc @ 3MHz

Settling Time 150 µs

Reference Spur -35 dBc

Power Consumption 31.25 mW

I/Q Mismatch Phase Amplitude

< 3 < 1

° dB

Page 23: Lecture13 Ee620 Freq Synth Examples

23

Summary of Testing Results • Power Consumption Distribution

VCO 3mA

5GHz Buffer 1.5mA

2.4 GHz Buffers 3mA

Prescaler 4mA

Digital 0.6mA

CP, CM, Bias 0.4mA

Total current consumption = 12.5mA with buffers

Page 24: Lecture13 Ee620 Freq Synth Examples

24

Die Micrograph

• Die Area: 21 mm2

• Package: TQFP 128pins

• Synthesizer Area: 1.87 mm2

Page 25: Lecture13 Ee620 Freq Synth Examples

25

A Multi-standard Frequency Synthesizer

Sung Tae Moon April 4, 2003

Page 26: Lecture13 Ee620 Freq Synth Examples

26

PLL Block Diagram

Phase/FrequencyDetector

ChargePump

LoopFilter VCO

Divide byN

fREFfOUT

fOUT/N

fREF = fOUT/NfOUT = NfREF

UP

DOWN

Page 27: Lecture13 Ee620 Freq Synth Examples

27

What’s the Challenge?

Phase/FrequencyDetector

ChargePump

LoopFilter VCO

Dead-zone Mismatch Leakage

Stability Settling Size

Tuningrange

Noise Quadrature

Divide byN

Speed

Page 28: Lecture13 Ee620 Freq Synth Examples

28

Linear Model

Phase/FrequencyDetector

ChargePump

LoopFilter VCO

1/2π

Divide byN

φIN

I (1+s/ωz) Ko/s(1+s/ωp)s

1/N

φOUT

Page 29: Lecture13 Ee620 Freq Synth Examples

29

Loop Design

ωz ωn ωc

ωp

−180

−135

−90

Magnitude

Phase

Page 30: Lecture13 Ee620 Freq Synth Examples

30

Bluetooth Specification

• Band 2.4~2.48 GHz • Channel spacing 1 MHz • Settling time 239 µsMAX

• Phase noise -124 dBc@3MHz

• Frequency accuracy ±75 kHz

2400 2480

Bluetooth

1MHz

Page 31: Lecture13 Ee620 Freq Synth Examples

31

Loop Filter Design

ωz12.5

ωn25

ωc50

200ωp

−180

−125

Page 32: Lecture13 Ee620 Freq Synth Examples

32

VCO Design

Vc

VcD0D1

• Discrete capacitor array • Manually controlled

Page 33: Lecture13 Ee620 Freq Synth Examples

33

Bluetooth + WLAN 802.11b Specification

Bluetooth WLAN 802.11b • Band 2.4~2.48 2.4~2.472 GHz • Channel 1 MHz 5 MHz • Settling 239 µsMAX 220 µsMAX

• Phase noise −124 dBc −126 dBc @3 MHz @25 MHz • Accuracy ±75 kHz ±60 kHz

Page 34: Lecture13 Ee620 Freq Synth Examples

34

Bluetooth + WLAN 802.11b Specification

2400 2480

25MHz

2400 24802412 2437 2462

2400 24802412 2422 2432 2442 2452 2462 2472

Bluetooth

802.11b Non-overlapping

802.11b Overlapping

1MHz

10MHz

Page 35: Lecture13 Ee620 Freq Synth Examples

35

VCO Design

Vc

Vb

Ib

Page 36: Lecture13 Ee620 Freq Synth Examples

36

WLAN 802.11a + WLAN 802.11b Specifications

802.11a 802.11b • Band 5180~5320 4824~4944 5745~5805 (2412~2472) • Ch. Spacing 20 10 (5) • fREF 2.5 2 • Divider 2072~2322 2412~2472 • Settling 224 µsMAX 224 µsMAX • Phase noise −126 dBc −126 dBc @40 MHz @25 MHz • Accuracy ±100 kHz ±120 (60) kHz

Page 37: Lecture13 Ee620 Freq Synth Examples

37

Triple Band Requirement

4824 58054944 57455320

802.11b

5180

802.11a LOW 802.11a HIGH

Page 38: Lecture13 Ee620 Freq Synth Examples

38

What’s the Challenge?

• Limited loop bandwidth : 100 kHz – Results in slow settling – MATLAB simulation shows 110µs – Adaptive dual-loop PLL

• Wide band : 4824 ~ 5805 (981 MHz) – Triple band VCO

• 4824~4944(120),5180~5320(140),5745~5805(60) – Calibration – Ring oscillator possibilities

Page 39: Lecture13 Ee620 Freq Synth Examples

39

Adaptive Dual-loop PLL

• Less costly solution to limited loop-bandwidth problem

• Flexible Loop-bandwidth • Glitch problem between bandwidth

switching • Smooth transition using dead-zone • Improved dead-zone control

Page 40: Lecture13 Ee620 Freq Synth Examples

40

Adaptive Dual-loop PLL

PFD1 CP1 Loop Filter f REF

%N

I L

VCO

PFD2 CP2

Dead-zone I H

Auxiliary Loop

Page 41: Lecture13 Ee620 Freq Synth Examples

41

Dead-zone Control

PFD1 CP1 LoopFilter

PFD2 CP2

Dead-zone

fREF

%N

IL

IH VCO

Digital Control

Page 42: Lecture13 Ee620 Freq Synth Examples

42

MATLAB simulation

Page 43: Lecture13 Ee620 Freq Synth Examples

43

Wide band VCO with calibration

• Discrete capacitor array – Without array, tuning gain is too high

• Two purposes – Wide band – Low tuning gain

• Comparator loop for automatic calibration

Page 44: Lecture13 Ee620 Freq Synth Examples

44

Discrete Capacitor Array

Vc

VcD0D1

Page 45: Lecture13 Ee620 Freq Synth Examples

45

Automatic Calibration

PLL VCO

Comparator

HI LO

Page 46: Lecture13 Ee620 Freq Synth Examples

Next Time

• More Advanced Loop Filters • VCOs

46