lecture7 particle motion

32
Physics of fusion power Lecture 7: particle motion

Upload: navoneel-biswas

Post on 13-Sep-2015

230 views

Category:

Documents


0 download

DESCRIPTION

not good enough

TRANSCRIPT

  • Physics of fusion powerLecture 7: particle motion

  • Gyro motion The Lorentz force leads to a gyration of the particles around the magnetic field

    We will write the motion as The Lorentz force leads to a gyration of the charged particles around the field line Parallel and rapid gyro-motion

  • Typical valuesFor 10 keV and B = 5T. The Larmor radius of the Deuterium ions is around 4 mm for the electrons around 0.07 mm Note that the alpha particles have an energy of 3.5 MeV and consequently a Larmor radius of 5.4 cm Typical values of the cyclotron frequency are 80 MHz for Hydrogen and 130 GHz for the electrons Often the frequency is much larger than that of the physics processes of interest. One can average over time One can not necessarily neglect the finite (but small) Larmor radius since it leads to important effects.

  • Additional Force FConsider now a finite additional force F

    For the parallel motion this leads to a trivial acceleration

    Perpendicular motion: The equation above is a linear ordinary differential equation for the velocity. The gyro-motion is the homogeneous solution. The inhomogeneous solution

  • Drift velocityInhomogeneous solution

    Solution of the equation

  • Physical picture of the driftThe force accelerates the particle leading to a higher velocity The higher velocity however means a larger Larmor radius The circular orbit no longer closes on itself A drift results.

  • Electric field Using the formula

    And the force due to the electric field

    One directly obtains the so-called ExB velocity

    Note this drift is independent of the charge as well as the mass of the particles

  • Electric field that depends on timeIf the electric field depends on time, an additional drift appears Polarization drift. Note this drift is proportional to the mass and therefore much larger for the ions compared with the electrons

  • Consequences of the drifts Assume a Force F on each ion in the x-direction

    Electrons are stationary Drawing of the slab of plasma with a force F on the ions in the x-direction

  • Drift leads to charge separation The drift of the ions leads to charge separation. A small charge separation will lead to a large electric field, i.e. a build up of an electric field can be expectedThis would lead to a polarization driftQuasi-neutrality Drawing of the slab of plasma with a force F on the ions in the x-direction

  • Electric field evolution The polarization drift balances the drift due to the force

    The plasma remains quasi-neutral, and the electric field can be calculated from the polarization driftDrawing of the slab of plasma with a force F on the ions in the x-direction

  • The next drift : The ExB velocityThe electric field evolution

    leads to an ExB velocity

    Substituting the electric field

  • The ExB velocity The ExB velocity

    Satisfies the equation

    Chain. Force leads to drift. Polarization drift balances the drift and leads to electric field, ExB velocity is in the direction of the force Motion due to the ExB velocity

  • Meaning of the drifts In a homogeneous plasma Free motion along the field line Fast gyration around the field lines ExB drift velocity. Provides for a motion of the plasma as a whole (no difference between electrons and ions) Polarization drift. Allows for the calculation of the electric field evolution under the quasi-neutrality assumption. Provides for momentum conservation.

  • Inhomogeneous magnetic fields When the magnetic field strength is a function of position the Lorentz force varies over the orbitTaking two points A and B

  • Inhomogeneous magnetic field Force due to magnetic field gradient is directed such that the particle tries to escape the magnetic field

    Leads to the grad-B drift

  • Curvature drift A particle moving along a curved field line experiences a centrifugal force

    For a low beta plasma Centrifugal force due to the motion along a curved magnetic field

  • Drifts due to the inhomogeneous field The drifts due to the inhomogeneous field (curvature and grad-B)

    The drift due to the magnetic field in homogeneity is in general much smaller than the thermal velocity

  • All together . Parallel motion Gyration ExB drift Pololarization driftGrad-B and curvature drift

  • Conserved quantities In the absence of an electric field

    Perpendicular energy is conserved

    And consequently the total energy is conserved

  • More tricky .. Consider a changing magnetic field. An electric field is generated

    Integrating over the area of the Larmor orbit

  • AccelerationDerive a second equation for the integral of the electric field from

    Solve through the inner product with the velocity

    Integrate towards time

  • Acceleration Integrate in time

    Note the integration has the opposite orientation compared with the one from Maxwell equation. One is minus the other

  • Magnetic moment is conservedThe equation

    The magnetic moment is a conserved quantity

  • Flux conservation The magnetic moment is conserved

    Calculate the flux through the gyro-orbitDrawing of the ring current of a particle in a magnetic field. The ring will conserve the flux which is related to the magnetic moment

  • The mirror Theta pinch has end lossesBut one could use the mirror force to confine particles

    The mirror has a low B field in the centre and a high field near the coils Particles moving from the centre outward experience a force in the opposite directionDrawing the mirror concept and the motion of a particle in the field (in red)

  • Mirror configuration From magnetic moment conservation follows the perpendicular energy

    Energy conservation then dictates that the parallel velocity must decreaseParticle moving from A to B

  • Bouncing condition Assume the particle moving from A to B is reflected in the point BZero because the particle is reflected

  • The first key problem of the mirror Only part of the particles are confined (Collisional scattering in the loss region will lead to a rapid loss of the particles from the device)

  • Second key problem of the mirrorThe rapid loss of particles makes that the distribution of particles in velocity space is far from the Maxwell of thermodynamic equilibrium The population inversion can drive all kinds of kinetic instabilities

    *******************************